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A NOVEL FEATURE-EXTRACTION ALGORITHM FOR 
EFFICIENT CLASSIFICATION OF TEXTURE IMAGES  

Ionuţ MIRONICĂ1, Radu DOGARU2 

In this paper, a non-linear model is investigated for texture characterization 
and retrieval. The power of our descriptors was validated both in the context of a 
classification system and as part of an information retrieval approach. For this 
purpose, we have used four different texture databases and we have compared our 
descriptor with state of the art algorithms. In most of experiments, our approach has 
archieved best results on most of the recognition and retrieval problems. 
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1. Introduction 

During the last 20 years Content Based Image Retrieval (CBIR) 
established itself as a domain with an important role in application areas such as 
multimedia database systems. A major part of the work focused on low level 
feature study like texture. Textures can usually be described informally as the 
output of some physical process wherein local structure is repeated seemingly at 
random [1].  

The main purpose of this paper is to show improvements of CBIR systems 
using classification algorithms. We aim to select the best-suited classifiers by 
making a comparison of various classification methods for certain image 
databases. In this paper a novel feature classification is introduced, inspired by 
nonlinear diffusive operators previously used to quantify the degree of 
randomness in an image pattern generated by a 2-dimensional cellular automaton 
[15]. The relevance and advantages of this new feature extraction method for 
texture images classification as required by CBIR (Content Based Image 
Retrieval) systems is extensively investigated through comparisons with other 
methods previously cited in the literature.  A wide set of benchmark image 
databases was selected in order to select the best suited classification method 
(both feature classification and classifier) including the novel feature extraction 
method called next a Nonlinear Diffusive Transform (NDT).  
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In addition to performance aspects (such as the percentage of correctly 
classified patterns), efficiency and implementation complexity issues are 
considered. In this respect it appears that our novel transform allows to obtain 
good classification performance while having a reduced implementation 
complexity. 

The paper is organized as follows:  we describe in Section II the previous 
work for texture detection content-based image retrieval systems, including a brief 
discussion about classical descriptors. Then we describe a novel approach for 
texture detection (Section III). Experiments are discussed in Section IV and 
conclusions are presented in Section V. 

2. Previous Work 

One of the earliest and most successful texture descriptors is the run-
length matrix. From the original run-length matrix p(i; j), many numerical texture 
measures can be computed. Galloway [2], Chu [3] and Dasarathy [4] have 
proposed different sets of original features. 

A co-occurrence matrix [5] or co-occurrence distribution is a matrix or 
distribution that is defined over an image to be the distribution of co-occurring 
values at a given offset. Mathematically, a co-occurrence matrix C is defined over 
an image I (with m and n dimensions), parameterized by an offset (dx,dy), as: 
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The 'value' of the image originally referred to the grayscale value of the 
specified pixel. The value could be anything, from a binary on/off value to 32-bit 
color and beyond. 

Image moments [6] provide a measurement for color similarity between 
images. There are three central moments of an image's color distribution: mean, 
standard deviation and skewness. 

The simplest non-parametric approach for density estimation is histogram 
calculation [7]. Color Histogram is a representation of the distribution of colors in 
an image.  

Color Coherence Vectors [8] represent the degree to which pixels of that 
color are members of large similarly-colored regions. Computing color coherence 
vectors involves two main steps: 

 - use a mean filter to eliminate small variations between adjacent pixels 
(using an eight per eight mask) 

 - quantify the color space (HSV) into 24 channels (16 for Hue, 4 for 
Saturation and 4 to Value) 

 - classify pixel as coherent or incoherent and create two histograms (2 x 
24 features). A coherent pixel is part of a large group of pixels of the same color 
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(all adjacent pixel have the same color), while an incoherent point represent an 
edge pixel. 

The corelogram [9] of a gray-scale image I is defined for ][],[, ndmji ∈∈  
as: 
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where Pr is the probability of appearance for two pixels ( 21 , pp ) having similar 

colors cjI , and distance between these two pixels is equal to d. 
The edge histogram descriptor (EHD) represents the local edge 

distribution by dividing image space into 4×4 sub images and representing the 
local distribution of each sub image by a histogram. In the sense of generating 
histograms, edges in all sub images are categorized into five types: vertical, 
horizontal, diagonal and no directional edges (namely edges with no particular 
directionality), resulting in a total of 5 × 16 = 80 histogram bins [10]. 

The Homogenous Texture Descriptor [11] describes directionality, 
coarseness, and regularity of patterns in images and is most suitable for a 
quantitative characterization of texture that has homogenous properties. It 
provides a quantitative representation using 62 numbers (quantified to 8 bits each) 
that is useful for similarity retrieval. The extraction is done as follows: the image 
is first filtered with a bank of orientation and scale tuned filters using Gabor 
filters. The first and the second moments of the energy in the frequency domain 
from the corresponding sub-bands are then used as the components of the texture 
descriptor. 

