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 MATHEMATICAL MODELLING APPLICATION IN AERIAL 
COLLISION AVOIDANCE 

Serena Cristiana VOICU (STOICU)1, Radu BLIDERAN 2, Tudorel AFILIPOAE 3 

This paper presents a mathematical approach to a fundamental problem faced 
by the integration of unmanned aerial vehicles into airspace. The topic of collision 
avoidance is addressed here, formulated as a linear programming problem involving 
mixed integer constraints (MILP). The method proposed in this paper allows the 
optimization of the trajectory of an UAV without the risk of collision with fixed 
obstacles while minimizing the flight time of the mission. The mathematical details of 
the problem are discussed and several case studies are presented. The performance 
of the proposed approach is highlighted by progressively increasing the degree of 
difficulty of the obstacle avoidance problem.  

 
 
Keywords: mathematical linear programming, trajectory planning, collision 
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1. Introduction 

Recently, unmanned aerial vehicle (UAV) has attracted the attention of 
researchers due to a wide range of applicability. Many unmanned aerial vehicle 
applications require the ability to navigate in urban or unknown areas where there 
are various obstacles (stationary or dynamic) of different types that may endanger 
the safety of vehicles and people. Because of the difficult missions in which aerial 
vehicles are involved, the control system design face multiple problems, such as the 
ability to plan trajectories in real time in order to avoid collisions with nearby 
objects.  

The objective of this paper is to develop a mathematical approach of the 
obstacles and collisions avoidance problem in airspace. The trajectory generation 
in safe conditions involves defining the dynamic equations corresponding to the 
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aerial vehicle motion and the positions of the existing obstacles. Thus, the model is 
mathematically obtained so as it satisfies the necessary Mixed-Integer Linear 
Programming requirements. 

This paper focuses on the issue of collision avoidance between unmanned 
aerial vehicles and obstacles. Being a recent challenge of air traffic safety, a 
comprehensive analysis of the approaches is needed. Considering the wide range of 
typical missions of unmanned aerial vehicles, different types of methods have been 
developed. These approaches are distinguished by specific properties taking into 
account the limitations in the ability to be applied to a particular environment.  

The conventional method of treating collision problems is based on 
geometrical ways that require certain information (location, velocity) about both 
obstacles and vehicles. Using the geometric approach, reference [1] deals with the 
collision problem determining the minimum distance between two aircraft. This is 
possible due to the ability to share data between aerial vehicles. If the risk is 
imminent, the vehicles follow the flight direction established to avoid the collision 
zone. Another approach which is analyzed in [2] is based on differential geometry 
to determine the maneuvers needed to avoid collision.  

Other common methods involve the representation of the environment in a 
specific form: a set of cells or nodes, known as sampling based algorithms ([3], [4]). 
The feasible trajectory is generated by randomly searching within the space spanned 
by the optimization variables. Methods like Probabilistic Road Map (PRM), 
Rapidly Exploring Random Trees (RRT) and Voronoi are included in this category. 
The PRM method is a probabilistic approach of generating possible paths within a 
map based on free spaces and surfaces occupied by obstacles. As mentioned in [5], 
the algorithm is characterized by two phases: the learning phase and the query 
phase. In the preprocessing phase, the environment is stored in a suitable way for 
the following phase. This step involves assigning one node to the starting point and 
another node to the end point of the mission. The final trajectory represents the 
route between the initial position and the final one. The properties of Voronoi 
diagrams are detailed in [6]. These diagrams represent an important means that 
divides the geometric space so that the edge of each area is located at a maximum 
distance from all obstacles. RRT method aims to solve trajectory planning problems 
with the advantage of the possibility of considering multi-DOF cases. These 
approaches are presented in [3] and [4], describing the particular characteristics of 
each algorithm.  

Another type of algorithms is called node-based methods which includes 
approaches like A-Star (A*) or Dijkstra’s algorithm. The studies presented in [7] 
represent the fundamentals of developing the Dijkstra algorithm. It consists in 
determining the shortest trajectory using graphs in which the edges are considered 
known. A development of the previous method, the A-Star algorithm, detailed in 
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[8], [9], introduces a heuristic estimation for finding the path of the minimum 
expected cost.  

