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COLLISION PREDICTION AND SMART TRAFFIC FLOW
OPTIMIZATION FOR AUTONOMOUS CARS, USING RADIO
COMMUNICATIONS AND DIRECTX COMPUTE SHADERS

Cosmin — Constantin MIHAIY, Ciprian LUPU?

This paper describes the implementation of a high-performance
communications and control system used to coordinate car traffic in a smart
intersection, so that autonomous vehicles run through the crossroads with the
highest and safest possible speed while avoiding collisions. Communications
between cars and the central intersection’s computer is realized through radio
transmissions, and the decision-making algorithms are implemented using High
Level Shading Language (HLSL), a programming language used to create scripts
which run on graphics processing units, powered by DirectX. The smart traffic
management system provides benefits in terms of infrastructure capacity and
environmental impact.
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1. Introduction

Traffic in high density settlements is a difficult problem to solve, and has
become a leading source of economic damage, environmental harm caused by
dangerous byproducts of combustion engines, noise pollution and impact on
wildlife and green spaces, and it is generally regarded as the main cause of
decreasing living comfort in cities [1] [2] [3]. The primary issue at hand is solving
conflicts between congruent roads. Current mainstream technology relies on
driver awareness and some limited flow control systems (such as traffic lights and
signs) to prevent accidents [1] [4] and ensure safety. These traffic control systems
are often inflexible and will increase the time a car spends in traffic. Another
problem is that human drivers inevitably fail to respect some signals [1], due to
various reasons (haste, tired drivers, poor positioning of signals etc.), leading to
jams and accidents.

Automated cars can fix this issue up to a point [5] [6]: they have better
chances at detecting simple obstacles and avoid direct impacts, but they have no
overall knowledge of what is happening in the intersections, as sensors are limited
in range and computers do not have the ability to perceive the overall picture.
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Fig. 1. Traffic index in Bucharest over one week, in 2020. Traffic peeks twice a day, in the
morning and in the evening, but the daily average is still high throughout the day [2].

Therefore, centralized systems equipped with greater processing power
must be used to solve the problem of visibility and predictability. State of the art
literature mentions several prediction and management systems, such as systems
based on reserving a slot in the intersection [5] (thus limiting the number of cars
running through conflict points to only that which the infrastructure allows),
prioritizing the bigger incoming group [3] [7] or distributing traffic along
alternative routes [1] [3] [8]. This article proposes the implementation of a
centralized traffic management system that will adjust car speeds so that flows in
intersections do not require full stop of one or more lanes to prevent crashes. The
novelty of the approach is the use of graphics processing units (GPU) to offload
the massive calculations needed to optimize the flow management of heavy
traffic. To showcase this approach, a case study will be presented in which the
system achieves collision avoidance in a crossroad, allowing cars to flow freely
through the intersection. Each car sends a package describing its current state and
capabilities: minimum and maximum speed, current speed, compass bearing (to
determine its direction) and location markers, GPS position. Using this
information, the system will compute the trajectory of the cars and detect whether
an impact is likely to occur. If an impact is detected, the system will act and
compute a new speed reference for each car, as to avoid any impacts, and cars to
flow safely through conflict points. The calculus is offloaded on the system’s
GPU, which is designed to scale horizontally very well [9] [10] [11], allowing the
system to support increasing pressure from heavy traffic.

2. Implementation overview

The proposed solution will use a hierarchical control system approach,
where decision making is decoupled from the main control system and entrusted
to the supervisor system, which will be a computer equipped with a GPU capable
of running compute shaders and with a radio module which will act as the
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communications interface with the cars. The central computer can be positioned
either in each intersection or can be configured to cover a larger area, depending
on the particularities of each implementation. As road infrastructure is heavily
dependent on the geographical constraints of each location, each time such a
system is implemented, an analysis will be done to determine how to position
each traffic supervisor. For settlements with simple infrastructure, it may be
enough to have a single supervisor deal with the entire area and cover all the
intersections, while in bigger cities it may be necessary to have a supervisor for
each big intersection and its surrounding area. Cars flow seamlessly from one

supervisor to another.
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Fig. 2. Overview of the prediction system. The system will use Global Position System
(GPS) and road track marks to provide an accurate measurement of the car position. The blue car
is the actual current position of the vehicle, while the white shapes represent predicted future
positions.

