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A NOVEL ITERATIVE SCHEME OF OPERATORS WITH PROPERTY

(E) AND ITS APPLICATIONS
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The goal of this note is to propose a new iterative scheme for finding the fixed

points of generalized nonexpansive mappings with property (E), called MCS-iteration.

We prove both weak and strong convergence properties in a uniformly convex Banach

space. Furthermore, an application of signal recovery in a compressed sensing problem

is shown as numerical examples of the iterative scheme.
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1. Introduction and preliminaries

A number of real world problems can be redeveloped by method of fixed point theory.
For instance, they are applicable to solve differential equation, classification, regression,
signal recovery, and image restoration, see [3, 4, 8, 10, 15, 16, 20, 21, 22, 23]. We consider
that C is a nonempty subset of a real Banach space X. A mapping T : C → X is said to be

(i) nonexpansive if for all x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖,
(ii) quasi-nonexpansive if Fix(T ) 6= ∅, and for any x ∈ C and p ∈ Fix(T ),

‖Tx− p‖ ≤ ‖x− p‖.
The fixed point problems, that is, problems which look for a point

x ∈ C such that Tx = x. (1)

Fix(T ) denote the set of all fixed points of T . The various iterative schemes for fixed points
numerical approximation have been introduced by assorted authors. Some research works
of iterative schemes were originated and generally recognized for estimate fixed points of
nonexpansive mappings, in particular [1, 9, 11, 12, 14, 27]. The Noor iteration [12] was
defined as follows: x0 ∈ C and

zn = (1− γn)xn + γnTxn,

yn = (1− βn)xn + βnTzn,

xn+1 = (1− αn)xn + αnTyn, (2)
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and the SP-iteration [14] was defined as follows: x0 ∈ C and

zn = (1− γn)xn + γnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)yn + αnTyn, (3)

∀n ≥ 0, {αn}, {βn}, {γn} ⊂ (0, 1). A generalization for the class of nonexpansive map-
pings on Banach spaces was proposed by Suzuki [24] in 2008. He entitled this property
condition (C) (also labelled the class of Suzuki generalized nonexpansive mappings, or sim-
plified the class of Suzuki mappings), but it is appropriately contained into the class of
quasi-nonexpansive mappings. With regard to the numerical reckoning of fixed points for
Suzuki mappings, some convergence theorems were provided. Furthermore, based on some
three steps iteration schemes, the necessary and sufficient conditions for the existence of
fixed points were also proved, for example, see, [2, 26, 29]. Garcia-Falset et al. [6] in 2011
proposed a general class of Suzuki mappings, and condition (E) is the resulting property.
But it still remains stronger than quasi-nonexpansiveness. The class of mappings satisfying
condition (E) will be henceforward referred to as Garcia-Falset-generalized nonexpansive
mappings or Garcia-Falset mappings. Recently, Usurelu et al. [28] provided a consequence
regarding the existence of fixed points for Garcia-Falset mappings in the framework of uni-
formly convex Banach spaces, based on the TTP-iteration (or the Thakur et al. iterative
scheme) was introduced in [25]. Additionally, several convergence outcomes concerning this
iterative scheme have been presented. The TTP-iteration was defined as follows: x0 ∈ C
and

zn = (1− γn)xn + γnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)Tzn + αnTyn, (4)

∀n ≥ 0, {αn}, {βn}, {γn} ⊂ (0, 1). To precede inspirational research, this work will suggest
the new iterative scheme, called the MCS-iteration. The iteration method is defined as
follows: x0 ∈ C and

zn = (1− dn)xn + dnTxn,

yn = (1− cn)Txn + cnTzn,

xn+1 = (1− an − bn)Txn + anTyn + bnTzn, (5)

∀n ≥ 0, {an}, {bn}, {cn}, {dn} and {an + bn} ⊂ (0, 1). By using this iterative scheme
for Garcia-Falset mappings in a uniformly convex Banach space, some weak and strong
convergence theorems are shown. Moreover, a result relating to the existence of fixed points
for these mappings is established. In the next section, the weak and strong convergence
theorems for our iterative scheme can be obtained by some control assumptions. The proofs
of our lemmas and theorems are provided. In section 3, an application of the compressive
sensing signal reconstruction will be considered and so compared with the previous results.
In the last section, we briefly conclude our work.

