U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 3, 2022 ISSN 2286-3540

SOFTWARE DEVELOPMENT METHODOLOGIES: A
COMPARATIVE ANALYSIS

lulia loana ANGHI%Ll, Roberta Stefana CALIN?!, Maria Lavinia NEDELEA?,
lulia Cristina STANICA?, Catalin TUDOSE?, Costin Anton BOIANGIU*

Software development methodologies define fine lines which ensure improved
human and time management to accomplish the project needs. The current research
aims to develop a comparative study on representative methodologies, seeking to
identify the potential growth in the quality of the project deliverables and to decide
whether the practical approach is the same as the theoretical one. To gain the
needed information, a research was conducted with people from different software
positions and companies. The results aim to provide a better understanding of how
people feel about using software development methodologies based on personal
experience.

Keywords: software project management, development methodology, waterfall,
iterative, v-model, prototype, agile, scrum, feature-driven, Kanban,
Lean, Extreme Programming

1. Introduction

The idea of comparative research on project management and software
development methodologies started due to the increased use of methodologies in
project development. Software development methodologies refer to a collection of
practices that must be put together to generate a systematic procedure. Over time,
development methodologies have evolved and adapted to modern times and new
technologies.

The goal of the current research is to analyze whether there are
correlations between the theoretical and practical aspects of each frequently
encountered methodology. We will thus detail some general ideas about the
traditional (Waterfall, V-Model, Iterative, and Prototyping) and modern (Scrum

L Student, Computer Science and Engineering Department, University POLITEHNICA of
Bucharest, Romania, e-mail: angheliuliaioana@gmail.com, roberta.calin23@gmail.com,
lavinia.mndl@gmail.com

2 Teaching Assistant, PhD, Department of Engineering in Foreign Languages, University
POLITEHNICA of Bucharest, Romania, e-mail: iulia.stanica@upb.ro

3 Lecturer, PhD, Computer Science and Engineering Department, University POLITEHNICA of
Bucharest, Romania, e-mail: catalin.tudose@gmail.com

4 Prof., PhD, Computer Science and Engineering Department, University POLITEHNICA of
Bucharest, Romania, e-mail: costin.boiangiu@cs.pub.ro

46 I.I. Anghel, R.S. Cilin, M.L. Nedelea, I.C. Stanica, C. Tudose, C.A. Boiangiu

Agile Based, Feature Driven Development, Lean Development, Extreme
Programming, and Kanban) software methodologies based on specialty literature.
Furthermore, theoretical aspects will be compared with the answers received in a
thorough study conducted with people working in different software companies.

2. Software development methodologies — literature comparison

Software development methodologies (SDM) refer to rules established for
conceiving, planning, designing, developing, testing, deploying, and maintaining
software [1]. Different SDMs have evolved over the last 50 years, from classical
to modern ones, each one adding core values and principles besides previously
mentioned guidelines. For the next part of the analysis, we are going to refer to
pre-Agile methodologies as being part of the “traditional” type, while all post-
Agile SDMs will be referred to as “modern”.

2.1. Traditional development methodologies

Traditional methodologies, also called “heavy-weight”, rely on strict
planning, requirements definition, and documentation [2].

Waterfall

The waterfall methodology is one of the traditional models that provide
linearity, based on a top-to-bottom approach [3]. Due to its origins linked to the
manufacturing industry, it comes with a restrictive structure based on multiple
phases, such as requirements (the needs of the project), design (architecture and
technologies, according to previously established requirements), implementation,
testing, deployment, and maintenance. Each phase must be executed in a queue;
one should move forward to the next phase only when the preceding one is done
(thus the "waterfall” terminology) [4]. This methodology comes with simplicity in
a well-organized structure. It is best suited for short projects because it requires
the team members to have a thorough understanding of the requirements [5]. On
the other hand, it can create a gap in communication between the client and
employee, which might fail in keeping up with the expectations, as a consequence
of not having a model of software available until all phases are finished [6]. When
it comes to the final stage, changes do not come as an easy solution, meaning
tedious refactoring.