Compared to the previous approaches, the mathematic model-based 
algorithms (linear algorithms or optimal control) allow modeling dynamic and 
kinematic constraints. These methods are based on obtaining the optimal solution 
of the cost function, which take into account the restrictions defined as equalities or 
inequalities. This kind of methods is commonly used in solving collision avoidance 
problems and path planning topics. For instance, the main objective of [10] is to 
analyze control strategies for UAV applications and paper [11] also uses optimal 
control for path planning problems. Linear planning algorithms include methods 
like MILP – Mixed Integer Linear Programming (treated in [12], [13], [14] ) or BIP 
- Binary Linear Programming ([15]), which uses only binary variables. 

The current paper is organized in several parts. The first section begins with 
a brief introduction of the problems faced by the integration of unmanned aerial 
vehicles into airspace. In the second part of the paper, the preliminaries and problem 
formulation are presented, describing the design approach. This section concerns 
on the mathematical linear programming including dynamics, constraints and cost 
function. In the last part, the proposed approach is illustrated by numerical 
examples. The topic of collision avoidance has been analyzed in other studies, but 
the case studies and mathematical implementation of the objectives are presented 
in this paper for the first time. The study ends with some concluding remarks.  

2. Problem formulation  

Considering the risks due to obstacles, the collision avoidance problem can 
be treated as a linear programming issue with mixed integer constraints called 
Mixed-Integer Linear Programming (MILP). This is an appropriate method for 
airspace collision avoidance problems. The main advantage of MILP is the 
efficiency in solving optimization problems. Compared to conventional 
approaches, the mathematical structure of MILP employs both real and integer 
variables. This enables the use of logical constraints such as obstacles and collisions 
or restricted flight areas avoidance rules, but also continuous constraints such as 
maximum speed.  

The mathematical modelling of the collision avoidance problem is reduced 
to the linear definition of the objective function depending on the vector of 
variables, constants and constraints. Solving the trajectory planning problem 
involves minimizing a quadratic cost function whose variables satisfy the dynamic 
equations. The cost function has the following form: 
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𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥,𝑢𝑢

𝐽𝐽 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥,𝑢𝑢

∫ (𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑅𝑅)𝑑𝑑𝑑𝑑∞
0    (1) 

where 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵, 𝑥𝑥 - state vector, 𝑢𝑢 - control inputs. For the general case, it is 
considered a number of aircraft 𝑁𝑁 whose mission is carried out over a period of 
time 𝛥𝛥𝛥𝛥.  The position of the aircraft 𝑖𝑖 at the time step 𝑡𝑡 is described by (𝑥𝑥𝑡𝑡𝑡𝑡 ,𝑦𝑦𝑡𝑡𝑡𝑡) 
and the speed by (𝑣𝑣𝑥𝑥𝑡𝑡𝑡𝑡 , 𝑣𝑣𝑦𝑦𝑡𝑡𝑡𝑡) creating the state vector. It is assumed that each aircraft 
is operated by the forces of the two directions (𝑓𝑓𝑥𝑥𝑡𝑡𝑡𝑡 ,𝑓𝑓𝑦𝑦𝑡𝑡𝑡𝑡) which form the input 
vector.  

The linear form of the discretized dynamics for the whole system in the case 
of a number 𝑁𝑁 of air vehicles corresponding to a number 𝑇𝑇 of time steps can be 
written as:  

𝑥𝑥(𝑡𝑡+1)𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑥𝑥𝑡𝑡𝑡𝑡 + 𝐵𝐵𝑖𝑖𝑓𝑓𝑡𝑡𝑡𝑡 ,∀𝑖𝑖 ∈ [1 …𝑁𝑁],∀𝑡𝑡 ∈ [0 …𝑇𝑇]  (2) 
 

for which the initial conditions are known. In order to be able to approach the 
problem in the proposed way, it is necessary to define the constraints that influence 
the trajectory generation. To define the restrictions in terms of speeds and forces, a 
term 𝑴𝑴 is introduced, a large enough value for a good approximation [13].  
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 It is desired that the aircraft reach the final position in a shorter time than 𝑻𝑻.  
As it is suggested in [13], the binary variables are used to define the corresponding 
constraints. The 𝒃𝒃𝒕𝒕𝒕𝒕 variables have the value equal to 1 if the aircraft 𝒊𝒊 reaches its 
destination on time step 𝒕𝒕 and a null value otherwise. Thus, the set of restrictions 
for formulating the mathematical model is expressed as follows: 

∀𝒊𝒊 ∈ [𝟏𝟏…𝑵𝑵],∀𝒕𝒕 ∈ [𝟏𝟏…𝑻𝑻]            

