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DEVELOPMENT OF AUTOMATIC SUB-CROWN DATA 
COLLECTION EQUIPMENT FOR CORN BREEDING 

Yongliu WANG 1, * 

With the growth of smart agriculture, deep perception technologies for crop 
monitoring and pest/disease prediction are becoming essential for precise crop 
growth control. This paper presents the development of an automatic data collection 
system for crop canopy sensing and a vision-based navigation control algorithm to 
enhance smart agriculture. The YOLOv8 object detection model, optimized with 
TensorRT, ensures real-time image processing on the platform's main controller. A 
fuzzy control algorithm utilizes crop root target information and IMU heading 
deviations to adjust motor speed for stable navigation and furrow switching. To 
mitigate motion blur, a method based on optical flow method is employed to improve 
image clarity and detection accuracy. Experimental results show that the model 
achieves an inference time of 25ms per image with 88% accuracy. The fuzzy control 
algorithm effectively reduces heading deviations and lateral errors. This system 
improves real-time performance, supports decision-making, reduces human 
intervention, and promotes precision agriculture.  

Keywords: smart agriculture, machine vision, navigation control, YOLOv8, 
optical flow method. 

1. Introduction 

Maize, as a key food crop, has a growing sown area and the greatest 
potential for yield increase among cereal crops, driving grain output. With the rapid 
advancement of technology, smart agriculture enhances real-time monitoring of 
crops and farm environments, aiming to boost grain yield, reduce costs, and 
minimize resource wastage. 

Researchers have developed various crop data collection platforms. 
Velásquez et al. [1] created a cyber-physical system for collecting data from coffee 
crop test plots. The University of Illinois [2] designed a tracked robotic platform 
with an adjustable mast to capture canopy data at different crop growth stages. 
Zhang et al. [3] combined drone imagery with the YOLOv3 algorithm for rapid 
field crop data collection, enabling automatic identification of crop types from 
drone images. 
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Image processing in agricultural robot navigation involves analyzing 
captured images to identify crops and then applying techniques like Hough 
transforms, linear regression, or template matching to fit crop rows. Yang [4] 
applied the least squares method to collect robot image data and used the linear 
judgment dimensionality reduction algorithm to cluster and analyze the trajectory 
data of robot visual navigation. Higuti et al. [5] designed an autonomous navigation 
system using 2D LiDAR to process raw data, extract crop row information, and use 
a PID algorithm to control the robot's movement along the crop rows. 

Recent years have seen deep learning-driven target recognition algorithms, 
such as YOLO, widely used in image processing. Dos Reis et al. [6] developed a 
vision system based on YOLO to recognize static obstacles using a Microsoft 
Kinect sensor, with an Nvidia Jetson TX2 GPU for improved image processing. Yu 
et al. [7] explored five deep learning-based methods for field navigation line 
extraction, deploying them on an embedded system for autonomous robot 
navigation. They used semantic segmentation to segment field roads and polygon 
fitting to extract navigation lines. 

This study proposes a solution to address the high cost of manual data 
collection, incomplete data, and navigation instability using deep learning and 
computer vision. By combining YOLOv8 target detection, IMU heading angle data, 
and a fuzzy control algorithm, a vision-based navigation control system is 
implemented. Additionally, an optical flow method reduces image motion blur 
caused by camera jolts. A platform vehicle is designed to autonomously navigate a 
maize planting environment while performing crop data collection. 

2. Overall modular design of the platform vehicle 

This study adopts a modular design approach for the overall system, which 
consists of three parts: a drive-by-wire chassis system, a navigation system, and a 

data collection system. The overall structural schematic is given in Fig. 1.  
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2.1 Drive-by-wire chassis system design 

In this study, a tracked drive-by-wire chassis is used with design indicators 
including a minimum travel speed of 0.3m/s, a climbing angle of 10°, obstacle-
crossing width of 100 mm, height of 50 mm, and a battery life over 1 hour. The 
design process includes selecting the drive motor based on speed and track radius, 
designing a transmission system for climbing and obstacle-crossing, calculating and 
selecting the battery, and designing the structure to meet ground contact and weight 
distribution requirements. 