V-Model

V-model is a traditional software development and testing methodology,
often considered a variant of the Waterfall approach [7]. Also named the
Verification and Validation Model is used to represent a system’s development
lifecycle following a strict structure and being executed sequentially. Each
development phase has an associated testing phase, which in this way ensures

Software development methodologies: a comparative analysis 47

proactive defect tracking [8]. This approach is suitable for smaller projects, as it
demands a very well understanding of the requirements from the team members.
Also, it is preferable for projects with vast technical resources [9]. It may be
preferred as a software development methodology because it is easy to use due to
its simple structure, but a project manager should take into consideration the fact
that this method is risky and unstable, and it is difficult to change functionality
when it gets to the testing stage [10] [11].

Iterative

This approach consists of building a product through various steps,
providing a fully functional product at the end of each stage, and getting user
feedback early as well. It starts with a simple prototype containing the essential
requirements, and afterward, the product is constantly improved until the final
stage [12]. The big advantage is that a working product can be delivered very
quickly, even if it’s not complete, as it may have some of the functionalities
implemented. This approach also allows for earlier feedback [13], leading to
issues being caught early in the cycle. The iterative model is good for large
projects done by smaller teams [14], benefiting from the ability to easily adapt.
However, since not all requirements might be specified from the beginning, it is
possible for the architecture to change and for problems to arise when other
requirements are added. When it comes to the process of each iteration, it includes
planning, analysis, implementation, and testing. The final step is the feedback,
with the whole process repeating until the product is finished [13].

Prototyping

The Prototyping Model is an SDM in which a prototype is successively
built, tested, and modified until an acceptable result is created from which the
complete system or product can be developed [15]. This method is suitable for
systems with many interactions with the end-users, including online systems or
web interfaces. A prototype is made before the coding proceeds, so the
requirements can be changed after the end-user gets an “actual feel” of the system
[16]. This may increase the complexity as the client wants more functionalities
[15], but also improves the quality of the specifications provided by the customer.
One of the advantages of the Prototyping Model is that missing functionalities are
quickly identified. Moreover, it is easy to understand, it encourages innovation,
and customers are included in the development process, helping with product
improvements [15]. Besides its advantages, the Prototyping Model has also some
disadvantages, including high costs spent on creating the prototype [16] due to
unexpected failures during testing or errors in the development process, resulting
in the need to create a new prototype and slow development time until the final
project is finished.

48 I.I. Anghel, R.S. Cilin, M.L. Nedelea, I.C. Stanica, C. Tudose, C.A. Boiangiu

2.2. Modern development methodologies

Light-weight or so-called “modern” technologies rely more on
adaptability, small iterations, and people’s involvement and communication.

Scrum

Scrum is a delivery-focused framework best suited for Agile development.
It relies on a self-organizing, cross-functional team. Scrum encourages a
structured way of getting work done, shaped by the company’s strategies and
culture, having its main focus on good communication, permanent improvement,
and transparency. This framework uses visual representations such as boards for
planning and tracking purposes [17]. Complex tasks are divided into small chunks
of work, while small objectives and delivery in a fixed length of time make the
work easier. In Scrum, there are three components: product backlog (the needs of
the product to work properly), sprint backlog (selected issues for the current
development cycle), and sprint goal [18]. The main advantages are customer
delivery (the key functionalities might be available before the final stage of the
product) and adaptability (feedback as a tool used for continuous improvement)
[19]. On the other hand, Scrum may take some time to be fully grasped.

Feature-Driven Development

Feature-Driven Development (FDD) is a feature-focused, Agile method
that is customer-centric, iterative, and incremental [20]. In addition, its approach
is top-down decision-making [21]. As its name suggests, this methodology’s core
is to deliver features often and efficiently. Focusing on features offers the
opportunity to address customer needs more quickly, and identify and fix
problems that appear [21]. In addition, there are complementary development
techniques that are driven by other specific parts of the application lifecycle. This
methodology differs from other Agile-based ones by minimizing the number of
meetings relying on documentation to communicate information and maximizing
the support over features [20]. It is best suited for big companies which face
complex projects and a large group of people. Unfortunately, it is highly
dependent on developers and does not work efficiently for small projects.