Each car will be equipped with the following devices which provide the
necessary information for the system to work.

1. Speed meter: a device which will compute the current speed. This
can be achieved in various ways, such as using GPS delta, or using
an odometer.

2. A compass, which will provide the heading angle in the 0-360
degrees domain.

3. A roadside marker reader [6] [12], which will be used to read
various markings on the road. Common vehicle to infrastructure
communication protocols can be used, such as heterogeneous
networks (HetNet) [13]. Cars must be able to read those markers
under any weather conditions.

4. Other location services, such as mobile telephony networks and
GPS.

Using the information received from each car, the system will perform the
following operations to optimize traffic flow and improve safety:

1. Update the current estimated position of each car, using the last
known position, reported speed, GPS location and road track
marks.
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N

Compute the next N future positions, given the information above.
3. Check if any of the above future positions match between cars. If
there is a match, it means there is a likely collision in the future.
4. If collisions are found, find the optimal speed at which the collision
is avoided.
5. Update the process state and send the new commands to each car.
Collision detection will be performed using Kalman prediction [14], which
results in an approximate position of the car in relation to the reference system,
and some margin of error which will represent the uncertainty in the car position.
This margin will create a hit box around the estimated position of the car. An
impact is considered imminent if 2 or more cars have overlapping hit boxes. A
centralized system to detect future collisions has a significant advantage over on-
board collision detections systems (such as Autonomous Emergency Breaking —
AEB [15]) as it is able to predict collisions in situations in which AEB lacks
enough information, such as when another car is coming from the side way, or
when weather phenomena prevents on-board car systems from functioning
properly. The system can complement car AEB and other on-board car safety
systems.

3. Radio communications

Radio communications will be used to share information between the cars
in traffic and the control system mainframe. Each car will relay the information
described in section 2. The server-side application will perform the following
operations in a loop:

e Check the health of the communications and GPU device pointers.
If any of the handles have been closed due to device malfunction,
recreate them. If recovery is not possible, the system will stop
working.

e Read from the input streams, to get data sent by each car.

e Dispatch the information to the predictor component of the system.

e Send the results of the predictor to each car.

Cars will write their information to the on-board transmitter and will
receive commands on the same stream. To handle traffic numbers that can easily
reach into thousands of cars, 5G [16] will be used to transfer data between cars
and the management infrastructure, using TCP/IP. The protocol will support
sufficient bandwidth and low latency for real time remote control of all vehicles.
As a resilience policy, if the communications stop working for a period, then the
whole system will default to a lower level of automatization, involving classical
control lights and signals. As the system has advanced knowledge of car positions
of a few seconds, there is a grace period in which communications can recover,
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which depends on each implementation particularities. When communications
recover from various errors, the system will be able to come back online
automatically.

4. Collision detection

Collision detection is achieved through a multi sampling technique, in
which the estimated position of each car after a set amount of time is computed
using DirectX compute shaders. Shaders are scripts used to program GPUs. Each
sampled future position is computed in parallel to the others, taking advantage of
the parallelized hardware of GPUs.

Typically, shaders run at specific moments in the image creation pipeline
[17]. Compute shaders, however, can be run at any point, even independently of
the graphics pipeline, and can be used to compute general purpose mathematics,
in parallel on core groups [9] [11]. Each core gets assigned a thread to execute a
single instruction sequence. The exact number of threads each compute shader
group runs is defined at shader compilation time. The application calling the
shader defines the number of groups to perform the command. In DirectX, this is
achieved using the numthreads attribute of the compute shader entry function, and
the parameters passed to the Dispatch function [18]. A Kalman predictor is used
to approximate the positions of the cars in relation to a reference point after a
specific time. The predictor must consider some uncertainties in the position of
the car, as the exact position in a future point will be unknown at prediction time.
The basic function for getting the instant position is the movement formula,
defined as

S=vt 1)

Where v is the speed, t is the time span, 5 is the distance traveled.
The general Kalman predictor works in two stages. In the first stage, it
predicts the estimated state and the estimated error [14]:

x; =Fxj_y + Buy_,
P, =FP;_FT+Q 2

In the second stage, the algorithm updates the state:

Vi =5, —Hxy
K, =P H (R+HP;H")? 3)
X =x; + Hyy
Py = (I - K HP;
Where x is the state that needs estimation, P, is the estimated error, k is
the time moment, F is the transition matrix, B is the control input matrix applied
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to the control vector u, z is the measurements vector, H = I is the matrix of
measurements, v is the residual of the measurement, K is the Kalman gain, P™ is
the updated prediction error, x* is the updated state.