3. Proposed Non-Linear Method 

Our approach is inspired by the Cellular Automata Theory [12]. A cellular 
automaton [13] is a discrete model studied in computability theory, mathematics, 
physics, complexity science, theoretical biology and microstructure modeling. It 
consists of a regular grid of cells, each in one of a finite number of states, such as 
"On" and "Off" (in contrast to a coupled map lattice). The grid can be in any finite 
number of dimensions. For each cell, a set of cells called its neighborhood 
(usually including the cell itself) is defined relative to the specified cell. For 
example, the neighborhood of a cell might be defined as the set of cells a distance 
of two or more from the cell.  

The first task is to transform the image in a binary lattice. To create binary 
images, we use a thresholding process with a various number of limits. During the 
thresholding process, individual pixels in an image are marked as "object" pixels 
if their value is greater than some threshold value (assuming an object to be 
brighter than the background) and as "background" pixels otherwise. We have 
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used in our experiments a fixed number of equally spaced thresholds (from one to 
64 thresholds)  

Using these thresholds, we have extracted a number of binary images. For 
every binary image, we have extracted two features using the following formula: 
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where M and N are the image width and height and F(i,j) is a kernel function, 
computed on current pixel neighborhood (Fig. 1).  The kernel function is defines 
as: 
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where jiN ,  is the 3x3 neighborhood centered around the (i,j) location, ( )kI ji ,  is a 
pixel value at location k (k=1..9) in the neighborhood centered on (i,,j) and )(kA  
is one of the 3x3 template matrices presented in Fig. 1.   

 
Fig. 1. 3x3 neighborhood for kernel function  

 
There are a high number of possible functions that can be used. For 

example, using the von Neumann neighborhood it is possible to have as many as 
29322 10429522

5

⋅≅=  different cell genes, which makes searching emergent 
phenomena a time-consuming process. We have been tested a reduced number of 
possibilities, namely six variants of functions (a – to f in Fig.1), using 3x3 
neighborhood. These functions are similar to kernels used for edge detection 
(Prewitt, Sobel, the Laplacian operator and Robert’s cross operator) [26]. Fig. 2 
presents the templates used in our experiment. 
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Fig. 2. Six templates for computing nonlinear parameters  

 
It was demonstrated in [28], that a value of C close to 1 indicates a 

homogeneous state while a value of C=0.5 is a measure of a perfect (high 
frequency) chaotic pattern. At the other extreme C=0 indicates the presence of 
perfectly regular chess-board pattern. Consequently, such synthetic indicators as 
C are strongly correlated with the human perception. Using various A templates 
ensures that various directions of interests in the image are better characterized.  

To improve the feature performance, we applied the calculation of C 
(using equation 3) for to different image scales (s=1, 0.5, 0.25, 0.125 and 0.0625).  
The distance between two neighbor pixels (where template matrices A apply) is 
respectively d=1/s. The reason of using different image scales is that computing 
different texture resolution, we compute different coarseness: one macro texture 
of high coarseness and one micro texture of low coarseness. Using 7 thresholds, 3 
scales with two template matrices each (left and right in Fig.1) per each scale 
results in a 42-dimensional feature vector associated with an image.  

4. Experimental Results 

Four image databases are used in our experiments (Fig. 3): 
 - The Vistex database with 900 images (9 images per class [23].  
 - The UIUC[22] database with 25 texture classes, 40 samples each. All 

images are in grayscale JPG format, 640x480 pixels. 
 - The Brodatz's photo album (Brodatz 1966) [24] is a well known 

benchmark database used to evaluate texture recognition algorithms. It contains 
111 different texture classes. For each class, it is represented by only one sample, 
which is then divided into 9 sub-images non-overlappingly to form the database. 
Thus, there are 999 images altogether with resolution of 215x215. 

 - The KTH-Tips [25] database which contains 10 textures under different 
illumination, pose and scale (81 images per class) 

As far as texture descriptors are concerned, we test several state of the art 
approaches from the existing literature which are known to be successfully 
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employed to the CBIR task, namely: GrayScale Histogram, Color Coherence 
Vectors, Image Moments, Cooccurrence Matrix texture, Auto-Correlogram, Run-
Lenght Matrix, Edge Histogram Descriptor and Homogeneous Texture 
Descriptor.  