 𝒙𝒙𝒕𝒕𝒕𝒕 − 𝒙𝒙𝑭𝑭𝑭𝑭 ≤ 𝑹𝑹(𝟏𝟏 − 𝒃𝒃𝒕𝒕𝒕𝒕)
𝒂𝒂𝒂𝒂𝒂𝒂 𝒙𝒙𝒕𝒕𝒕𝒕 − 𝒙𝒙𝑭𝑭𝑭𝑭 ≥ −𝑹𝑹(𝟏𝟏 − 𝒃𝒃𝒕𝒕𝒕𝒕)
𝒂𝒂𝒂𝒂𝒂𝒂 𝒚𝒚𝒕𝒕𝒕𝒕 − 𝒚𝒚𝑭𝑭𝑭𝑭 ≤ 𝑹𝑹(𝟏𝟏 − 𝒃𝒃𝒕𝒕𝒕𝒕)
𝒂𝒂𝒂𝒂𝒂𝒂 𝒚𝒚𝒕𝒕𝒕𝒕 − 𝒚𝒚𝑭𝑭𝑭𝑭 ≥ −𝑹𝑹(𝟏𝟏 − 𝒃𝒃𝒕𝒕𝒕𝒕)

  (5) 

∀𝑖𝑖 ∈ [1 …𝑁𝑁]        ∑ 𝑏𝑏𝑡𝑡𝑡𝑡𝑇𝑇
𝑡𝑡=1 = 1      (6) 
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where 𝑅𝑅 is a positive value higher than any of the state variables.  
It can be noticed that if 𝑏𝑏𝑡𝑡𝑡𝑡 = 1, equation (5) forces the aircraft to be in the 

final desired position. Equation (6) assumes that each aircraft reaches the final 
position at a certain time step. The obstacles are defined by minimum and maximum 
coordinates, more precisely an obstacle is characterized by the points min min( , )x y  

and max max( , )x y .  As explained in reference [16], at each time step, the position of 
the vehicle has to be outside the perimeter delimited by the above coordinates.  

∀𝑡𝑡 ∈ [1 …𝑇𝑇],           

𝑥𝑥𝑡𝑡 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑜𝑜𝑜𝑜 𝑥𝑥𝑡𝑡 ≥ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑜𝑜𝑜𝑜 𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
𝑜𝑜𝑜𝑜 𝑦𝑦𝑡𝑡 ≥ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

   (7) 

In order to be able to solve the problem caused by the presence of obstacles, 
the required conditions must be simultaneously satisfied, which implies the need of 
type “and” restrictions. To convert the type “or” restrictions into “and” restrictions, 
another binary constraints 𝑐𝑐𝑡𝑡𝑡𝑡 are introduced: 

∀𝑡𝑡 ∈ [1 …𝑇𝑇]            

𝑥𝑥𝑡𝑡 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐𝑡𝑡1
𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑡𝑡 ≥ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 −𝑀𝑀𝑐𝑐𝑡𝑡2
𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐𝑡𝑡3
𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑡𝑡 ≥ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑀𝑀𝑐𝑐𝑡𝑡4
𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑐𝑐𝑡𝑡𝑡𝑡4

𝑘𝑘=1 ≤ 3

   (8) 

The solution of minimizing the flight time is determined by minimizing the 
sum of the final times for each vehicle.  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥,𝑢𝑢,𝑏𝑏,𝑐𝑐

𝐽𝐽 = ∑ ∑ 𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡𝑁𝑁
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=1     (9) 

This form of the cost function is not sufficient because there can be multiple 
solutions determined at the same time step, fact caused by the discretization of the 
time span. Furthermore, the states and commands for the time steps do not influence 
the cost function, but they have a significant impact on the time solution [13].  To 
solve this problem, reference [13] proposes the introduction of a low value term, 
defining the cost function as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥,𝑢𝑢,𝑏𝑏,𝑐𝑐

𝐽𝐽 = ∑ �∑ 𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡𝑇𝑇
𝑡𝑡=1 + 𝜀𝜀 ∑ ��𝑓𝑓𝑥𝑥𝑡𝑡𝑡𝑡� + �𝑓𝑓𝑦𝑦𝑡𝑡𝑡𝑡��

𝑇𝑇−1
𝑡𝑡=0 �𝑁𝑁

𝑖𝑖=1    (10) 

where ε is a small positive value. The introduction of the penalty in the cost function 
allows searching for the solution only in the relevant regions. Thereby, the 
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minimization algorithm requires a shorter time.  In this way, the efficiency of the 
algorithm is highlighted by the unique optimal solution.  