The evolution of the state x is defined by

Xy = Fxp_y + By +wyy 4)
Where w is the process noise vector, with zero-mean gaussian covariance

z, = Hx, +v
k k k (5)
In (5), the measurement vector H is the measurement matrix, and v is the
measurement vector and has the covariance matrix R.
The direction of movement is given by the compass angle from each car.
Therefore, delta between 2 points can be computed using the following formulae.

compasRadians = %Cﬂmp assAngle (6)

Given this is a real time system, a strict sampling period is used.
Therefore, t can be computed as multiple of the sampling period.
t=CN (7
In (7), C is a constant sampling period, and N is the number of the current
sample. Combining this with (6) and (1) will result in the final formula for
predicting future positions of the car in a 2D space. In most cases, 2D will be
enough.

X, = Ssin(compassRadians) + X,

(8)

Y, = S cos(compassRadians) +Y,

The speed of the car will be received as a parameter, and time will be a
multiple of the sampling period. Each car will also have a collision (hit box) area
around it in the form of a circle which represents the uncertainty in the Kalman
filter. If 2 hit boxes touch or intersect each other, then a collision is detected.

To handle 3D coordinate system, we can expand the previous formulae
and assume the acceleration can be defined as a 3D vector, as shown in (9).

x = [s(9, v(O] ©)

Where:

s(t) = [s,(£),s,(£),s.(£)] is the positional vector defined in 3D (latitude,
longitude, and altitude — altitude is necessary to deal with advanced infrastructure
such as bridges and passageways),
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v(t) = [v,(£), v, (£),v,(£)] is the velocity vector defined in 3D.
Therefore, the state at time moment & can be estimated knowing the state at

k—1,
1 5
. = [Ek] _ |Sk—q T VAt +oay ALT
S 2 (10)
vy T a, At
Where a is the acceleration of the car. This can be rearranged as
I, I At ! I.A
X, = [033 3{3 }xk_1+ 22 t] ayp_y (11)
LAt

It can be assumed that the acceleration of the car has some measurement noise,
denoted by e, = N(0,I;g2). Applying the covariance relationship, the covariance
matrix of the process noise Q can be defined as

1 4
0= Zfaﬁt Oy qu (12)
0, IAt?
The position of the car can be estimated through any positioning systems. It will
be assumed that the positioning system used will provide velocity and position
measurement, which will be degraded by a measurement noise:
5 (13)
z, = [vﬂ 4+ N(0,R)
The compute dispatch will predict the car position at various time
intervals, depending on the current information. At each sampling point, the
position of the car will be adjusted in the algorithm, through a combination of
measurements, such as global positioning systems, which will provide a rough
estimation of the position and roadside markers, which combined with GPS will
provide an accurate position of the car. In this use case, the following compute
group indices will be used [9] [18]:

e SV DispatchThreadID is the combined index within the entire
Dispatch call. The X component will be the multiple of sampling
periods. Each thread will multiply the sampling period with its
group thread index to determine At. For example, if the sampling
period is 1 second, then the thread with SV_GroupThreadlD.X = 2
will compute position after 2 seconds.

e SV_GroupThreadID is the index of a thread within a group. The X
component identifies cars within the input car state array. The
threads within the group with SV_GrouplID.X = 1 will compute the
future positions of the 2nd car (indexing starts at 0).
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e SV _GrouplD is the index of a group. The X component determines
the output index of each thread. The output array of future car
position contains the flatten array of positions of every single car.

The input parameters of the compute shader will be an array of objects
defining the car state. The output will be the predicted positions of the cars. The 2
arrays will be shared between all thread groups. The data will be in 1D format, Y
and Z will always be 1, both for Dispatch call and for numthreads.