The drive motor's power and the transmission system design must ensure 
that the maximum speed maxv  satisfies Equation (1), where ω  is the motor’s 
angular velocity in rad/s, and r is the radius of the drive wheel in meters. 

maxv rω= ⋅                                                        (1) 

The track’s driving force must be sufficient to overcome the additional 
resistance caused by the incline. The condition for this is expressed in Equation (2), 
where driveF  represents the driving force of the track, G  is the component of 
gravitational force acting along the incline(both in N), and θ  is the slope angle. 
Equation (3) defines the driving force driveF  in terms of the motor torque τ (in N m⋅
) and the radius of the drive wheel r  (in meters). Combining these, the required 
motor torque can be calculated using Equation (4), where m  is the mass of the 
vehicle (in kg), and g  is the acceleration due to gravity (in 2/m s ). 

sin( )driveF G θ≥ ⋅                                                  (2) 
driveF rτ= ⋅                                                        (3) 

sin( )m g
r

θτ ⋅ ⋅
≥                                                     (4) 

The motion of the tracked chassis is controlled by its linear and angular 
velocities, with track speeds determining straight or circular movement. Fig. 2 
shows the kinematic model of the tracked chassis, with COM representing the 
centroid and ICR the instantaneous center of rotation. 
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Fig. 2. Kinematic model of the tracked drive-by-wire chassis 
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Equation (5) describes the relationship between track speed and motor 
speed, where i is the transmission ratio, n is the motor speed (r/min), and d is the 
wheel diameter (m). 

nv D
i

π= × ×                                                       (5) 

Assuming no track slip and the COM along the symmetry line, the system 
simplifies to a two-wheel differential model. The linear velocity, angular velocity, 
and turning radius can be obtained using Equations (6), (7), and (8), respectively. 
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where, LRd  is the virtual track width (m), rv  is the speed of the right track 
(m/s), and lv  is the speed of the left track (m/s). In Equation (8), there is a parameter 
that changes with operating conditions, which can be calculated using Equation (9): 

LRd Lγ=                                                        (9) 
In this equation, L  is the width (m), and γ  is a dimensionless parameter 

related to the load, the ground, and other factors. 
Two M3508 DC brushless geared motors are used as the power source. Each 

motor in the platform chassis is connected to a C620 brushless motor speed 
controller. The onboard computer communicates with the speed controllers via the 
CAN bus. The M3508’s rated voltage is 24 V, motor weight is 365 g, and the 
reduction ratio is 3591/187. Under rated voltage conditions, paired with the C620, 
the motor’s no-load/nominal speed is 482/469 rpm, no-load/nominal current is 
0.78/10 A, rated torque is 3 N·m, and maximum efficiency can reach 70%. 

2.2 Navigation system design 

In this study, the YOLOv8 target detection algorithm is used for maize crop 
recognition and detection. The crops appear green and soil appears brown, creating 
a clear contrast. The green plant and soil regions have strip-like features, and crops 
are planted in rows along straight or nearly straight lines, facilitating crop row 
recognition for unmanned agricultural operations. YOLOv8 is a variant of the 
YOLO family of target detection algorithms [8]. 

This study proposes a method to address image motion blur caused by rapid 
camera movement. The method, based on optical flow and information from the 
previous frame, improves blurred images. The processed images are used as input 
to the fuzzy control algorithm, which adjusts the platform vehicle's rotational speed 
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to ensure it stays centered in the furrow. If no root targets are detected, the platform 
performs a turning and row-switching operation, signaling the end of the crop row. 
The chosen camera for this study is the SY011HD, featuring a resolution of 1920×
1080, a frame rate of 30 Hz, a focal length of 3.5 mm, and a horizontal field of view 
of 85°and vertical field of view of 60°. 