 
Fig. 3. Example of  images used in experiment : first line – The Brodatz's database, Vistex 

database in second line, UIUC database in third line and KTH database in fourth line 
 
To assess the retrieval performance, we have used several measures. First, 

we have computed the classical precision and recall chart. Precision is the fraction 
of retrieved documents that are relevant to the search (measure of false positives) 
and recall is the fraction of the documents that are relevant to the query that are 
successfully retrieved (measure of false negatives). The system retrieval response 
is assessed with the precision-recall curves which plots the precision for all the 
recall rates that can be obtained according to the current image class population.  

Second, to provide a global measure of performance we determine the 
overall Mean Average Precision - MAP as the area under the uninterpolated 
precision-recall curve (http://trec.nist.gov/trec_eval/). The evaluation consists of 
systematically considering each image from the database as query image and 
retrieving the remainder of the database accordingly. Precision, recall and MAP 
are averaged over all retrieval experiments. Experiments were conducted for 
various browsing windows, ranging from 9 to 40 images, depending the number 
of textures per class.  

4.1. Choosing the algorithm’s parameters 

In the first experiment we have analyzed the influence of the parameters 
on the system performance. We have compared various strategies for each test 
database. We have varied the number of the threshold (using only one image 
scale) in Fig. 4, the number of the image scales using only one threshold in Fig. 5 
and we have tested various kernel functions performance in Fig. 6. 
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By plotting the chart of MAP performance against the threshold values, 
the first thresholds will add much performance, but at some point the marginal 
gain will drop, giving an angle in the graph. We have the same scenario, by 
varying the number of images scales. Using more than three image scales, it will 
not add more information. It can be observed in Fig. 5, that the performance of 
various kernel functions is similar in most cases, with a little increase of 
performance using function kernel a.  The lowest performance is obtained using 
the second kernel functions.  

In our experiments, we have chosen a number of seven to fifteen 
thresholds with three image scales and the kernel function a). We have chosed this 
combinations of kernels, number of thresholds and image scales because it 
provide a reasonable balance between MAP performance and descriptors 
computational complexity. Adding a large number of thresholds and image scales 
will not improve the algoritm performance with more than one percent. If we use 
a smaller descriptor length, it will decrease the algorithm performance with more 
then 5 percents. 

 
Fig. 4. Mean Average Precision using different number of thresholds (using only one image scale) 
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Fig. 5. Mean Average Precision using different number of image scales (using only one threshold) 

 

 
Fig. 6. Mean Average Precision using different nonlinear kernel templates ( 1 - UIUC database, 2 - 

Brodatz's database, 3 - KTH database and 4 - Vistex) 

4.2. Retrieval Experiment 

In Fig. 7, we present the precision-recall curves computed for all four 
image test databases.  
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We compare our method (red dotted line) with the following state of the 
art algorithms: GrayScale Histogram (black dotted line), Color Coherence Vectors 
(yellow dashed line), Image Moments (magenta dashed line), Cooccurrence 
Matrix texture (green dashed line), Auto-Correlogram (green dotted line), Run-
Length Matrix (cyan dashed line), Edge Histogram Descriptor (blue dashed line), 
and Homogeneous Texture Descriptor (black dashed line). The best MAP results 
are presented in Table 1. 

Table 1 
Improvement achieved by the proposed algorithm (MAP values) 

Database 1st MAP 2nd MAP 3rd MAP 

KTH 31.95% - Our Approach 30.34% - HTD 23.43% - CCV 
Brodatz 60.58% - HTD 59.94% - Our Approach 39.45% - CCV 
UIUC 33.43% - Our Approach 32.56% - CCV 24.90% - Coocurence Matrix 
Vistex 66.33% - HTD 56.73% - Our Approach 48.05% - Coocurence Matrix 

 
Discussion on the results. We have obtained the best results with our 

approach in two cases: for the KTH and UIUC database, and the second position 
on Brodatz and Vistex database. We have also obtained good results using the 
Homogenous Texture Descriptor, Color Coherence vectors and Coocurence 
Matrix. The worst performance was obtained using the Image Moments, Edge 
Histogram Descriptor and Run-Length Matrix. In most of cases the performance 
of our algorithm is double than of these algorithms. Better results are obtained 
with GrayScale Histogram and Auto-Corelogram, but the differences are greater 
too (from 10% to 25 %). 

The computational complexity and descriptors sizes are presented in 
Table. 2. Our approach has the lowest computational complexity, equal to 
Histogram, CCV, EHD and image moments. Homogenous Texture Descriptor has 
the biggest computational complexity (O( 2n log(n))), and  Run Length Matrix, 
Auto Corelogram and Coocurence matrix have a bigger complexity of the 
algorithm than our approach. Another criterion for feature comparison is the 
descriptor length. Our descriptor has 42 features (three scales and seven 
thresholds). Four descriptors have smaller sizes ( Histogram, Image Moments, 
Run Length Matrix and Coocurence Matrix), while Color Coherence Vectors,  
Auto-Corelogram, Homogenous Texture Descriptor  and Edge Histogram 
Descriptor do not. 

