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COLLISION PREDICTION AND SMART TRAFFIC FLOW 

OPTIMIZATION FOR AUTONOMOUS CARS, USING RADIO 

COMMUNICATIONS AND DIRECTX COMPUTE SHADERS 

Cosmin – Constantin MIHAI1, Ciprian LUPU2 

This paper describes the implementation of a high-performance 

communications and control system used to coordinate car traffic in a smart 

intersection, so that autonomous vehicles run through the crossroads with the 

highest and safest possible speed while avoiding collisions. Communications 

between cars and the central intersection’s computer is realized through radio 

transmissions, and the decision-making algorithms are implemented using High 

Level Shading Language (HLSL), a programming language used to create scripts 

which run on graphics processing units, powered by DirectX. The smart traffic 

management system provides benefits in terms of infrastructure capacity and 

environmental impact.  
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1. Introduction 

Traffic in high density settlements is a difficult problem to solve, and has 

become a leading source of economic damage, environmental harm caused by 

dangerous byproducts of combustion engines, noise pollution and impact on 

wildlife and green spaces, and it is generally regarded as the main cause of 

decreasing living comfort in cities [1] [2] [3]. The primary issue at hand is solving 

conflicts between congruent roads. Current mainstream technology relies on 

driver awareness and some limited flow control systems (such as traffic lights and 

signs) to prevent accidents [1] [4] and ensure safety. These traffic control systems 

are often inflexible and will increase the time a car spends in traffic. Another 

problem is that human drivers inevitably fail to respect some signals [1], due to 

various reasons (haste, tired drivers, poor positioning of signals etc.), leading to 

jams and accidents.  

Automated cars can fix this issue up to a point [5] [6]: they have better 

chances at detecting simple obstacles and avoid direct impacts, but they have no 

overall knowledge of what is happening in the intersections, as sensors are limited 

in range and computers do not have the ability to perceive the overall picture.  
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Fig. 1. Traffic index in Bucharest over one week, in 2020. Traffic peeks twice a day, in the 

morning and in the evening, but the daily average is still high throughout the day [2]. 

 

Therefore, centralized systems equipped with greater processing power 

must be used to solve the problem of visibility and predictability. State of the art 

literature mentions several prediction and management systems, such as systems 

based on reserving a slot in the intersection [5] (thus limiting the number of cars 

running through conflict points to only that which the infrastructure allows), 

prioritizing the bigger incoming group [3] [7] or distributing traffic along 

alternative routes [1] [3] [8]. This article proposes the implementation of a 

centralized traffic management system that will adjust car speeds so that flows in 

intersections do not require full stop of one or more lanes to prevent crashes. The 

novelty of the approach is the use of graphics processing units (GPU) to offload 

the massive calculations needed to optimize the flow management of heavy 

traffic. To showcase this approach, a case study will be presented in which the 

system achieves collision avoidance in a crossroad, allowing cars to flow freely 

through the intersection. Each car sends a package describing its current state and 

capabilities: minimum and maximum speed, current speed, compass bearing (to 

determine its direction) and location markers, GPS position. Using this 

information, the system will compute the trajectory of the cars and detect whether 

an impact is likely to occur. If an impact is detected, the system will act and 

compute a new speed reference for each car, as to avoid any impacts, and cars to 

flow safely through conflict points. The calculus is offloaded on the system’s 

GPU, which is designed to scale horizontally very well [9] [10] [11], allowing the 

system to support increasing pressure from heavy traffic.  

2. Implementation overview 

The proposed solution will use a hierarchical control system approach, 

where decision making is decoupled from the main control system and entrusted 

to the supervisor system, which will be a computer equipped with a GPU capable 

of running compute shaders and with a radio module which will act as the 
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communications interface with the cars. The central computer can be positioned 

either in each intersection or can be configured to cover a larger area, depending 

on the particularities of each implementation. As road infrastructure is heavily 

dependent on the geographical constraints of each location, each time such a 

system is implemented, an analysis will be done to determine how to position 

each traffic supervisor. For settlements with simple infrastructure, it may be 

enough to have a single supervisor deal with the entire area and cover all the 

intersections, while in bigger cities it may be necessary to have a supervisor for 

each big intersection and its surrounding area. Cars flow seamlessly from one 

supervisor to another. 
 