2.3 Data collection system design 

The data collection system consists of a multispectral camera and a visible-
light camera. The multispectral camera is the RedEdge-MX five-band multispectral 
camera developed by Micasense, USA. It is capable of capturing five distinct 
spectral bands at once: red, green, blue, red-edge, and near-infrared. By analyzing 
the collected multispectral image data, indices such as the vegetation coefficient of 
the crop can be obtained. The characteristic parameters of the RedEdge-MX are 
shown in Table 1. 

Table 1 
RedEdge-MX characteristic parameters 

Name Parameter 
WEIGHT 232g 

Dimensions 8.7cm×5.9cm×4.54cm 
Power Supply 4.2V-15.8V 

Power Consumption 4/8W(Normal/Peak) 
Sensor Resolution 1280×960 

resolution 47.2° 
Field of View HFOV 
Capture Rate 1 capture/second 

 
The system controls the multispectral camera via its HTTP interface by 

sending a POST request to capture and store images. The images are downloaded 
through their URLs and saved locally. Afterward, a DELETE request removes the 
files from the camera. Meanwhile, the USB visible-light camera captures images 
continuously using OpenCV and stores them locally. 

3. Design and implementation of the visual navigation algorithm 

The proposed visual navigation algorithm uses the YOLOv8 target detection 
model to identify crop roots. After deploying the engine model to the development 
board, GPU-accelerated inference with TensorRT boosts detection speed. To 
address motion blur from rapid camera movement, a method based on optical flow 
and adjacent frame information is used to improve image quality.  
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3.1 YOLOv8 algorithm 

The YOLOv8 algorithm is a lightweight improvement based on YOLOv5. 
Compared to YOLOv5, it improves the model's ability to adapt to targets of various 
sizes and shapes, striking a balance between accuracy and speed, and is suitable for 
real-time-critical scenarios [9-11]. The network structure of YOLOv8 is primarily 
composed of three components: Backbone, Neck, and Head. 

The Backbone utilizes a combination of convolution and deconvolution 
layers for feature extraction, incorporating residual connections and bottleneck 
structures to reduce the network size and enhance performance. 

The Neck part consists of an SPPF module, a PAA module, and two PAN 
modules, which fuse feature maps from various levels of the Backbone through 
multi-scale feature fusion.  

The Head part extracts information features at three different scales through 
three detection layers. It comprises a detection head and a classification head, 
responsible for the final target detection and classification tasks [12-14]. 

3.2 YOLOv8 model conversion and deployment 

When training the YOLOv8 model with a crop root dataset using multiple 
GPUs, distributed training speeds up the process. However, deploying the model 
on a single GPU or embedded platform introduces challenges due to the 
performance difference. The large model size can lead to slow inference and high 
latency, which may not meet the real-time requirements for navigation tasks. 

To improve deployment inference speed, the trained YOLOv8 model is 
optimized using TensorRT. First, the model is converted to ONNX format for 
deployment, ensuring framework interoperability. Then, the ONNX model is 
converted into a TensorRT engine format, optimizing inference speed on edge 
platforms by generating an efficient inference engine for GPU and network 
configurations. 

During inference, the saved engine file is loaded and deserialized to create 
a TensorRT inference engine. On the Nvidia Jetson Xavier NX platform, this engine 
performs real-time inference on images from the camera, providing target detection 
results for the visual navigation control module [15]. 

3.3 Navigation control algorithm combining vision and IMU 

This study’s navigation control algorithm consists of two parts: processing 
YOLOv8 target detection results and designing the fuzzy control algorithm. In the 
first part, the nearest left and right root targets are identified, and the lateral 
deviation (center offset) is calculated based on the detection results. The flow chart 
for computing lateral deviation is shown in Fig. 3. 
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For the second part, a fuzzy controller must be designed first. The structure 
of the fuzzy controller is shown in Fig. 4. The fuzzy control system performs 
fuzzification on input variables, converting them into fuzzy variables. These are 
used by the fuzzy inference module, which relies on a knowledge base (database 
and rule base) to make decisions. The rule base defines the fuzzy relationships 
between input and output variables. After fuzzy inference, a defuzzification step is 
applied to convert fuzzy control quantities into precise control outputs for the 
system [16-18]. 