Lean Development

Lean Development borrows its philosophy from the manufacturing
industry, which is based on automation and speed. It optimizes people, resources,
effort, and energy, creates value for the customer, and improves programming
practices and the organization’s performance [22]. Lean Software Development is
based on a series of clear principles, it depends on self-documented code and the
team's involvement. Decisions are delayed until they can be made based on facts,
not uncertain assumptions, or predictions [23]. The Lean Development

Software development methodologies: a comparative analysis 49

methodology is suitable for small teams and projects that have to be finished
quickly. When a Lean team is created, communication is the most important
factor for the project’s success [22]. In terms of testing, it reduces waste by testing
the system continuously, from the early stages of development [24]. There are
numerous advantages: minimizing waste and maximizing customer value, test
automation, continuous improvement, and cost reduction. As a disadvantage,
Lean Development presents low scalability in comparison with other frameworks
[24].

Extreme programming (XP)

In Extreme programming, the planning is done at the beginning of each
phase, and the goal is to practice completely transparent development while
integrating code in small parts, avoiding long phases in the development process.
Testing is also done before the code is implemented, and pair programming is
highly encouraged [25]. Moreover, an important aspect of XP is the fact that the
customer is always available to the team, which is preferably small but extended
(including not only developers) [26]. The steps of XP are planning, managing,
designing the architecture, coding, and testing. One disadvantage of XP is the
focus on the code, which tends to disadvantage the design and the architecture.
Also, considering the pair programming approach, different time zones may
negatively impact the performance and synchronization of the team [27].

Kanban

Kanban is a flexible approach that can be used on top of other workflows
and methods that already exist [28]. The first principle of Kanban is visualizing
the workflow, to clearly set the stages of the development as requested, in
progress, or done/delivered items. A Kanban system is defined by existing
“signals” as well as commitment and delivery points, which will delimit the three
categories in the workflow [29]. By having a well-delimited column for each step
in the process, the state can be monitored, and problems can easily be observed.
Another Kanban principle is constraining multitasking, an approach that ensures
that a task will be moved to being in progress only after another one is done,
managing the workload and the flow of the whole process [30]. Another principle
Kanban focuses on is making the process transparent, so that everyone is familiar
with it, as well as implementing cadences, or feedback opportunities. The
feedback practice makes it easier to fix issues. Considering all aspects, the steps
of Kanban coincide with its practices - visualizing, limiting managing the flow,
using feedback loops, and improving constantly [29].

50 I.I. Anghel, R.S. Cilin, M.L. Nedelea, I.C. Stanica, C. Tudose, C.A. Boiangiu

3. Practical comparison and results analysis

To pass from the theoretical aspects of SDMs to the practical ones, we
conducted a study with 172 participants regarding their experience and personal
opinions on SDM. The participants on whom the study was conducted are mostly
in software development positions (68.68%), followed by engineering positions
(15.2%), as well as management positions (9.9%). 6.22% of the respondents to
the questionnaire were in Digital Analyst, Quality Assurance, or Control and
Scrum Master positions. As for the teams’ seniority, most participants are seniors
(32.6%) and juniors (29.1%). The third-highest percentage were regulars (24.4%),
and the last places were occupied by interns (11.1%) and project managers (3%).

As a result, on a scale from 1 to 5, participants’ opinions about using a
methodology were proven to be highly impactful: 89.2% consider the use of an
SDM to have a high or very high impact on a software project. The answers
highlight the relevance of our current study. Most of the software development
methodologies are considered to be impactful, with V-model obtaining the
maximum score from all respondents and Prototyping the lowest score. In terms
of popularity, we observed a contrast when it comes to using software
methodologies in practice, with modern methodologies (Scrum Agile Based,
Kanban) in leading positions (Figure 1). On the same note, Scrum is also
considered the most effective methodology by 68% of participants.