2. Convergence analysis

We first state the conditions that we will assume to hold for both weak and strong
convergence properties. Let T : C → X be a mapping on a subset C of a Banach space X.
We say that T is satisfied

(i) Condition (C) [24] if

1

2
‖x− Ty‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖,∀x, y ∈ C,
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(ii) Condition (Eµ) [6] if there exists µ ≥ 1 such that

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖,∀x, y ∈ C.

Ausuume that C is convex, so T : C → C is said to satisfy

(iii) Condition (I) [18] if there is a nondecreasing function g : [0,∞) → [0,∞) such that
g(0) = 0 and g(s) > 0, ∀s > 0, with

g(d(x, F ix(T ))) ≤ d(x, Tx),

∀x ∈ C, where d(x, F ix(T )) = inf
x∈Fix(T )

‖x− p‖.

2.1. Weak convergence results

Throughout this subsection, we suppose that
• C is a nonempty closed convex subset of a real Banach space X.
• T : C → C is a mapping which satisfies condition (E).

Next, the following lemma is stated and verified below.

Lemma 2.1. Let Fix(T ) is nonempty and let {xn} be a sequence defined by the MCS-
iteration (5) where x0 ∈ C. Then lim

n→∞
‖xn − p‖ exists for any p ∈ Fix(T ).

Proof. Given p ∈ Fix(T ). Since the mapping T is quasi-nonexpansive by [6, Proposition 1],
we have

‖Tzn − p‖ ≤ ‖zn − p‖ ≤ (1− dn)‖xn − p‖+ dn‖Txn − p‖ ≤ ‖xn − p‖. (6)

Applying (6), we get

‖Tyn − p‖ ≤ ‖yn − p‖ ≤ (1− cn)‖Txn − p‖+ cn‖Tzn − p‖
≤ (1− cn)‖xn − p‖+ cn‖xn − p‖ = ‖xn − p‖. (7)

By combining (6) and (7), henceforth

‖xn+1 − p‖ ≤ (1− an − bn)‖Txn − p‖+ an‖Tyn − p‖+ bn‖Tzn − p‖
≤ (1− an − bn)‖xn − p‖+ an‖xn − p‖+ bn‖xn − p‖ = ‖xn − p‖. (8)

Obviously, {‖xn − p‖} is bounded and nonincreasing for all p ∈ Fix(T ). That is, lim
n→∞

‖xn−
p‖ exists. �

Now, the main theorems are presented and proved as follows.

Theorem 2.1. Let X be uniformly convex and let {xn} be a sequence defined by the MCS-
iteration (5), where x0 ∈ C, {dn} is bounded away from 0 and 1 for all n ≥ 0. Then Fix(T )
is nonempty if and only if {xn} is bounded and lim

n→∞
‖Txn − xn‖ = 0.

Proof. Assume that Fix(T ) is nonempty and let p ∈ Fix(T ). Then, by Lemma 2.1, there
exists r ≥ 0 such that r = lim

n→∞
‖xn − p‖ and the sequence {xn} is bounded. Next, we will

show that lim
n→∞

‖Txn − xn‖ = 0. Taking lim sup in (6), so we get

r = lim sup
n→∞

‖xn − p‖ ≥ lim sup
n→∞

‖zn − p‖. (9)

By the quasinonexpansiveness of T , we have

r = lim sup
n→∞

‖xn − p‖ ≥ lim sup
n→∞

‖Txn − p‖. (10)
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On the others hand,

‖xn+1 − p‖ ≤ (1− an − bn)‖Txn − p‖+ an‖Tyn − p‖+ bn‖Tzn − p‖
≤ ‖xn − p‖+ bn (‖zn − p‖ − ‖xn − p‖) .

This follows that

‖zn − p‖ ≥ ‖xn+1 − p‖.
Taking lim inf in the above inequality, we obtain

r ≥ lim sup
n→∞

‖zn − p‖ ≥ lim inf
n→∞

‖zn − p‖ ≥ r.

That is,

r = lim
n→∞

‖zn − p‖ = lim
n→∞

‖(1− dn)(xn − p) + dn(Txn − p)‖. (11)

Applying (9)-(11) together with [17, Lemma 1.3], we can conclude that
lim
n→∞

‖Txn − xn‖ = 0.

Consequently, assume that the sequence {xn} is bounded and lim
n→∞

‖Txn − xn‖ = 0.

Next, suppose that p ∈ A(C, {xn}). Since T satisfies condition (E), the following relation is
obtained:

r(Tp, {xn}) = lim sup
n→∞

‖Txn − p‖ ≤ lim sup
n→∞

(µ‖Txn − xn‖+ ‖xn − p‖)

= lim sup
n→∞

‖xn − p‖ = r(Tp, {xn}).

This follows that Tp ∈ A(C, {xn}). By the uniqueness of asymptotic centers, we have
p = Tp, i.e., Fix(T ) is nonempty. The proof is completed. �

Theorem 2.2. Let X be a uniformly convex with Opial’s property. Let T and {xn} be the
same in Theorem 2.1 and Fix(T ) is nonempty. Then {xn} weakly converges to a point in
Fix(T ).

Proof. First, we have {xn} is bounded sequence, lim
n→∞

‖xn − p‖ exists for all p ∈ Fix(T ),

and lim
n→∞

‖xn − Txn‖ = 0 by Lemma 2.1 and Theorem 2.1. Second, let {xni
} and {xmi

} be

subsequences of {xn} weakly converging to z1 and z2, respectively. Then lim
i→∞

‖xni
−Txni

‖ =

lim
i→∞

‖xmi
− Txmi

‖ = 0. Then we get z1, z2 ∈ C since C is closed and convex, also by

Mazur’s theorem. By the demiclosedness at zero of I − T from [6, Theorem 1], we have
z1, z2 ∈ Fix(T ). Finally, we can conclude that z1 = z2 by [19, Lemma 2.7]. Therefore, {xn}
weakly converges to a fixed point of T . �

2.2. Strong convergence results

In this subsection, we present strong convergence theorems for a mapping satisfying
condition (E).

Theorem 2.3. Let X be a uniformly convex Banach space and C a nonempty, compact and
convex subset of X. Let T and {xn} be as same as in Theorem 2.1. If Fix(T ) is nonempty,
then {xn} strongly converges to a point in Fix(T ).

Proof. This proof is identical with the proof of [28, Theorem 3.4]. �

Theorem 2.4. Let X be a uniformly convex Banach space and C a nonempty, closed and
convex subset of X. Define T and {xn} similarly with Theorem 2.1. If T satisfies the
condition (I) and Fix(T ) is nonempty, then {xn} strongly converges to a point in Fix(T ).

Proof. The proof is similar to the proof of [28, Theorem 3.5]. �
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3. Signal recovery and its numerical results

In this section, we apply our iterative scheme to the problem of recovering the original
signal from compressive measurements. Let us begin by given that x̄ ∈ RN and y ∈ RM are
the original signals and the observed data, respectively. Consider

y = Ax̄+ ε, (12)

where A ∈ RM×N (M < N), and ε ∈ RM represents the Gaussian noise with N(0, σ2).
We wish to solve the compressive sensing signal reconstruction modeled as in the above
equation. However, there is known fact to solve (12) is equivalent to the following LASSO
problem:

min
x∈RN

1

2
‖Ax− y‖22 subject to ‖x‖1 ≤ ζ, (13)

where ζ > 0. The problem (13) can be seen as the fixed point problem through the following
settings:

T = PD(I − 1

‖A‖2
∇g), where g(x) =

1

2
‖Ax− y‖22 and D = {x ∈ RN : ‖x‖1 ≤ ζ}.

We have known that (I − κ∇g) is nonexpansive for any 0 < κ < 2
‖A‖2 (see [7]). In addition,

PD has closed forms which is the projection onto the closed l1 ball in RN (see [5]).
Next, we present a numerical result for the problem (13). In particular, we investigate

the behavior of the MCS-iteration (5) and then compare it with three iterative schemes:
the Noor iteration (2), the SP-iteration (3) and the TTP-iteration (4). Let N = 212 and
M = 211 be the size of signal. Assume that the original signal has m nonzero elements, then
generate the Gaussian matrix A by using randn(M,N) and ζ = m. Next, select x0 = Aty

as the initial point. For any n ≥ 0, let αn = an = 3n+3
4n+12 , βn = cn =

√
15n+10−(3n+3)

1
4

10
√
15n+10

,

γn = dn =
√

n+1
16n+15 , and bn = n+2

6n+6 . Here, comparing the accuracy between the recovered

signals with the mean-squared error: MSEn = 1
N ‖xn − x̄‖

2 < 5 × 10−5. By using Matlab
R2015b and running on a MacBook Pro with a 2.7 GHz Intel Core i5 processor and 8 GB
of RAM, we obtain the results are shown as follows.

In Table 1, the numerical experiments have been done in the different numbers of
nonzero elements: m = 25, 26, 27. For these three cases, the elapsed times and number
of iterations are recorded for each iterative scheme. As shown below, the MCS-iteration
averagely spends less elapsed time than the other three iterative schemes. Similarly, the
number of iterations of the MCS-iteration is also less than the others. We further display
the recovery signals when m = 27 and σ = 0.1 in Figure 1.

Iterative schemes
m Nonzero Elements

m = 25 m = 26 m = 27

Noor
Elapsed Time (s) 1.1692 1.9590 4.1187

No. of Iter. 48 80 151

SP
Elapsed Time (s) 0.8833 1.5606 3.8822

No. of Iter. 36 60 115

TTP
Elapsed Time (s) 0.6355 1.0918 3.5876

No. of Iter. 26 45 92

MCS
Elapsed Time (s) 0.4912 0.8426 2.8445

No. of Iter. 20 35 70

Table 1. Numerical comparison of four iterative schemes for σ = 0.1.
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Figure 1. From top to bottom: the original signal, the measurement,
and the recovery signals by the Noor iteration, the SP-iteration, the TTP-
iteration and the MCS-iteration, respectively when m = 27 and σ = 0.1.
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Figure 2. Mean-squared error versus number of iterations when m = 27

and σ = 0.1.

In conclusion, the MCS-iteration improves the numerical results in these particular
cases. To distinguish the difference of these results, we compute the errors of each recon-
structed signal are shown in Figure 2.
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Additionally, we explore more results in the case when σ = 0.01 to confirm the pre-
vious results. As expected, we gain the similar well-behaved outcome of the MCS-iteration.
Table 2 are demonstrated that the MCS-iteration needs less elapsed times and a number of
iterations than the other three iterative schemes. Correspondingly, the following figures are
provided to compare the reconstructed signals for each iterative scheme when m = 27 for
σ = 0.01. As can be seen in Figures 3 and 4, the MCS-iteration gives error less than the
others as previously.

Iterative schemes
m Nonzero Elements

m = 25 m = 26 m = 27

Noor
Elapsed Time (s) 1.2310 1.6270 3.1234

No. of Iter. 50 67 131

SP
Elapsed Time (s) 0.9023 1.2118 2.3821

No. of Iter. 37 50 100

TTP
Elapsed Time (s) 0.6273 0.9256 1.8145

No. of Iter. 26 38 77

MCS
Elapsed Time (s) 0.5022 0.7317 1.3879

No. of Iter. 21 30 59

Table 2. Numerical comparison of four iterative schemes for σ = 0.01.
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Figure 3. From top to bottom: the original signal, the measurement,
and the recovery signals by the Noor iteration, the SP-iteration, the TTP-
iteration and the MCS-iteration, respectively when m = 27 and σ = 0.01.
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Figure 4. Mean-squared error versus number of iterations when m = 27

and σ = 0.01.

4. Conclusions

In summary, we present a new iterative method for solving for the fixed points of
generalized nonexpansive mappings with property (E). Besides, we validate the weak and
strong convergence properties of the iterative scheme under certain conditions. After that
applying the iterative scheme to the problem of signal recovery in compressed sensing. The
numerical investigations of our iterative scheme presents better solutions than the prior
iterative schemes.
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