 
Fig. 3. Lateral deviation calculation flow chart 

 

 
Fig. 4. Structure of the fuzzy controller 
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The fuzzy controller in this study uses lateral deviation (processed from 
YOLOv8 target detection) and heading angle (measured by the IMU) as input 
variables. The heading angle ranges from [-20°, 20°], and lateral deviation ranges 
from [-250, 250] pixels. Both variables are divided into 7 levels, with fuzzy set 
elements {LB, LM, LS, ZE, RS, RM, RB}. The membership functions for the 
heading angle and lateral deviation are shown in Fig. 5 and Fig. 6. 

            
Fig. 5. Heading angle membership function              Fig. 6. Lateral deviation membership function 

 
The fuzzy control system's output is the rotational speed difference between 

the vehicle's right and left motors, ranging from [-2000 rpm, 2000 rpm]. The fuzzy 
set has 7 elements: {LB, LM, LS, ZE, RS, RM, RB}, representing left turns, no 
adjustment, and right turns with decreasing degrees of turn. The membership 
function of the speed difference is shown in Fig. 7. 

 

 
Fig. 7. Output speed difference membership function 

The fuzzy control algorithm uses fuzzy control rules to compute the output 
fuzzy sets. Since both the heading angle and lateral deviation fuzzy sets contain 
seven fuzzy quantities, there are 49 fuzzy control rules in total. The fuzzy control 
rules designed in this study are shown in Table 2. 
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Table 2 
Fuzzy control rule table 

u θ 
LB LM LS ZE RS RM RB 

d 

LB LB LB LB LB LB LB LB 
LM LB LM LM LM LM LM LB 
LS LB LM LS LS LS LM LB 
ZE RB RM RS ZE LS LM LB 
RS RB RM RS RS RS RM RB 
RM RB RM RM RM RM RM RB 
RB RB RB RB RB RB RB RB 

The centroid defuzzification method is used to convert fuzzy inference 
results into control values. The desired rotational speeds for the left and right motors 
are determined, and these values are input to the motor speed controllers to achieve 
timely adjustments to the platform vehicle's motion state. 

3.4 Motion blur improvement algorithm based on optical flow 

To improve motion blur and enhance the resilience of the navigation control 
algorithm, this study proposes an algorithm based on the pyramid LK optical flow 
method. This approach helps mitigate the impact of fast movement or bumps on 
uneven road surfaces, which can affect target detection. 

The LK optical flow method tracks a small number of feature points to 
represent the overall motion of the camera. These feature points are computed using 
the Shi-Tomasi corner detection algorithm. The basic idea of the LK optical flow 
method is based on the following three assumptions:  

1. Brightness constancy: The pixel appearance of a target in the scene does 
not change during frame-to-frame motion. For grayscale images, this means the 
pixel intensity remains constant during tracking.  

2. Temporal continuity: The camera's motion on the image plane changes 
gradually over time, meaning pixel positions do not change drastically, allowing 
the pixel intensity to correspond to the partial derivatives of position.  

3. Spatial consistency: Neighboring points on the same surface in the scene 
exhibit similar motion, and their projections on the image plane are close to each 
other. Based on the first two assumptions, the image constraint equation is obtained 
as shown in Equation (10), where I(x, y, t) represents the brightness of the image at 
position (x, y) at time t. 

( , , ) ( , , )I x y t I x x y y t tδ δ δ= + + +                             (10) 
Using the Taylor series expansion of the function ( , , )I x x y y t tδ δ δ+ + +  at 

(x, y) and combining it with Equation (10), we derive Equation (11). Here, u and v 
are the velocity components in the x and y directions, respectively. 