Waterfall Model 77 (44.8%)
Feature Driven Development 18 (10.5%)
Scrum Agile Based 156 (90.7%)
V-Model 28 (16.3%)
Iterative 22 (12.8%)
Prototyping 20 (11.6%)
Kanban 67 (39%)
Extreme Programming 10 (5.8%)
Lean Development 10 (5.8%)
| do not know/ | have never use... 5(2.9%)
SAFe|—1 (0.6%)
0 50 100 150 200

Fig. 1. Methodologies used by our respondents throughout their careers

In the following subsections, we will detail the respondents’ answers
related to the projects developed using that methodology, the teamwork and
structure, and personal opinions and details about each individual methodology.

3.1. About the project

The current section examines the answers depicting the respondents’
reflections on the software methodology used in their latest project. From the
analysis, we can deduce the first observation that Scrum is spread across a large

Software development methodologies: a comparative analysis 51

variety of fields in the industry (Figure 2), with a majority of participants in our
study choosing it as their methodology in their latest project. From the received
responses, we can also conclude that modern methodologies are predominantly
preferred over traditional ones (79% vs 21%).

Project areas using Scrum Agile Based Methodology

. | ‘ I I I = I m BB - - n nm -
& & & F W C S & &
& F & FF & F A
Pl A &g g o & & £
Bl i © &
& & \\.e“ & @ & &
& 1 PO @ d

Fig. 2. Scrum-based project areas

It is also noticeable that there is a wide range of methodologies used in the
Webspace, whereas in Fintech, Salesforce, or Cloud, Scrum appears to be the
established choice. Moreover, it is interesting to note that the projects in the
Artificial Intelligence (Al) field are only developed using Kanban and Scrum.
From all the Scrum answers, 0.02% of the participants worked in this field,
Kanban had 25% of the responses regarding Al. This sustains the claim that
Kanban’s popularity is rising within Data Science, Machine Learning, and
Artificial Intelligence communities due to its focus on delivery, which is highly
compatible with large repeatable processes. Regarding the suitability of the
project in connection with the selected methodology, most answers were positive.
However, even if Scrum’s strengths include good communication (an average rate
of 4.25 out of 5 for Peer-to-Peer communication and 4.21 out of 5 for supervisor-
subordinate communication), our study revealed that Waterfall is in the first place
in both categories, with the same average rating of 4.66.

A small percent of the respondents (9.3%) consider that the methodology
used was not suited for their type of project. The dominant area of the project for
which the methodology was not suitable is Cloud Infrastructure/Networking using
Scrum-based methodology (61.55%), followed by Embedded and Web
Development also using Scrum (23.07%), Cloud Infrastructure/Networking using
Waterfall (7.69%), and Salesforce using Feature Driven Development
methodology (7.69%). As for the reason why the methodology was not suitable
for their respective project, the most frequent answers were that the stages were
not respected, the deadline was not realistic, and too much time was spent on
meetings. When it comes to the pressure felt by the participants, the majority felt
time pressure (76.9%), closely followed by resource pressure (53.84%).

52 I.I. Anghel, R.S. Cilin, M.L. Nedelea, I.C. Stanica, C. Tudose, C.A. Boiangiu

Moreover, Peer-to-Peer communication has an average of 3.92 out of 5,
and communication with supervisors has an average of 3.84 out of 5. Time
management has proven to be more feasible when software methodologies are
used, with only approximately 25% of projects having issues with meeting
deadlines, in the cases of Scrum (28%), FDD (16%), Prototyping (50%), and
Kanban (14%). Apart from Scrum (where 86% of all the delays occur), all the
other methodologies did not encounter a deadline extension of more than 50%.

The data presented in the chart below (Figure 3) is the result of pressure-
oriented multiple-choice selection. While 19% of the respondents felt no pressure
in the development process, both Scrum and Iterative show that productivity
comes with a cost in time pressure. Over 60% (Scrum) and 80% (lterative) of the
respondents felt deadline constraints, while Kanban recorded the highest percent
of budget pressure, with 50% of the respondents marking it as an issue. On the
same note, the methodologies that prioritize efficiency tend to have a higher level
of communication pressure, with 100% of the respondents that worked with FDD
citing it as a problem. At the opposite pole, Lean Development scored last in the
level of pressure employees feel, being the most balanced from this point of view.
Considering these types of pressure, their impact on code quality is divided
between negative (45.5%) and no impact at all (54.5%). That being mentioned,
time pressure had a negative impact in 80% of cases, communication pressure in
47%, resource pressure in 45%, and budget pressure in 11% of all cases.