3. Numerical simulation 

To define the mathematical model, it is necessary to establish certain 
characteristics. Both the initial and the final position of the vehicle trajectory are 
established. The positions, dimensions and number of obstacles in the airspace are 
also known. The aerial vehicle starts from the initial position 𝑨𝑨(𝒙𝒙𝟎𝟎,𝒚𝒚𝟎𝟎) and reaches 
the desired destination 𝑩𝑩(𝒙𝒙𝑭𝑭,𝒚𝒚𝑭𝑭) by following the optimal path while avoiding 
obstacles. The final trajectory generated by the algorithm minimizes the necessary 
flight time providing the minimum distance between the two desired positions. 

For the case study presented in this paper, the performances of the proposed 
optimization approach are highlighted by progressively increasing the degree of 
difficulty of the obstacle avoidance problem. Each numerical simulation analyzes 
different airspace configurations.   

 
Fig. 1. The optimal trajectory in the presence of two obstacles 

 
The first case considers the presence of two obstacles into the airspace. The 

proposed approach allows the generation of an optimal trajectory of the aerial 
vehicle so that there is no risk of collisions, as seen in Fig. 1.  

A different arrangement of the two obstacles is represented in Fig. 2. 
Furthermore, the change of the initial and the final position highlights the capacity 
of the algorithm to generate the trajectory in safe conditions.  
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Fig. 2. The optimal trajectory for different arrangement of two obstacles 

 The second case involves the extension of the number of present 
obstacles (Fig. 3). The numerical simulations in the following figures show the 
determined trajectory of the aerial vehicle using the proposed approach, changing 
the position of the obstacles for Fig. 4. It can be seen that the position of the 
obstacles does not represent a risk in achieving the desired performance.  

 

 
Fig. 3. The optimal trajectory in the presence of three obstacles 
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Fig. 4. The optimal trajectory in a different environment consisting of three obstacles 

 
Fig. 5. The optimal trajectory in the presence of four obstacles 

Compared to previous cases, the generation of the flight path faces the 
avoidance of a greater number of obstacles. The presence of a new obstacle in the 
airspace does not affect the capacity of the proposed method to obtain the route of 
the desired mission. Fig. 5 illustrates that the obtained trajectory takes into account 
the position of the obstacles and successfully avoids any collision. For the 
simulation in Fig. 6, both the initial and the final position are modified. As for the 
previous cases, the proposed approach proves the ability to determine a safe flight 
path. In this configuration, it is shown that the obstacles presented in the airspace 
do not endanger the performances of the mission. 

The purpose of the case studies presented here was to illustrate the proposed 
method on several practical situations. As it is currently implemented, the algorithm 
is more suitable for offline computation of optimal trajectories since it employs a 
high number of points along the trajectory and the obstacles are known a priori.  
However, in many real time applications, the position and size of the obstacles must 
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be detected online, creating the requirement for the vehicle to be able to rapidly and 
efficiently adapt its trajectory to avoid the collision. For this reason, the online 
implementation of the algorithm must be very efficient in terms of computational 
time. Implementation of the proposed method for real time applications will be the 
purpose of future work. 

 

 
Fig. 6. The optimal trajectory for the case of changing the two desired positions 

4. Conclusions 

The present work focuses on collision avoidance problem between 
unmanned aerial vehicles and obstacles, which represents a major challenge for the 
integration of UAVs in civil airspace. Based on the analysis of current progress in 
the field of aerial vehicles, this study uses Mixed-Integer Linear Programming for 
planning and optimizing the flight path.  

In order to be able to solve the problem caused by the presence of obstacles, 
the dynamic equations and the conditions imposed to avoid collisions are translated 
into a form suitable for the structure of MILP. This is realized by discretizing the 
continuous constraints and equations of motion, resulting in a parameter 
optimization problem.  

This paper includes the mathematical modelling of the approach, which 
allowed obtaining numerical simulations in which different situations were 
analyzed. The case study highlights the generation of flight trajectories in the 
presence of a different number and types of obstacles in the airspace. In each 
analyzed situation, it can be seen that the trajectory of the aerial vehicle successfully 
avoids obstacles without generating other conflicts. 

Although the MILP approach applied to an aerial vehicle motion in an 
obstacle environment is optimal, due to the generation of a conflict-free trajectory, 
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it requires an increase in computing power with the choice of several points along 
the trajectory and the introduction of a larger number of obstacles. The analysis of 
situations that include several vehicles represents a topic for further research. 
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