0x y tI u I v I+ + =                                          (11) 
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Based on the third assumption, the optical flow within a window of size 
2n m=  is assumed to be constant. This leads to the matrix form of the equation, as 

shown in Equation (12): 
1 1 1

2 2 2

x y t

x y t

xn yn tn

I I I
I I Iu

v
I I I

−   
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Using the least squares method, the final optical flow matrix can be solved, 
as shown in Equation (13). Here, u and v are the velocities of matching feature 
points in the x and y directions, respectively [19-21]. 
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To address errors from large object motion, the pyramid LK optical flow 
algorithm constructs a three-level pyramid starting with low resolution. It refines 
optical flow vectors at each level, iteratively propagating the results down to the 
original resolution to accurately estimate large displacements [22,23]. 

Using the optical flow vectors, pairs of matched feature points between 
consecutive frames can be obtained. The average displacements in the x and y 
directions ( _avg dx and _avg dy ) are calculated to estimate the overall motion 
direction and magnitude. The standard form of the affine transformation matrix is 
a 2x3 matrix, as shown in Equation (14). Where, , , ,a b c d  control rotation and 
scaling, and xt , yt  control translation. Based on the offsets in the x and y directions, 
the affine transformation matrix is created as shown in Equation (15). a  and d  are 
set to 1 to indicate no scaling, b and c  are set to 0 to indicate no rotation, and 

_xt avg dx=  and _yt avg dy=  represent the offsets in the x and y directions, 
respectively. 

x

y

a b t
c d t
 
 
 

                                                 (14) 

1 0 _
0 1 _

avg dx
avg dy

 
 
 

                                            (15) 

After applying affine transformation, pixel values at the image boundaries 
are copied to uncovered areas. If a pixel exceeds the original image boundaries, the 
excess area is filled with the nearest valid pixel value, ensuring no blank areas or 
abrupt edges in the transformed image. 
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4. Experimental analysis and discussion 

4.1 Training and deployment of YOLOv8 target detection model 
The dataset used in the study includes 556 images with 4080 annotated root 

labels, collected under various lighting conditions in real crop environments. It was 
split into a training set (445 images, 3277 labels) and a validation set (111 images, 
803 labels). Training was conducted on a system with Ubuntu 18.04, Intel Xeon 
Platinum 8362 CPU, RTX 3090 GPU, Python 3.10, PyTorch 2.10, and CUDA 12.1. 
A pre-trained YOLOv8 nano model was used for 200 iterations, with an input size 
of 640×640, batch size of 8, and learning rates of 0.01. The training set optimized 
parameters, and the validation set assessed accuracy. 

The accuracy of the trained model is typically evaluated using precision, 
which is calculated using Equation (16). In this formula, the numerator represents 
the number of correctly predicted positive samples, and the denominator is 
calculated by adding true positives and false positives. 

NPprecison
TP+FP

=                                                   (16) 
Recall, shown in Equation (17), measures the model’s ability to identify 

positive samples. A higher recall implies fewer false negatives (FN) and a lower 
miss rate, indicating the model’s capability to more accurately recognize actual 
positive samples. 

TPrecall
TP FN

=
+

                                                 (17) 

The mAP is an aggregate metric that summarizes the AP across all 
categories. It evaluates the overall predictive performance of the model. The mAP 
is calculated using Equation (18). 

i 1

1mAP=
N

iAP
N =
∑                                                   (18) 

The performance metrics of the trained model are shown in Table 3. The 
experimental results demonstrate that the model achieves 83.9% precision, 84.1% 
recall, and 88.1% mAP, indicating strong detection performance. The model is 
lightweight, with 3,005,843 parameters, a computational complexity of 8.1 
GFLOPS, and a compact weight size of 6.1 MB, making it efficient and suitable for 
deployment in resource-constrained environments. 