During the development process, some of the participants signaled either a
lack of cohesion and clarity in the set of requirements or that the tasks were not
being correctly assigned by their complexity in Scrum SDM. Our study also took
into consideration people’s positions regarding the testing process. The Scrum
methodology received mixed reactions, with respondents calling it “time-
consuming”, ‘“hard”, and ‘“chaotic”, but also praising its practices for
“continuously testing right after the implementation of each feature” and “periodic
testing”. Some used “manual testing”, others automated ones, including “unit
testing” and “integration tests”. The feedback for testing in FDD was completely
positive, being “straight-forward” and “Unit/integration tests working really
well”. When it comes to Prototyping, the process was described as “thorough” for
“including not just people from the development team, but also partners in the
project, the client, etc.”. For the Iterative methodology, testing was viewed as
“easy and effective” and managed by automation services in some cases.

Software development methodologies: a comparative analysis 53

Time pressure 103 (59.9%)

Budget pressure 19 (11%)

Communication pressure 54 (31.4%)

Resources pressure 53 (30.8%)

No pressure 33 (19.2%)

Some teams had unfinished bugs

9
that were postponed for the ne...J 1 (C-070)

0 25 50 75 100 125

Fig. 3. The pressure felt in the development process of the project
3.2. About the team

In any development process, team structure is a valuable asset that can
have a significant impact on project communication and coordination. The
distribution of team structures can be observed in Figure 4.

Team Structure

@ Flat Stucture

@ Stream structure
Circular structure

@ Hierarchical structure

@ Functional structure

@ Matrix structure

@ Process-based structure

Fig. 4. Respondents’ team structures

Regarding the Scrum methodology, the majority of respondents are
working within a functional structure, followed by a hierarchical one. In the
Waterfall model, the hierarchical structure is exclusively chosen, while in FDD
flat structure and hierarchical structure are equally divided. The modern
methodologies (Extreme Programming and Lean) are both headed towards a more
uniform distribution of duties (flat structure). Kanban is team structure neutral,
which can be observed from the results as well, which vary from functional to
hierarchical or flat structure. The efficiency of using an SDM is proven by the
tendency to work in smaller teams, leading to better performance management
and coordination. Along these lines, 47% of the respondents who use Scrum work
in teams smaller than 10 people, while 0.5% exceed the number of 100 members
per team. Moreover, from the responses concerning FDD, 83% of teams were
smaller than 10 people, while in Lean Development and Prototyping, 100%
worked in such teams. The fact that Kanban has no team size limitation is
reflected by our study as well, with 37% of respondents working in teams of less

54 I.I. Anghel, R.S. Cilin, M.L. Nedelea, I.C. Stanica, C. Tudose, C.A. Boiangiu

than 10 members, 50% within teams of 10-20, and 13% within teams of 20-100
people.

3.3. About the methodology

Regarding the respected stages of the development process, almost 70% of
participants followed them in both modern and traditional methodologies. The
other 30% are mostly modern methodologies users. As such, even if there is much
more flexibility in these methodologies, it is not enough to keep things in line.

Concerning Scrum, even if the opinions are spread across a large variety
of advantages and disadvantages, 25% of the responses prefer it due to its
flexibility and adaptability. While 22.6% of the respondents consider it fast, 20%
complain about the amount of pressure that is being felt, especially by the
software developers. Moreover, in contrast to 20% of the answers stating that too
much time is wasted on meetings, 26% of the respondents praise Scrum for
“keeping you involved” and for focusing on good communication and
empowerment of the team. In addition, on one hand, the participants declare
themselves pleased with the methodology being clear (21%) and well organized
(14%). On the other hand, around 13% oppose the planning for being too
thorough. The contributors who chose FDD as their last used methodology
classify it as laid-back when it comes to time management as well as having well-
defined requirements due to its characteristic of being structured. Moreover, the
methodology is known for empowering the developer and, as revealed by our
research, their “growth on multiple levels” as well. When it comes to Waterfall,
its “clear set of requirements” highlights its well-organized structure. However,
this plays a role in the negative perception as well, with Waterfall being
considered “not flexible” and “expensive”.