 
Table 2 

Comparation of Computational complexity and descriptor size 

Algorithm Computational complexity Descriptor size 

Histogram O(n) 24 
CCV O(n) 48 
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Image moments O(n)  9 
Run Length Matrix O(n) + O(k·m) – where k is the number of 

colors and m the maxim size of run-length 
23 

Auto Corelogram O(n) + O(k·m) – where k is the number of 
colors and m the number of neighborhood 

96 

Coocurence matrix O(n) + O( 2k ) where k is the number of image 
colors 

16 

EHD O(n) 80 
HTD O( 2n log(n)) 64 

Our Approach O(n) 42 

 
Fig. 7. Precision-recall curves for different content descriptors and test databases. 

4.3. Recognition Experiment 

In the second experiment, we address texture categorization from the 
perspective of machine learning techniques. We attempt to regroup the data 
according to related clusters. For classification we use the OpenCV [19] 
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environment which provides many implementations of the classification 
algorithms. 

We have tested the following methods: Naive Bayes [16], Nearest 
Neighbor [18] to SVM [17] (linear and RBF kernel), Random Trees [19], 
Gradient Boosted Trees[20], Extremely Random Forest [21]. Method parameters 
were tuned based on preliminary experimentations. 

As the choice of training data may distort the accuracy of the results, we 
use a cross validation approach. The data set is split into train and test sets. We 
use different values for the percentage split 25% to 75%. To assess performance 
we compute the average precision. 

Discussion on the results. In Figs. 7, 8, 9 and 10 we present the overall 
average correct classification for a selection of seven machine learning techniques 
(the ones providing the most significant results) on the several image databases: 
Brodatz, UIUC, KTH, and Vistex. The global results are very promising. The 
most accurate classification is obtained when using our approach in combination 
with Extremely Random Forests, Random Trees, Naive Bayes and SVM with 
RBF kernel. The highest average precision is up to 97% while the average of 
maxim correct classification is up to 92%. In terms of classification technique, the 
most accurate proves to be a the Extremely Random Forests, followed very 
closely by SVM with RBF kernel and further Random Trees, Naive Bayes, 
Nearest Neighbor, Gradient Boosted Trees and finally SVM with linear kernel.  

 
Fig. 8. Classification results using different classification methods (Naive Bayes, Nearest 

Neighbor, SVM linear, SVM with RBF kernel, Random Trees, Gradient Boosted Trees, Extremely 
Random Forest) and content descriptors( 1.Histogram, 2. CCV, 3. Image Moments, 4. Run Lenght 

Matrix, 5. AutoCorrelogram, 6. Coocurence Matrix, 7. EHD, 8. HTD, 9.Our Approach) on 
Brodatz database 
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Fig. 9. Classification results using different classification methods (Naive Bayes, KNN, SVM 

linear, SVM with RBF, Random Trees, Gradient Boosted Trees, Extremely Random Forest) and 
content descriptors (1.Histogram, 2. CCV, 3. Image Moments, 4. Run Lenght Matrix, 5. 

AutoCorrelogram, 6. Coocurence Matrix, 7. EHD, 8. HTD, 9.Our Approach) on UIUC database 

 
Fig. 10. Classification results using different classification methods(: Naive Bayes, Nearest 

Neighbor, SVM linear, SVM with RBF kernel, Random Trees, Gradient Boosted Trees, Extremely 
Random Forest) and content descriptors( 1.Histogram, 2. CCV, 3. Image Moments, 4. Run Lenght 
Matrix, 5. AutoCorrelogram, 6. Coocurence Matrix, 7. EHD, 8. HTD, 9.Our Approach) on KTH 

database 

 
Fig. 11. Classification results using different classification methods (Naive Bayes, Nearest 

Neighbor, SVM linear, SVM with RBF kernel, Random Trees, Gradient Boosted Trees, Extremely 
Random Forest) and content descriptors( 1.Histogram, 2. CCV, 3. Image Moments, 4. Run Lenght 
Matrix, 5. AutoCorrelogram, 6. Coocurence Matrix, 7. EHD, 8. HTD, 9.Our Approach) on Vistex 

database 
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5. Conclusions 

Experimental results on a wide spectrum of benchmark problems suggest 
that given its simplicity, our approach may be a good alternative for texture 
detection and recognition. In most of experiments our approach achieves the best 
results on recognition and retrieval problems. 

Future improvements will mainly consist of fine tuning and adapt the 
method to address a higher diversity of image categories. We will try to 
implement other kernel functions and other threshold strategies. 
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