Dispatch(5,3,2) : Each box below is a Thread Group
SV_GrouplD Dispatch
call
A invokes
< 5*3*2 =
g = 30 Thread
Groups in
I undefined
order.
——,
Zoome-in on SV_GrouplD(2,1,0): Boxes are Threads
- *SV_GroupThreadlD
Compute 0,0,0[1,0,0[2%0,0[3,0,0]4,0,0[5,0,0]6,0,0]7,0,0[8,0,0[9,0.0
Shader 0,1.0 5T
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that each g-i-g 57
Thread — 1
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Fig. 3. The relation between the number of threads in a group defined by a compute shader and the
number of groups dispatched by the application [18]. Each group and thread can be identified by a
3D vector, with X, Y and Z components.

The output array will contain the centers of the hit boxes used to determine
collisions. The collision detection itself will use a classical formula for
determining if 2 circles overlap or touch and match the same timestamp.

d=mn+mn (14)
Where d is the distance between the centers of the circles, and ; is the radius of
the first circle and =, is the radius of the second circle. The uncertainty in the
Kalman filter can be estimated by increasing the radius (and therefore the hit box)
of each car. The uncertainty is kept low through the usage of the roadside trackers.
If these become unavailable, uncertainty will increase. In such cases, the system
will not be able to accurately predict impacts and should default to a more
conservative approach to traffic management, like how current traffic signals
work. Mathematically, the prediction function can be described as shown in (15)
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C(5,) = Puum 19)
Where:
5, Is a vector containing the metadata of each car (id, bearing, current speed,
location)

n is the number cars.
E. ... is the output matrix containing the next m instant locations.
The impact detection function can be described as
0 when no impacts found (16)

L(anj - { 1 when 1 or more impacts
Speed adjustments will be determined using a constrained optimization
technique. The constraint function will be the very same function which predicts
impacts. In this case study, a Monte Carlo technique was used [19]. The goal of
the optimization is to find the best speeds at which the vehicles will not collide,
while avoiding full stops as much as possible.
E ¥ = max [C(Idn,Bn,S* L ]] a7

=TI n' n
L(P,.. *)=0

=T

As shown in (17) at each iterative pass in the optimization algorithm, the
impact detection function will be applied to the computed reference speeds for
each car. If no impacts are detected, then the computed reference speeds will be
dispatched to each car. Additional constraints can be added to support speed limits
and other legal restrictions on the road segment. In some situations, it may be
impossible to prevent crashes without stopping a car. In such cases, the system
will try to minimize the number of cars that get a full stop. The cars that entered
the supervised area first will be given priority and a higher speed.

5. Case study

The system was tested using two experimental cars and a track as shown
in Fig. 4. The application was developed in such way that it allows both
controlling the physical cars and simulate the flow in a virtual model. It was
developed in C++ as it interacts naturally with DirectX. The compute shaders
have been developed in the native DirectX HLSL. The development environment
is Visual Studio 2019, using the latest C++ toolchains. MATLAB and Excel have
been used to plot figures and double check the results. At startup, the application
initializes the DirectX device pointer and its context, compiles the shader code
from source file and allocated data buffers to exchange data with the shader. Then
the following instructions are executed in a loop:

e Get the data and write it to the buffers. Create data views for
inspecting the results.
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e Dispatch the compute shader.
e Dispatch results to cars.

The test cars, shown in Fig. 4, are based on Arduino and are equipped with
several sensors which gather all the necessary data for the experiments: speed,
bearing, positioning. They are also capable of following the road track markers,
behaving like line follower robots simulating how an autonomous vehicle would
behave in a real-life scenario.

Fig. 4. Test car based on Arduino (left), contains sensors for detecting track markers, radio
communications module for interacting with the system, and a compass for determining movement
bearing. On the right, example of track markers.

The 2 scenarios are represented in Fig. 5. In the safe scenario, shown in Fig.
5 left side, the two cars have intersecting paths, but the distance between them
stays well above the danger limit. At any sampling time, they are far enough from
each other. Fig. 6 shows the distance between the two cars over time, as computed
by the simulator stage.