When it comes to a better methodology than the one currently used, the
respondents who stated that they used a better methodology in the past and do not
work with Scrum chose it as the most suitable (on projects which are “shorter in
terms of duration”). However, out of the people who are currently using Scrum,
16% consider Waterfall to be better, especially in terms of feeling pressure and
large projects where “clarity was provided” as well as when dealing with an
experienced team. These statements are confirmed by the consecrated character of
Waterfall concerning the clear set of requirements that are needed and the
individuality of the teams as well. Some of the answers focused on Kanban as a
better methodology due to its lower overhead and less frequent meetings.

4. Recommendations to select the software development methodology

Selecting the appropriate software development methodology for project
management is a crucial decision, as it may overall strongly impact the success of

Software development methodologies: a comparative analysis 55

the project. There is no precise choice, it depends on a series of factors. Based on
the analysis of the methodologies and our research, we emphasize the situations
when one of the alternatives should be preferred.

Waterfall is favored when:

e The structure of the project is linear and well-organized

e The requirements are well defined from the beginning and there is less
possibility to be changed during the development

e The customer is less involved in the phases of the project

V-Model is favored when, in addition to the situation described above for
waterfall:
e Teams are small and are able to efficiently self-manage
e Keeping the low involvement of the customer, you would still like to
rely on the user acceptance and the user acceptance testing for the
functionality that is implemented

The iterative approach is preferred when:

e The customer is very involved in the phases of the project and ready to
provide frequent feedback

e The specifications may be frequently changed

e In addition, if the application is visual and has a lot of interaction with
the end-user, you may consider prototyping

Scrum is adopted if, in addition to the situation described above for
iterative:

e The team is small, dynamic, and able to maintain high communication
inside it and with the customer

e The people from the team are highly collaborative

e If the cohesion of the team is very high and developers may adopt
techniques such as pair-programming, one may adopt Extreme
Programming.

Kanban is preferred if, in addition to the situation described above for
Scrum:

e There are larger teams
e There is a need to limit the amount of the Work in Progress (WiP)
functionalities

56 I.I. Anghel, R.S. Cilin, M.L. Nedelea, I.C. Stanica, C. Tudose, C.A. Boiangiu

Finally, the following Agile methodologies are preferred in the following
cases:
e Lean Development, if the team is small and it is crucial that the project
is kept on a low budget and eliminates waste
e Feature Driven Development, for larger teams and complex projects
that allow the easy extraction of clear features to be implemented

5. Conclusions

In conclusion, our study aimed to prove and analyze the importance of
SDM, as perceived by people working in the software development field. Similar
studies have been conducted, yet they are limited in terms of the number of
methodologies they analyze, or they refer to a restricted type of software
development and companies. Such an analysis, presented by Molina-Rios and
Pedreira-Souto [31], presents a comparison between the development
methodologies used in web applications — while Agile methodologies are
mentioned, their research focuses just on web-development specific
methodologies. Another study focuses on the analysis of SDMs suitable for start-
ups [32], concluding their preference for Agile and Lean.

In our study, as opposed to existing research, we tried to include a high
number of respondents from different software companies, regardless of the
technology they use. Most respondents considered them an important aspect of the
development process, with the best results being achieved in teams of less than 10
people.