Table 3 
Experimental results 

Metric Name Result 
Precision/% 83.9 

Recall/% 84.1 
mAP/% 88.1 

Parameters 3005843 
GFLOPS 8.1 
Weights 6.1MB 
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The .pt model was converted to ONNX and deployed on an edge platform. 
It was further converted into TensorRT engine format and loaded to create an 
inference engine on an Nvidia Jetson Xavier NX platform. The average inference 
speed for a single image was 25ms, enabling real-time processing suitable for 
applications like autonomous navigation and crop monitoring. This performance 
ensures timely decision-making and efficient operation in smart agriculture. The 
inference results are given in Fig. 8. 

 

 
Fig. 8. Inference results 

4.2 Field visual navigation experiment 

The proposed visual navigation algorithm was tested in a maize planting 
environment at the Harbin Agricultural Science Academy. The average ridge width 
was 80 cm, furrow width 65 cm, and flat width within the furrows 50 cm. The 
autonomous driving of the platform vehicle within the furrows is given in Fig. 9. 

 

 
Fig. 9. Platform vehicle operation diagram 

 
During testing, the platform vehicle's navigation path was defined as the 

straight line at the center of the furrow's flat ground. Heading angle and lateral 
deviation were used to measure accuracy, with true values obtained manually. The 
lateral deviation is measured in pixels (px) and represents the lateral displacement 
of the vehicle in the navigation path relative to the target centerline. A pixel is the 
basic unit in an image that describes the offset of a vehicle in a visual navigation 
image.The vehicle continuously adjusted its position and posture, maintaining 
stable travel in the crop row's center using the visual navigation algorithm. As 
shown in Table 4, during visual navigation, the relative errors for both the heading 
angle and lateral deviation were less than 10%. 
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Table 4 
Navigation path recognition results in field environment 

Parameter Index True Value Measured Value Absolute Error Relative Error 

Heading Angle 

1 15.0° 16.5° 1.5° 10.0% 
2 -13.0° -11.9° 1.1° 8.5% 
3 -15.0° -13.8° 1.2° 8.0% 
4 13.0° 12.1° -0.9° 6.9% 

Lateral Deviation 

1 199.6px 218.5px 18.9px 9.5% 
2 -51.1px -55px -3.9px 7.6% 
3 46.9px 50px 3.1px 6.6% 
4 180.7px 196.2px 15.5px 8.6% 

The real-time target detection results from the front-facing camera during 
autonomous navigation are illustrated in Fig. 10. The calculated lateral deviation 
and heading angle are displayed in the upper left corner of the image. 

 

 
Fig. 10. Real-time visual navigation results 

 
Fig. 11 and Fig. 12 show the tracking performance of the heading angle and 

lateral deviation during testing. The navigation control system reduced both values, 
with the maximum heading angle at 14.3°and the maximum lateral deviation at 80 
pixels. 

  
Fig. 11. Heading angle adjustment results 
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Fig. 12. Lateral deviation adjustment results 

 
 

4.3 Motion blur improvement experiment using optical flow 

Fig. 13 illustrates the process of improving motion blur caused by camera 
jolts using information from the previous clear image. The pyramid optical flow 
method was used to estimate that the blurred image moved 0.56 pixels in the 
positive x-direction and 0.055 pixels in the negative y-direction relative to the 
previous clear image. In Fig. 13(c), red points depict the detected feature points in 
the previous frame using the corner detection method, while green points connected 
to them represent the corresponding matched points in the blurred image. 

 

 
Fig. 13. Process of improving motion blur 

5. Conclusion 

This study developed an automatic under-canopy data collection device and 
a vision-based navigation control algorithm to address the underutilization of data 
in open agricultural environments. The YOLOv8 model, optimized with TensorRT, 
was deployed on the platform's main computer, achieving a 25 ms inference speed. 
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Crop root target information and IMU-based heading angle were used by the fuzzy 
control algorithm to adjust motor speeds, ensuring stable navigation and row-
switching. A motion blur improvement method using optical flow was proposed to 
enhance detection accuracy. Future work will focus on enhancing the algorithm's 
robustness and integrating high-precision sensors for better environmental 
perception. 
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