) Dl |
No impacts here. 4 ﬁ . .
After ?[Jseconds the '!a : “1 Predlcteq impact, The
h ’ n I cars are in dangerously
cars have some $
distance in between CIEJE [ ] E:B | close after 2 seconds
[=]
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W o ooy | Cobertoty ==

1

Fig. 5. On the left side, simulation of cars with intersecting trajectory but no collision. When the
purple car does get in front of the blue car, the blue car is yet to enter the intersection, as shown
with the colored highlighted predicted positions. On the right side, the simulation example of how
two cars would collide in the middle of the crossroads. Those figures illustrate how the system
perceives the movement of cars, by sampling their trajectory at specific time intervals, how it
detects possible collisions. Each hollow car shape represents the sampled position of a car at after

a time interval.
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This can be verified with a simple MATLAB script, plotting the distance
between the 2 cars, as seen in the figure bellow. The system correctly detects
distance between the 2 cars as safe, and impacts are highly unlikely. In this
situation, the system will take no action since the cars can safely pass through the
conflict area of the intersection with no risk.

B0 1

Distance (meters)

Time (seconds)
Fig. 6. The distance over time between the 2 cars in the "no impact” scenario. While the cars get
close, the distance does not drop below 50m, well above the orange limit of 1m.

In the second test scenario shown in Fig. 5 right side, the 2 cars will cross
path and will come in dangerously close to each other. The difference between the
2 scenarios is the speed. In the first scenario, the cars travel at different speeds, so
they never pass close to each other. In the second scenario, the cars run at the
same speed, and will therefore crash into each other after about 6 seconds, as the
projected distance will be well within the crash margin, at about 1m. In the second
scenario the system will have to adjust the speed of the of the cars to avoid
impact. The trajectory of the cars is the same as in the first case.
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Fig. 7. The distance over time between 2 cars that are set to collide after 6 seconds. As the distance
drops towards 0, an impact is imminent.

As seen in Fig. 7, the system correctly detects the possible impact between
the 2 cars. The system will need to act and compute new speed references for the
cars. The function L presented in (17) will return 1, and the system will have to
compute new reference speeds for both cars. The system can complement
traditional car on-board AEB implementations, as it has information about the
traffic, position and direction of other cars which would now be available to on-
board car systems, thus increasing the efficiency of existing safety features.

As it can optimize speed to avoid impacts, the system allows existing
infrastructure to support heavier traffic. Since cars will require to cold start less
often, this will reduce pollution, having a positive impact on the environment [1].

In comparison to a classical signaling system for a crossroads junction
with 1 lane for each direction, the system allows up to 4 cars in the intersection,
while classical traffic management systems, such as a red light, can only allow 2
cars at maximum. This is achieved by not stopping the cars with intersecting
paths, but by adjusting speeds so that they narrowly pass (but not crash) by each
other.

6. Conclusions

This paper presented research and results on a novel approach to traffic
management for automated cars, using a combination of various on-board car
sensors and a traffic supervisor equipped with a graphics processing unit to
predict the movement of cars and avoid impacts when going through intersections,
by computing the future positions of each car using a Kalman filter.
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The novelty of this research was the use of graphics processing units,
compute shaders and DirectX to perform the calculations needed to detect
collisions and perform speed optimizations. This way, the system scales
horizontally with the numbers of cars in traffic, a single computer system can
handle thousands of cars, as GPUs are designed to perform mathematical
operations through hardware accelerated parallel computations.

5G will be used to handle the data transmission between the traffic
supervisor and each car. The technology allows low latencies and appropriate
bandwidth to handle data transfers between the supervisor and thousands of cars
in traffic. Low uncertainty in the Kalman filter is achieved through fine grained
positioning systems, combining GPS and roadside car trackers. Fallbacks to lower
levels of signaling automation can be used in case of system malfunctions,
communications outages, or bad weather. Although the case study has only
captured the situation of a single lane crossroad intersection going in straight line
at 90 degrees angle, the calculations can be adapted to suit any kind of
intersection and account for turns, complex infrastructure such as bridges and
passageways.

By increasing the capacity traffic capacity of existing infrastructure, the
proposed system has a positive impact on the environment and helps increase
living conditions and standards in crowded metropolitan areas.
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