Scrum was, without doubt, the most popular methodology, considering its
frequent inspections, leading to continuous improvements. Thus, it is ensured that
a high-quality product is delivered, although quality comes at the price of being
the first methodology in terms of time pressure felt by the employees. Albeit its
popularity, Scrum is not considered to be suited for all types of projects, as it is
reflected by the answers, but instead chosen out of commodity. Moreover, the
majority of participants complained about the Scrum meetings being time-
consuming, even though it compensates through its speed and automated testing.
Waterfall is the traditional methodology widely used as a predecessor to Scrum,
which is reflected by it being chosen as a better methodology by a significant
number of respondents who currently use Scrum. It is characterized as
straightforward, less stressful, and good for experienced people, but also rigid and
expensive. Moreover, it ranked first when it comes to the quality of
communication, both with supervisors and with colleagues. Kanban was
considered a team-neutral methodology, with low overhead, less frequent
meetings, and less pressure. It was deduced from the results that it is mostly used
in Artificial Intelligence, due to its focus on delivery, which is highly compatible

Software development methodologies: a comparative analysis 57

with large repeatable processes. Feature Driven Development ranked first in terms
of time management, whereas it ranked last regarding communication quality. It is
thought of as a balanced methodology, offering stable deliverables and
empowering the developers.

Due to the lack of sufficient respondents or data extracted, we cannot draw
any conclusion regarding the other software methodologies that were studied. Our
objectives were thus limited by the lack of public diversity in the applied
methodologies highlighted by the questionnaire’s responses. As a future
improvement, the study should be conducted in an extended area of expertise,
with more participants from each software development subdomain. Overall, the
development process is closely dependent on the usage of a methodology,
providing it with a well-defined structure and coordination. Furthermore, since
our study was conducted mostly with software developers, we can state that most
of the results match the theoretical ones which we expected from the beginning.

Based on the analysis and comparison of the methods and the research we
conducted, we finally formulated a series of criteria and recommendations about
when to favor the adoption of a particular software development methodology.

REFERENCES

[1]. M. L. Despa, Comparative study on software development methodologies, Database Systems
Journal vol. V, no. 3, pp. 37-56, 2014.

[2]. L. Jiang, A. Eberlein, An analysis of the history of classical software development and agile
development, 2009 IEEE International Conference on Systems, Man and Cybernetics, pp.
3733-3738, 2009

[3]. Project Manager Website, The Ultimate Guide...Waterfall Model,
https://www.projectmanager.com/waterfall-methodology

[4]. Smartsheet Website, PM Methodologies — Waterfall, https://www.smartsheet.com/content-
center/best-practices/project-management/project-management-guide/waterfall-
methodology

[5]. M. Martin, What is Waterfall Model in SDLC? Advantages and Disadvantages, Guru99
Online Blog

[6]. S. Lewis, Waterfall Model, Tech Target - Search Software Quality,
https://www.techtarget.com/searchsoftwarequality/definition/waterfall-model

[7]. D. Firesmith, Using V Model for Testing, Software Engineer Institute Blog, 2013,
https://insights.sei.cmu.edu/blog/using-v-models-for-testing/

[8]. N. M. A. Munassar, A. Govardhan, A Comparison Between Five Models Of Software
Engineering, IJCSI International Journal of Computer Science Issues, vol. 7, no. 5, 2010.

[9]. D. Kumar, Software Engineering - SDLC V-Model, Geeks for Geeks website,
https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/

[10]. G. B. Regulwar, P. M. Jawandhiya, V.S. Gulhane, R.M. Tugnayat, P.R. Deshmukh,
Variations in V Model for Software Development, International Journal of Advanced
Research in Computer Science, vol.1, no. 2, 2010

[11]. M. S. Durmus, I. Ustoglu, R. Y. Tsarev, J. Borcsok, Enhanced V-Model, Informatica — An
International Journal of Computing and Informatics, 2018.