 

Fig. 2. Overview of the prediction system. The system will use Global Position System 

(GPS) and road track marks to provide an accurate measurement of the car position. The blue car 

is the actual current position of the vehicle, while the white shapes represent predicted future 

positions. 
 

Each car will be equipped with the following devices which provide the 

necessary information for the system to work. 

1. Speed meter: a device which will compute the current speed. This 

can be achieved in various ways, such as using GPS delta, or using 

an odometer. 

2. A compass, which will provide the heading angle in the 0-360 

degrees domain.  

3. A roadside marker reader [6] [12], which will be used to read 

various markings on the road. Common vehicle to infrastructure 

communication protocols can be used, such as heterogeneous 

networks (HetNet) [13]. Cars must be able to read those markers 

under any weather conditions. 

4. Other location services, such as mobile telephony networks and 

GPS. 

Using the information received from each car, the system will perform the 

following operations to optimize traffic flow and improve safety: 

1. Update the current estimated position of each car, using the last 

known position, reported speed, GPS location and road track 

marks. 
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2. Compute the next  future positions, given the information above. 

3. Check if any of the above future positions match between cars. If 

there is a match, it means there is a likely collision in the future. 

4. If collisions are found, find the optimal speed at which the collision 

is avoided.  

5. Update the process state and send the new commands to each car.  

Collision detection will be performed using Kalman prediction [14], which 

results in an approximate position of the car in relation to the reference system, 

and some margin of error which will represent the uncertainty in the car position. 

This margin will create a hit box around the estimated position of the car. An 

impact is considered imminent if 2 or more cars have overlapping hit boxes. A 

centralized system to detect future collisions has a significant advantage over on-

board collision detections systems (such as Autonomous Emergency Breaking – 

AEB [15]) as it is able to predict collisions in situations in which AEB lacks 

enough information, such as when another car is coming from the side way, or 

when weather phenomena prevents on-board car systems from functioning 

properly. The system can complement car AEB and other on-board car safety 

systems.  

3. Radio communications  

Radio communications will be used to share information between the cars 

in traffic and the control system mainframe. Each car will relay the information 

described in section 2. The server-side application will perform the following 

operations in a loop: 

• Check the health of the communications and GPU device pointers. 

If any of the handles have been closed due to device malfunction, 

recreate them. If recovery is not possible, the system will stop 

working. 

• Read from the input streams, to get data sent by each car. 

• Dispatch the information to the predictor component of the system. 

• Send the results of the predictor to each car. 

Cars will write their information to the on-board transmitter and will 

receive commands on the same stream. To handle traffic numbers that can easily 

reach into thousands of cars, 5G [16] will be used to transfer data between cars 

and the management infrastructure, using TCP/IP. The protocol will support 

sufficient bandwidth and low latency for real time remote control of all vehicles. 

As a resilience policy, if the communications stop working for a period, then the 

whole system will default to a lower level of automatization, involving classical 

control lights and signals. As the system has advanced knowledge of car positions 

of a few seconds, there is a grace period in which communications can recover, 
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which depends on each implementation particularities. When communications 

recover from various errors, the system will be able to come back online 

automatically. 

4. Collision detection 

Collision detection is achieved through a multi sampling technique, in 

which the estimated position of each car after a set amount of time is computed 

using DirectX compute shaders. Shaders are scripts used to program GPUs. Each 

sampled future position is computed in parallel to the others, taking advantage of 

the parallelized hardware of GPUs.  

Typically, shaders run at specific moments in the image creation pipeline 

[17]. Compute shaders, however, can be run at any point, even independently of 

the graphics pipeline, and can be used to compute general purpose mathematics, 

in parallel on core groups [9] [11]. Each core gets assigned a thread to execute a 

single instruction sequence. The exact number of threads each compute shader 

group runs is defined at shader compilation time. The application calling the 

shader defines the number of groups to perform the command. In DirectX, this is 

achieved using the numthreads attribute of the compute shader entry function, and 

the parameters passed to the Dispatch function [18]. A Kalman predictor is used 

to approximate the positions of the cars in relation to a reference point after a 

specific time. The predictor must consider some uncertainties in the position of 

the car, as the exact position in a future point will be unknown at prediction time. 

The basic function for getting the instant position is the movement formula, 

defined as 

 
 (1) 

Where  is the speed,  is the time span,  is the distance traveled.  

The general Kalman predictor works in two stages. In the first stage, it 

predicts the estimated state and the estimated error [14]: 

 
 

 
 

(2)  

In the second stage, the algorithm updates the state: 

 
 

 

 

 

(3) 

Where  is the state that needs estimation,  is the estimated error,  is 

the time moment,  is the transition matrix,  is the control input matrix applied 
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to the control vector ,  is the measurements vector,  is the matrix of 

measurements,  is the residual of the measurement,  is the Kalman gain,  is 

the updated prediction error,  is the updated state. 

The evolution of the state  is defined by  

 
 

 
(4) 

Where  is the process noise vector, with zero-mean gaussian covariance 

. 

  
 

(5) 

In (5), the measurement vector  is the measurement matrix, and  is the 

measurement vector and has the covariance matrix . 

The direction of movement is given by the compass angle from each car. 

Therefore, delta between 2 points can be computed using the following formulae. 

 

 
(6) 

Given this is a real time system, a strict sampling period is used. 

Therefore,  can be computed as multiple of the sampling period.  

  (7) 

In (7),  is a constant sampling period, and  is the number of the current 

sample. Combining this with (6) and (1) will result in the final formula for 

predicting future positions of the car in a 2D space. In most cases, 2D will be 

enough. 

 
 

 (8) 
  

 

The speed of the car will be received as a parameter, and time will be a 

multiple of the sampling period. Each car will also have a collision (hit box) area 

around it in the form of a circle which represents the uncertainty in the Kalman 

filter. If 2 hit boxes touch or intersect each other, then a collision is detected.  

To handle 3D coordinate system, we can expand the previous formulae 

and assume the acceleration can be defined as a 3D vector, as shown in (9).  

 
 

 
(9) 

Where: 

 is the positional vector defined in 3D (latitude, 

longitude, and altitude – altitude is necessary to deal with advanced infrastructure 

such as bridges and passageways), 
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 is the velocity vector defined in 3D. 

Therefore, the state at time moment  can be estimated knowing the state at 

. 

 

 
 

(10) 

Where  is the acceleration of the car. This can be rearranged as 

 

 

(11) 

It can be assumed that the acceleration of the car has some measurement noise, 

denoted by . Applying the covariance relationship, the covariance 

matrix of the process noise Q can be defined as 

 

 

(12) 

The position of the car can be estimated through any positioning systems. It will 

be assumed that the positioning system used will provide velocity and position 

measurement, which will be degraded by a measurement noise: 

 

 

(13) 

The compute dispatch will predict the car position at various time 

intervals, depending on the current information. At each sampling point, the 

position of the car will be adjusted in the algorithm, through a combination of 

measurements, such as global positioning systems, which will provide a rough 

estimation of the position and roadside markers, which combined with GPS will 

provide an accurate position of the car. In this use case, the following compute 

group indices will be used [9] [18]: 

• SV_DispatchThreadID is the combined index within the entire 

Dispatch call. The X component will be the multiple of sampling 

periods. Each thread will multiply the sampling period with its 

group thread index to determine . For example, if the sampling 

period is 1 second, then the thread with SV_GroupThreadID.X = 2 

will compute position after 2 seconds. 

• SV_GroupThreadID is the index of a thread within a group. The X 

component identifies cars within the input car state array. The 

threads within the group with SV_GroupID.X = 1 will compute the 

future positions of the 2nd car (indexing starts at 0). 
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• SV_GroupID is the index of a group. The X component determines 

the output index of each thread. The output array of future car 

position contains the flatten array of positions of every single car. 

The input parameters of the compute shader will be an array of objects 

defining the car state. The output will be the predicted positions of the cars. The 2 

arrays will be shared between all thread groups. The data will be in 1D format, Y 

and Z will always be 1, both for Dispatch call and for numthreads.  
 

 
 

Fig. 3. The relation between the number of threads in a group defined by a compute shader and the 

number of groups dispatched by the application [18]. Each group and thread can be identified by a 

3D vector, with X, Y and Z components. 

 

 The output array will contain the centers of the hit boxes used to determine 

collisions. The collision detection itself will use a classical formula for 

determining if 2 circles overlap or touch and match the same timestamp. 
 

  (14) 

Where d is the distance between the centers of the circles, and  is the radius of 

the first circle and  is the radius of the second circle. The uncertainty in the 

Kalman filter can be estimated by increasing the radius (and therefore the hit box) 

of each car. The uncertainty is kept low through the usage of the roadside trackers. 

If these become unavailable, uncertainty will increase. In such cases, the system 

will not be able to accurately predict impacts and should default to a more 

conservative approach to traffic management, like how current traffic signals 

work. Mathematically, the prediction function can be described as shown in (15) 
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(15) 

Where: 

 is a vector containing the metadata of each car (id, bearing, current speed, 

location) 

 is the number cars. 

 is the output matrix containing the next  instant locations. 

The impact detection function can be described as  
 

 

 

(16) 

Speed adjustments will be determined using a constrained optimization 

technique. The constraint function will be the very same function which predicts 

impacts. In this case study, a Monte Carlo technique was used [19]. The goal of 

the optimization is to find the best speeds at which the vehicles will not collide, 

while avoiding full stops as much as possible. 
 

  

 

(17) 

 

As shown in (17) at each iterative pass in the optimization algorithm, the 

impact detection function will be applied to the computed reference speeds for 

each car. If no impacts are detected, then the computed reference speeds will be 

dispatched to each car. Additional constraints can be added to support speed limits 

and other legal restrictions on the road segment. In some situations, it may be 

impossible to prevent crashes without stopping a car. In such cases, the system 

will try to minimize the number of cars that get a full stop. The cars that entered 

the supervised area first will be given priority and a higher speed. 

5. Case study 

The system was tested using two experimental cars and a track as shown 

in Fig. 4. The application was developed in such way that it allows both 

controlling the physical cars and simulate the flow in a virtual model. It was 

developed in C++ as it interacts naturally with DirectX. The compute shaders 

have been developed in the native DirectX HLSL. The development environment 

is Visual Studio 2019, using the latest C++ toolchains. MATLAB and Excel have 

been used to plot figures and double check the results. At startup, the application 

initializes the DirectX device pointer and its context, compiles the shader code 

from source file and allocated data buffers to exchange data with the shader. Then 

the following instructions are executed in a loop: 

• Get the data and write it to the buffers. Create data views for 

inspecting the results. 
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• Dispatch the compute shader. 

• Dispatch results to cars. 

The test cars, shown in Fig. 4, are based on Arduino and are equipped with 

several sensors which gather all the necessary data for the experiments: speed, 

bearing, positioning. They are also capable of following the road track markers, 

behaving like line follower robots simulating how an autonomous vehicle would 

behave in a real-life scenario.  

 

 
 

Fig. 4. Test car based on Arduino (left), contains sensors for detecting track markers, radio 

communications module for interacting with the system, and a compass for determining movement 

bearing. On the right, example of track markers. 
 

The 2 scenarios are represented in Fig. 5. In the safe scenario, shown in Fig. 

5 left side, the two cars have intersecting paths, but the distance between them 

stays well above the danger limit. At any sampling time, they are far enough from 

each other. Fig. 6 shows the distance between the two cars over time, as computed 

by the simulator stage. 
 

 

 
 

Fig. 5. On the left side, simulation of cars with intersecting trajectory but no collision. When the 

purple car does get in front of the blue car, the blue car is yet to enter the intersection, as shown 

with the colored highlighted predicted positions. On the right side, the simulation example of how 

two cars would collide in the middle of the crossroads. Those figures illustrate how the system 

perceives the movement of cars, by sampling their trajectory at specific time intervals, how it 

detects possible collisions. Each hollow car shape represents the sampled position of a car at after 

a time interval. 
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This can be verified with a simple MATLAB script, plotting the distance 

between the 2 cars, as seen in the figure bellow. The system correctly detects 

distance between the 2 cars as safe, and impacts are highly unlikely. In this 

situation, the system will take no action since the cars can safely pass through the 

conflict area of the intersection with no risk. 
 

 
Fig. 6. The distance over time between the 2 cars in the "no impact" scenario. While the cars get 

close, the distance does not drop below 50m, well above the orange limit of 1m. 

 

In the second test scenario shown in Fig. 5 right side, the 2 cars will cross 

path and will come in dangerously close to each other. The difference between the 

2 scenarios is the speed. In the first scenario, the cars travel at different speeds, so 

they never pass close to each other. In the second scenario, the cars run at the 

same speed, and will therefore crash into each other after about 6 seconds, as the 

projected distance will be well within the crash margin, at about 1m. In the second 

scenario the system will have to adjust the speed of the of the cars to avoid 

impact. The trajectory of the cars is the same as in the first case. 
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Fig. 7. The distance over time between 2 cars that are set to collide after 6 seconds. As the distance 

drops towards 0, an impact is imminent. 

 

As seen in Fig. 7, the system correctly detects the possible impact between 

the 2 cars. The system will need to act and compute new speed references for the 

cars. The function  presented in (17) will return 1, and the system will have to 

compute new reference speeds for both cars. The system can complement 

traditional car on-board AEB implementations, as it has information about the 

traffic, position and direction of other cars which would now be available to on-

board car systems, thus increasing the efficiency of existing safety features. 

As it can optimize speed to avoid impacts, the system allows existing 

infrastructure to support heavier traffic. Since cars will require to cold start less 

often, this will reduce pollution, having a positive impact on the environment [1].  

In comparison to a classical signaling system for a crossroads junction 

with 1 lane for each direction, the system allows up to 4 cars in the intersection, 

while classical traffic management systems, such as a red light, can only allow 2 

cars at maximum. This is achieved by not stopping the cars with intersecting 

paths, but by adjusting speeds so that they narrowly pass (but not crash) by each 

other. 

6. Conclusions 

This paper presented research and results on a novel approach to traffic 

management for automated cars, using a combination of various on-board car 

sensors and a traffic supervisor equipped with a graphics processing unit to 

predict the movement of cars and avoid impacts when going through intersections, 

by computing the future positions of each car using a Kalman filter.  
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The novelty of this research was the use of graphics processing units, 

compute shaders and DirectX to perform the calculations needed to detect 

collisions and perform speed optimizations. This way, the system scales 

horizontally with the numbers of cars in traffic, a single computer system can 

handle thousands of cars, as GPUs are designed to perform mathematical 

operations through hardware accelerated parallel computations.  

5G will be used to handle the data transmission between the traffic 

supervisor and each car. The technology allows low latencies and appropriate 

bandwidth to handle data transfers between the supervisor and thousands of cars 

in traffic. Low uncertainty in the Kalman filter is achieved through fine grained 

positioning systems, combining GPS and roadside car trackers. Fallbacks to lower 

levels of signaling automation can be used in case of system malfunctions, 

communications outages, or bad weather. Although the case study has only 

captured the situation of a single lane crossroad intersection going in straight line 

at 90 degrees angle, the calculations can be adapted to suit any kind of 

intersection and account for turns, complex infrastructure such as bridges and 

passageways. 

By increasing the capacity traffic capacity of existing infrastructure, the 

proposed system has a positive impact on the environment and helps increase 

living conditions and standards in crowded metropolitan areas.  
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