[12]. J. Martins, Understanding the iterative process, with examples, Asana Website, 2021

https://www.projectmanager.com/waterfall-methodology
https://www.smartsheet.com/content-center/best-practices/project-management/project-management-guide/waterfall-methodology
https://www.smartsheet.com/content-center/best-practices/project-management/project-management-guide/waterfall-methodology
https://www.smartsheet.com/content-center/best-practices/project-management/project-management-guide/waterfall-methodology
https://www.techtarget.com/searchsoftwarequality/definition/waterfall-model
https://insights.sei.cmu.edu/blog/using-v-models-for-testing/
https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/

58 I.I. Anghel, R.S. Cilin, M.L. Nedelea, I.C. Stanica, C. Tudose, C.A. Boiangiu

[13]. K. Eby, The Power of Iterative Design and Process, Smartsheet Website, 2019,
https://www.smartsheet.com/iterative-process-guide

[14]. Leankor Website, Project Management Methodologies Designed for Small Teams,
https://www.leankor.com/project-management-methodologies-designed-small-teams/

[15]. E. R. Coutts, A. Wodehouse, J. Robertson, A comparison of contemporary prototyping
methods, Proceedings of the Design Society International Conference on Engineering
Design vol. 1 no. 1, pp. 1313-1322

[16]. L. Kent, C. Snider, J. Gopsill, B. Hicks, Mixed reality in design prototyping: A systematic
review, Design Studies vol. 77, 2021.

[17]. Atlassian Agile Coach, Scrum - Learn how to scrum with the best of ‘em,
https://www.atlassian.com/agile/scrum

[18]. K. Schwaber, J. Sutherland, The Scrum Guide - The Definitive Guide to Scrum: The Rules
of the Game, 2020

[19]. Agilest Website, Why Does Scrum Work, https://www.agilest.org/scrum/why-does-scrum-
work/

[20]. R. Lynn, What is FDD in Agile, Planview Website,
https://www.planview.com/resources/articles/fdd-agile/

[21]. Lucid Chart Blog, Why (and How) You Should Use Feature-Driven Development,
https://www.lucidchart.com/blog/why-use-feature-driven-development

[22]. S. Saeed, I. Alsmadi, F. M. Khawaja, Lean Development. A Tool for Knowledge
Management in Software Development Process, Business Strategies and Approaches for
Effective Engineering Management, 2013

[23]. S. Jena, Lean Software Development, 2021, Geeks for Geeks website,
https://www.geeksforgeeks.org/lean-software-development-Isd/

[24]. J. Rault, Lean Software Development: An In-depth Guide for Every Developer,
https://www.laneways.agency/lean-software-development/

[25]. NTask Blog, Extreme Programming in Agile — A Practical Guide for Project Managers and
nTaskers, https://www.ntaskmanager.com/blog/extreme-programming-in-agile-a-practical-
guide-for-project-managers-and-ntaskers/

[26]. D. Wells, When should Extreme Programming be Used?, 1999

[27]. AltexSoft Website, Extreme Programming: Values, Principles, and Practices,
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-
practices/

[28]. Kanbanize Website, =~ What Is Kanban? Explained for Beginners,
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban

[29]. D. J. Anderson, A. Carmichael, Essential Kanban Condensed, Lean-Kanban University, 2016

[30]. Official Microsoft Documentation, Set Work in Progress limits in Azure Boards, 2022

[31] J. Molina-Rios, N. Pedreira-Souto, Comparison of development methodologies in web
applications, Information and Software Technology, vol. 119, 2020.

[32] E. W. Tegegne, P. Seppanen, M. O. Ahmad, Software development methodologies and
practices in start-ups, The Institution of Engineering and Technology, vol. 13, 2019

https://www.smartsheet.com/iterative-process-guide
https://www.leankor.com/project-management-methodologies-designed-small-teams/
https://www.atlassian.com/agile/scrum
https://www.agilest.org/scrum/why-does-scrum-work/
https://www.agilest.org/scrum/why-does-scrum-work/
https://www.planview.com/resources/articles/fdd-agile/
https://www.lucidchart.com/blog/why-use-feature-driven-development
https://www.geeksforgeeks.org/lean-software-development-lsd/
https://www.laneways.agency/lean-software-development/
https://www.ntaskmanager.com/blog/extreme-programming-in-agile-a-practical-guide-for-project-managers-and-ntaskers/
https://www.ntaskmanager.com/blog/extreme-programming-in-agile-a-practical-guide-for-project-managers-and-ntaskers/
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban

