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A NEW SCALARIZATION FUNCTION AND 
WELL-POSEDNESS OF VECTOR OPTIMIZATION PROBLEM

Sakshi Gupta1 and Manjari Srivastava2

 In this paper, a new scalarization function which is Gerstewitz type and non-
linear is introduced. This function can be used to scalarize not only solid but 
also non-solid optimization problems. A few properties of this newly defined 
function are established. Two types of well-posedness are considered for a 
vector optimization problem (V, f) in terms of its weak effi-cient solutions. 
Using the above function, a scalar problem SOP (V, f) cor-responding to (V, 
f) is considered. Few characterizations of weak minimal solutions of (V, f) in 
terms of solutions of SOP (V, f) are obtained. Equiv-alence of well-posedness 
of (V, f) with that of SOP (V, f) is established. At the end, a characterization 
of well-posedness of (V, f) with respect to level set is given.

Keywords: Vector optimization, Well-posedness, Non-linear scalarization 
function, Weak efficiency.
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1. Introduction

Most of the optimization problems concerned with real-life require the opti-
mization of several functions simultaneously which are popularly called vector
optimization problems. Consider the following vector optimization problem

(V, f) minf(x)

subject to x ∈ V
where f : X → Y and X, Y are real normed linear spaces and V is a non-
empty subset of X.

As all the functions of a vector optimization problem cannot be opti-
mized simultaneously, there are several concepts of optimality which are avail-
able in literature with the help of partial ordering induced by the ordering cones
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in terms of efficient, weak efficient, properly efficient solutions (see [1, 2, 15]).
From a mathematical point of view, the concept of weak efficient solution is
more tractable than efficient solution; whereas efficiency is more important
than weak efficiency for concrete applications.

In literature, different methods have been used to obtain the solu-
tions of (V, f). One of the significant approaches used by many authors is
to study a corresponding dual problem and by establishing duality between
these two problems and concluding about the optimal efficient solution of the
vector optimization problem (V, f), for reference (see [9, 19]). In literature,
we also find that many references are available where the (V, f) is studied for
its various aspects through establishing a corresponding variational inequality
(in short (V I)) for example (see [12, 14]) where the solutions of (V, f) and (V I)
have been connected under certain conditions. Another well-known method
is a scalarization technique in which an optimization problem is converted
into a suitable scalar optimization problem and the solution of the problem
under consideration is obtained through its corresponding scalar optimization
problem, for reference (see [20, 28]). In this paper we use this technique of
scalarization for the problem (V, f). In case of a vector optimization prob-
lem (V, f) different types of linear and non-linear scalarization functions have
been used for converting it into a scalarization problem. It has been found
that, linear scalarization functions are not of much use as they can only be
applied to convex problems having convex separation theorems (see [21] and
the refrences therein). So, to deal with non-convex optimization problems, var-
ious non-linear scalarization functions have been used by many authors (see
[4, 7, 11, 16, 22, 23, 29]).

Gerstewitz scalarization function was introduced by Gerstewitz in 1985
to obtain the solutions of a vector optimization problem by converting it to a
scalar optimization problem using this function. This non-linear scalarization
function is now being frequently used (see [3, 8, 10]). Basic properties of this
function have been investigated and can be found in [25, 26, 27].

In literature, it is observed that the scalarization done by using Ger-
stewitz function can only be applied to solid optimization problems where the
interior of the partial ordering cone is non-empty. There also exist prob-
lems where this interior could be empty. For example, the ordering cone
S = {(x, 0) : x ≥ 0} has an empty interior. To overcome this shortcoming, we
have considered a scalarization function which is Gerstewitz type, non-linear
and is also valid for both solid as well as non-solid optimization problems where
the interior of the ordering cone could be empty.

The concept of well-posedness was first introduced by Tykhonov ([24])
for an unconstrained scalar minimization problems which says that the prob-
lem is Tykhonov well posed if every minimizing sequence converges to the
unique solution of the problem. This notion and its generalizations to vec-
tor optimization problems have been discussed thoroughly in [5, 6] and the
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references therein. The concept of well-posedness plays an important role in
establishing the stability of an optimization problem.

In [21, 29] the relationship between the well-posedness of a vector op-
timization problem and the well-posedness of the associated scalar problem is
investigated. While converting the vector optimization problem to scalar op-
timization problem using the appropriate scalarization technique, it has been
observed that the properties of the well-posedness remain preserved.

In [4, 18, 29] it is observed that the definitions of well-posedness are ap-
plicable only for the vector optimization problems having ordering cone with
non-empty interior and hence are valid only for solid optimization problems.

Motivated by the above approaches, in this paper we have relaxed this
condition that the interior of the ordering cone is non-empty by defining a
Gerstewitz type non-linear scalarization function and used it to scalarize the
considered (V, f). Here, the (V, f) can be both solid as well as non-solid opti-
mization problem. Few properties of this newly defined scalarization function
have been established which ensures that a solution of the associated scalar
optimization problem is a solution to the corresponding vector optimization
problem. Two types of well-posedness have been introduced for (V, f) and one
of them is applicable to both solid and non-solid optimization problems.

This paper, in four sections is organised as follows: In Section 2 we have
given the preliminaries and the basic results required in the sequel. In Section
3 a non-linear scalarization function has been defined and some of its proper-
ties have been investigated like convexity, monotonicity and subadditivity. In
Section 4 two kinds of well-posedness for vector optimization problem (V, f)
are introduced and equivalence between well-posedness of (V, f) and the cor-
responding scalar optimization problem is obtained. Also, a characterization
of well-posedness of (V, f) with respect to level sets is given. Finally, some
conclusions are drawn.

2. Preliminaries

Let K be a closed, convex and pointed cone in Y which introduces a partial
order on Y as follows: Let y1, y2 ∈ Y ; we have

y1 ≤K y2 ⇔ y2 − y1 ∈ K;

y1 <K y2 ⇔ y2 − y1 ∈ intK.

where intK stands for interior of cone K. Recall that a cone K is solid when
interior of cone is non-empty.
Let intK 6= ∅. In [15], an element t ∈ T is a weak minimal element of T ⊆ Y if

(T − t) ∩ (−intK) = ∅.
The set of weakly minimal elements of T is denoted by WMinKT .
Using the above minimality notion of a set, we define the corresponding min-
imality notion of problem (V, f) with respect to the set f(V ) in Y .
A point y ∈ f(V ) is called a weak minimal solution of (V, f) if y ∈WMinKf(V ).
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A point x ∈ V is called an weak efficient solution of (V, f) if f(x) ∈WMinKf(V ).
The set of all the weak efficient solutions of problem (V, f) is given by

WEffK(f, V ) := {x ∈ V : (f(V )− f(x)) ∩ (−intK) = ∅}.

Definition 2.1. A vector-valued function f : A ⊆ X → Y where, A is a
non-empty convex subset of X is said to be
(i) K-convex, if for all x, y ∈ A, t ∈ [0, 1]

f(tx+ (1− t)y) ≤K tf(x) + (1− t)f(y).

(ii) strictly K-convex, if intK 6= ∅ and for all x, y ∈ A, x 6= y, t ∈]0, 1[

f(tx+ (1− t)y) <K tf(x) + (1− t)f(y).

Definition 2.2. The level set of f at a point y ∈ Y is denoted by L(y) and is
given by L(y) = {x ∈ V : f(x) ≤K y}.

Remark 2.1. [8] For a function g : X → R ∪ {±∞} the epigraph and domain
are defined as

epig := {(x, p) ∈ X × R : g(x) ≤ p} and domg := {x ∈ X : g(x) < +∞}.
The function g is said to be proper if domg 6= ∅ and g > −∞ and convex if
epig is a convex set.

Consider a scalar problem

(S, h) minh(x)

subject to x ∈ S,
where h : X → R and S is a non-empty subset of X. The set of all solutions
of (S, h) is denoted by argmin(S, h).

Definition 2.3. [13] The function h is said to be
(i) monotonically increasing on S, if for every a ∈ S

a ∈ S, a ≤K a ⇒ h(a) ≤ h(a).

(ii) strictly monotonically increasing on S, if for every a ∈ S
a ∈ S \ {a}, a <K a ⇒ h(a) < h(a).

(iii) strongly monotonically increasing on S, if for every a ∈ S
a ∈ S, a 6= a, a ≤K a ⇒ h(a) < h(a).

Recall that a sequence {xk} in S is called minimizing sequence for the
problem (S, h) if h(xk)→ h(x0) where h(x0) = inf

x∈S
h(x).

Definition 2.4. The problem (S, h) is said to be Tykhonov well-posed if and
only if
(i) it has a unique solution,

(ii) each minimizing sequence converges to argmin(S, h).
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Proposition 2.1. [4] Let S be a convex set and h : S ⊆ X → R be a con-
vex function. If f has a unique global minimum point over S, then (S, h) is
Tykhonov well-posed.

Definition 2.5. The problem (S, h) is said to be well-posed in the generalized
sense if and only if
(i) argmin(S, h) 6= ∅,

(ii) for each minimizing sequence {xk}, there exists a subsequence {xkn} con-
verging to some point of argmin(S, h).

Remark 2.2. If argmin(S, h) is singleton then (S, h) is Tykhonov well-posed
if and only if it is well-posed in the generalised sense.

For vector optimization problems several techniques can be used to check
the well-posedness. One of such technique is scalarization. Many authors used
Gerstewitz function to get scalarization in terms of well-posedness. In 1985,
Gerstewitz introduced the scalarization function ψM := ψM,l0 : Y → R,

ψM,l0(y) := inf{t ∈ R : y ∈ tl0 +M} (1)

where M is a non-empty subset and l0 6= ∅ is an element of a real linear space
for vector optimization. In [7] the properties of the function (1) are derived.
Luc [17] had given the following scalarizing function for vectors, y ∈ Y

χ(y) := inf{t ∈ R : y ∈ tk0 +N − intC} (2)

where C is a solid closed convex cone and N is a subset of a topological vector
space and k0 ∈ C. The scalarizing function in (2) is not applicable for the
non-solid problems. To overcome this, we modified this function for both solid
and non-solid problems.

3. Gerstewitz’s Type Scalarization Function

In this section, we introduce a non-linear Gerstewitz type scalarizing function
for (V, f) and establish certain properties of this function like convexity and
monotonicity. Throughout this paper, B0 denotes a closed unit ball with unit
radius and center at origin and R+ represents the set of non-negative real
numbers. Let A be any nonempty set in Y .

Definition 3.1. Let a ∈ A be a fixed point. We define the non-linear scalar
function ϕB0,a

: Y → R+ for every y ∈ Y as

ϕB0,a
(y) = inf{t ∈ R+ : y ∈ tB0 + a−K}.

The function ϕB0,a
is proper and well-defined.

Now, we give an example to illustrate Definition 3.1.

Example 3.1. Let Y = R2, K = {(x, y) : x ≤ 0, y ≤ 0} and A = {(0, y) : y ∈
R+}. Take a = (0, 1) ∈ A. Then, for y = (1, 1

2
), ϕB0,(0,1)((1,

1
2
)) = inf{t ∈

R+ : (1, 1
2
) ∈ tB0 + (0, 1)−K} = inf{t ∈ R+ : (1, 1

2
) ∈ B((0, 1), t)−K}.
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Figure 1: ϕB0,(0,1)((1, 
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Figure 2: ϕB0,(0,1)((1, 
1
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Figure 3: ϕB0,(0,1)((1, 
1
2

)) for t = 1

As illustrated in Figures, clearly for t < 1
2

the point y = (1, 1
2
) does not belong

to the set B((0, 1), t)−K but for t ≥ 1
2

the point y = (1, 1
2
) belongs to the set

B((0, 1), t) − K. Therefore, ϕB0,(0,1)((1,
1
2
)) = 1

2
. Similarly, it can be checked

that ϕB0,(0,1)((1, 1)) = 0.

Proposition 3.1. Let ε > 0. For every a ∈ A, y ∈ Y and λ ∈ R+, we have
the following
(i) ϕB0,a

(y) ≤ λ⇔ y ∈ (λ+ ε)B0 + a−K;

(ii) ϕB0,a
(y) = λ⇒ y ∈ (λ+ ε)B0 + a−K;

(iii) For λ 6= 0, ϕB0,a
(y) < λ⇐ y ∈ λB0 + a− intK;

(iv) ϕB0,a
(y) > λ⇔ y /∈ (λ+ ε)B0 + a−K;

(v) y /∈ (λ+ ε)B0 + a−K ⇒ ϕB0,a
(y) 6= λ.

Proof. Let S = {t ∈ R+ : y ∈ tB0 + a−K}. So, ϕB0,a
(y) = inf S = µ (say).
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(i) Firstly, let ϕB0,a
(y) ≤ λ i.e. µ ≤ λ.

Then, two cases arise:
Case (i) µ < λ.
Then, there exists t ∈ S such that t < λ which gives

y ∈ tB0 + a−K ⊂ λB0 + a−K ⊆ (λ+ ε)B0 + a−K for every ε > 0.

Case (ii) µ = λ.
Then, for every ε > 0 there exists t ∈ S such that t < (λ+ ε) which gives

y ∈ tB0 + a−K ⊆ (λ+ ε)B0 + a−K for every ε > 0.

Conversly, let y ∈ (λ+ ε)B0 + a−K for every ε > 0.
This implies, inf S ≤ (λ+ ε) for every ε > 0. Hence, ϕB0,a

(y) ≤ λ.
(ii) Firstly, let ϕB0,a

(y) = λ which gives µ = λ. Then, it follows from (i).

(iii) For λ 6= 0. Let y ∈ λB0 + a− intK.
Then there exists some ε > 0 such that

y ∈ (λ− ε)B0 + a− intK ⊂ (λ− ε)B0 + a−K,

which gives ϕB0,a
(y) ≤ λ− ε < λ.

(iv) The assertion follows from (i).
(v) The assertion follows from (ii).

�

Remark 3.1. The converse of the part (ii) of Proposition 3.1 need not be
true. This remark is illustrated in the following example.

Example 3.2. Let Y = R2, a = (1, 1), y = (−1,−1) and K = {(x, y) ∈ R2 :
x ≤ 0, y ≤ 0}. If we choose λ = 4 then clearly y ∈ (λ+ ε)B0 + a−K for any
ε > 0. But it can be seen easily that ϕB0,a

(y) = 2
√

2 6= 4 = λ.

Remark 3.2. In particular, for λ = 0 and for every ε > 0 in Proposition 3.1
we get,

ϕB0,a
(y) = 0⇔ y ∈ εB0 + a−K.

Proposition 3.2. For any a ∈ A and y1, y2 ∈ Y the function ϕB0,a
has the

following properties:
(i) ϕB0,a

is monotonically increasing.

i.e., y1 ≤K y2 implies ϕB0,a
(y1) ≤ ϕB0,a

(y2).

(ii) ϕB0,a
is convex.

i.e., for 0 ≤ λ ≤ 1, ϕB0,a
(λy1 + (1− λ)y2) ≤ λϕB0,a

(y1) + (1− λ)ϕB0,a
(y2).

(iii) If ϕB0,0
(y1) ≤ t1 and ϕB0,0

(y2) ≤ t2. Then, ϕB0,0
(y1 + y2) ≤ t1 + t2.

(iv) ϕB0,0
is positively homogeneous.

i.e., for α > 0, ϕB0,0
(αy) = αϕB0,0

(y).
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(v) ϕB0,0
is subadditive.

i.e., ϕB0,0
(y1 + y2) ≤ ϕB0,0

(y1) + ϕB0,0
(y2).

(vi) For intK 6= ∅. ϕB0,a
is strictly monotone.

i.e., y1 ≥intK y2 implies ϕB0,a
(y1) > ϕB0,a

(y2).

Proof. (i) Let y1 ∈ y2 −K for any y1, y2 ∈ Y.
Let S1 = {t1 ∈ R+ : y1 ∈ t1B0 + a − K} and S2 = {t2 ∈ R+ : y2 ∈
t2B0 + a−K}.
For t ∈ S2, we have y2 ∈ tB0 + a − K. Thus, y1 ∈ tB0 + a − K gives
t ∈ S1.
Therefore, inf S1 ≤ inf S2. Hence, ϕB0,a

(y1) ≤ ϕB0,a
(y2).

(ii) To prove the convexity of ϕB0,a
, we will show that epiϕB0,a

is convex.
Let (y1, t1), (y2, t2) ∈ epiϕB0,a

(y) and let 0 ≤ λ ≤ 1.

ϕB0,a
(y1) ≤ t1 and ϕB0,a

(y2) ≤ t2 gives y1 ∈ (t1 + ε1)B0 + a − K and

y2 ∈ (t2 + ε2)B0 + a−K, for ε1, ε2 > 0. Choose ε = max{ε1, ε2}.
Therefore, y1 ∈ (t1 + ε)B0 + a−K and y2 ∈ (t2 + ε)B0 + a−K, for ε > 0.
Thus, λy1 + (1− λ)y2 ∈ (λt1 + (1− λ)t2 + ε)B0 + a−K, for ε > 0.
Since above equation is true for every ε > 0. In Particular, choose ε = 1

n
.

Thus, we get λy1 + (1− λ)y2 ∈ (λt1 + (1− λ)t2 + 1
n
)B0 + a−K.

We can always find a sequence {xn} ∈ 1
n
B0, for every n such that {xn} →

0 as n→∞.
Therefore, λy1 + (1− λ)y2 ∈ (λt1 + (1− λ)t2)B0 + a−K.
Hence, ϕB0,a

(λy1 + (1− λ)y2) ≤ λt1 + (1− λ)t2.

(iii) ϕB0,0
(y1) ≤ t1 and ϕB0,0

(y2) ≤ t2 gives y1 ∈ (t1 + ε1)B0 − K and y2 ∈
(t2 + ε2)B0 −K, for ε1, ε2 > 0. Choose ε = max{ε1, ε2}.
Therefore, y1 ∈ (t1 + ε)B0 −K and y2 ∈ (t2 + ε)B0 −K, for ε > 0.
On adding, we get y1 + y2 ∈ (t1 + t2 + 2ε)B0−K, for ε > 0, which implies
y1 + y2 ∈ (t1 + t2)B0 −K.
Thus, inf{t ∈ R+ : y1 + y2 ∈ tB0 −K} ≤ t1 + t2. Hence, ϕB0,0

(y1 + y2) ≤
t1 + t2.

(iv) For α > 0. Consider,

ϕB0,0
(αy) = inf{t ∈ R+ : αy ∈ tB0 −K}

= α inf{ t
α
∈ R+ : y ∈ t

α
B0 −K}

= α inf{λ ∈ R+ : y ∈ λB0 −K}
= α ϕB0,0

(y).

(v) Let ϕB0,0
(y1) = t1 and ϕB0,0

(y2) = t2 gives y1 ∈ (t1 + ε1)B0 − K and

y2 ∈ (t2 + ε2)B0 −K for ε1, ε2 > 0. Choose ε = max{ε1, ε2}.
Therefore, y1 ∈ (t1 + ε)B0 −K and y2 ∈ (t2 + ε)B0 −K for ε > 0.
Thus, y1 + y2 ∈ (t1 + t2 + 2ε)B0 −K for ε > 0.
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Hence, inf{t ∈ R+ : y1 + y2 ∈ tB0 −K} ≤ t1 + t2 gives ϕB0,0
(y1 + y2) ≤

t1 + t2 = ϕB0,0
(y1) + ϕB0,0

(y2).
(vi) Let y1 ∈ y2 + intK. Set r = ϕB0,a

(y1). As

y2 ∈ y1 − intK

⊆ rB0 + a−K − intK

⊆ rB0 + a− intK.

Therefore, by Proposition 3.1 (v), we have ϕB0,a
(y2) < r = ϕB0,a

(y1).
�

Note 1. We note that the function ϕB0,a
(y) is not strongly monotone. It is 

for this reason that the function ϕB0,a
(y) is more useful in dealing with weak 

minimal points.

Example 3.3. Let Y = R2, K = {(x, y) : x ≤ 0, y ≤ 0} and A = {(0, y) : y ∈ 
R+}. Take a = (0, 0) ∈ A. Therefore, for y1 = (0, 4) and y2 = (0, 6) we have 
y1 − y2 ∈ K \ {(0, 0)} but ϕB0,(0,0)(y1) = 0 = ϕB0,(0,0)(y2). Hence, the function 
ϕB0,a

(y) is not strongly monotone.

    4. Well-posedness of (V, f)

In this section, we introduce two types of well-posedness for vector optimization 
problem (V, f) and establish an equivalence between well-posedness of vector 
optimization problem (V, f) and well-posedness of scalar optimization problem 
which is given using Gerstewitz’s type scalarization function defined in previous 
section. Throughout this section, we assume that WEffK(f, V ) is non-empty 
set.
Consider the following scalar optimization problem

SOP (V, f) min(ϕB0,f(x0) ◦ f)(x)

subject to x ∈ V,

where (ϕB0,f(x0) ◦ f)(x) = inf{t ∈ R+ : f(x) ∈ tB0 + f(x0)−K}, for all x ∈ V
and x0 ∈ WEffK(f, V ). For the sake of convenience, throughout this section
we denote (ϕB0,f(x0) ◦ f)(x) by (ϕf(x0) ◦ f)(x) and the solutions of SOP (V, f)

is denoted by argmin(V, ϕf(x0) ◦ f).

Remark 4.1. One may observe that, (ϕf(x0) ◦ f)(x) ≥ 0 for all x ∈ V and the
optimal value is always zero. Also, x0 ∈ argmin(V, ϕf(x0) ◦ f).

Theorem 4.1. For any x0 ∈WEffK(f, V ).

argmin(V, ϕf(x0) ◦ f) ⊆WEffK(f, V ).

Proof. Let x ∈ argmin(V, ϕf(x0) ◦ f), then

(ϕf(x0) ◦ f)(x) ≤ (ϕf(x0) ◦ f)(x), ∀x ∈ V.
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Since, ϕf(x0) is a strictly monotone function, we deduce that

f(x)− f(x) /∈ −intK, ∀x ∈ V.

This implies that x ∈WEffK(f, V ). So,

argmin(V, ϕf(x0) ◦ f) ⊆WEffK(f, V ).

�

It can be easily varified that every weak efficient solution of (V, f) is an
optimal solution of SOP (V, f).

Theorem 4.2.
⋃
x0∈WEffK(f,V ) argmin(V, ϕf(x0) ◦ f) = WEffK(f, V ).

Theorem 4.2 is illustrated with the following example.

Example 4.1. Let X = R, Y = R2, V = [0,∞) and K = {(x, y) : x ≥ 0, y ≥
0}. Define f : X → Y by

f(x) =

{
(x, x(2− x)), if 0 ≤ x ≤ 1,

(x, 1) if x ≥ 1

It can be easily seen from the figure that for x = 0, (f(V )−f(0))∩(−intK) = ∅
and for any x 6= 0, (f(V ) − f(x)) ∩ (−intK) 6= ∅. Therefore, WEffK(f, V ) =
{0}.

Graphical representation of f(x)
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Now,

(ϕB0,f(x0) ◦ f)(x) = (ϕB0,(0,0) ◦ f)(x)

= inf{t ∈ R+ : f(x) ∈ tB0 + (0, 0)−K}
= inf{t ∈ R+ : f(x) ∈ tB0 −K}.

We observe that the function (ϕB0,(0,0) ◦ f)(x) is nothing but the distance of
each point of V from the origin. So,

(ϕB0,(0,0) ◦ f)(x) =

{
x
√
x2 − 4x+ 5, if 0 ≤ x ≤ 1,√
x2 + 1, if x ≥ 1.

Also, argmin(V, ϕ(0,0) ◦ f) = {0}. Hence, WEffK(f, V ) = argmin(V, ϕ(0,0) ◦ f).

In the following proposition, we show that some properties of function
f are inherited to the function ϕf(x0) ◦ f.
Proposition 4.1. Let V ⊆ X be a convex set. The following holds:
(i) If f is K-convex on V then ϕf(x0) ◦ f is convex for all x0 ∈WEffK(f, V ).

(ii) If f is strictly K-convex on V then ϕf(x0) ◦ f is strictly convex for all
x0 ∈WEffK(f, V ).

Proof. (i) Let x1, x2 ∈ V and 0 ≤ µ ≤ 1 be given. Since, f is K-convex, we
have

f(µx1 + (1− µ)x2) ≤K µf(x1) + (1− µ)f(x2).

By the monotonicity and convexity of ϕf(x0), we have

ϕf(x0) ◦ f(µx1 + (1− µ)x2) ≤K ϕf(x0)(µf(x1) + (1− µ)f(x2))

≤K µ ϕf(x0) ◦ f(x1) + (1− µ)ϕf(x0) ◦ f(x2).

Hence, ϕf(x0) ◦ f is convex for all x0 ∈WEffK(f, V ).

(ii) It follows by using the same reasoning as part (i).

�
We now give the definitions of well-posedness for (V, f).

Definition 4.1. Let x0 ∈WEffK(f, V ).
A sequence {xn} in V is called B0-minimizing sequence at x0 to the problem
(V, f) if for every positive integer n
(i) there exists a sequence {tn}, tn ≥ 0 and tn → 0,

(ii) f(xn) ∈ tnB0 + f(x0)−K.

Definition 4.2. The problem (V, f) is said to be B0-well-posed at x0 ∈WEffK(f, V )
if for each B0-minimizing sequence {xn} at x0, we have xn → x0.

Definition 4.3. The problem (V, f) is said to be L-B0-well-posed at x0 ∈
WEffK(f, V ) if for each B0-minimizing sequence {xn} at x0 there exists a
subsequence {xnk

} of {xn} such that d(xnk
,WEffK(f, V ))→ 0.
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The following example gives illustration of the above definitions.

Example 4.2. Let X = R, Y = R2, V = [0,∞) and K = {(x, y) : x ≥ 0, y ≥
0}. Define f : X → Y by

f(x) =

{
(x, 0), if 0 ≤ x ≤ 1,

(x, x− 1), if x > 1.

Here, WMinKf(V ) = {(x, 0) : 0 ≤ x ≤ 1} and WEffK(f, V ) = [0, 1]. It can
be easily checked that the (V, f) is B0-well-posed as well as L-B0-well-posed at
x0 = 0.

Example 4.3. Let X = R, Y = R2 and K = {(x, y) : x ≥ 0, y ≥ 0}.
(i) Let V = [0, 2] and define f : X → Y by

f(x) =

{
(x, x3), if 0 ≤ x ≤ 1,

(x, x), if 1 ≤ x ≤ 2.

Here, WMinKf(V ) = {(0, 0)} and WEffK(f, V ) = {0}.
(ii) Let V = [−1, 2] and define f : X → Y by

f(x) =

{
(x, x+ 1), if − 1 ≤ x ≤ 1,

(x, 2), if 1 ≤ x ≤ 2.

Here, WMinKf(V ) = {(−1, 0)} and WEffK(f, V ) = {−1}.
It can be observed that the (V, f) is neither B0-well-posed nor L-B0-well-
posed.

In next theorem, the relation between B0-well-posedness and L-B0-well-
posedness is given.

Theorem 4.3. Let x0 ∈ WEffK(f, V ). If the problem (V, f) is B0-well-posed
at x0 then it is L-B0-well-posed at x0.

Proof. The proof follows from the definition.

Remark 4.2. The converse of above theorem need not be always true.

The following example shows that the converse of Theorem 4.3 is not
always true.

Example 4.4. Let V = [−1, 1] and define f : R→ R2 by

f(x) =

{
(x,−(x2 − 1)), if − 1 ≤ x ≤ 0,

(x, 1), if 0 ≤ x ≤ 1.

We observe that when K = {(x, y) : x ≤ 0, y ≤ 0}.
WMinKf(V ) = {(x, 1) : 0 ≤ x ≤ 1}

and
WEffK(f, V ) = [0, 1].
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It can be seen that the (V, f) is L-B0-well-posed but not B0-well-posed at x0 =
1.

The following theorems characterizes B0 and L-B0-well-posedness of
(V, f) in terms of well-posedness of SOP (V, f).

Theorem 4.4. Suppose that x0 ∈ WEffK(f, V ). The problem (V, f) is B0-
well-posed at x0 if and only if the problem SOP (V, f) is Tykhonov well-posed.

Proof. Suppose that, (V, f) is B0-well-posed at x0 and {xn} be a sequence in
V such that (ϕf(x0) ◦ f)(xn)→ inf

x∈V
(ϕf(x0) ◦ f)(x) = 0.

Let tn = (ϕf(x0)◦f)(xn) ≥ 0, tn → 0. Define εn = tn+1/n , then εn ≥ 0, εn → 0

and f(xn) ∈ εnB0 + f(x0)−K.
This implies that {xn} is a B0-minimizing sequence at x0 and hence xn →
x0 ∈WEffK(f, V ) ⊆

⋃
x0∈WEffK(f,V ) argmin(V, ϕf(x0) ◦ f).

To verify that x0 is the unique minimizer of the scalar problem SOP (V, f). Let
us assume that y0 is the minimizer of SOP (V, f) such that (ϕf(x0) ◦f)(y0) = 0.

This implies f(y0) ∈ εnB0 + f(x0)−K, for every εn > 0.
Take y0 = xn and εn = 1/n ≥ 0, εn → 0. Therefore, f(xn) ∈ εnB0 + f(y0)−K.
Thus, {xn} is a B0-minimizing sequence and therefore {xn} → y0 but {xn} →
x0, which is a contradiction.
Conversly, let SOP (V, f) is Tykhonov well-posed. Therefore, SOP (V, f) has
unique global minimum. Let argmin(V, ϕf(x0) ◦ f) = {x0}.
Let {xn} ⊆ V be a B0-minimizing sequence of (V, f) at x0. Then for any
positive integer there exists a sequence {tn}, tn ≥ 0, tn → 0 and f(xn) ∈
tnB0 + f(x0)−K.
Therefore, we get 0 ≤ (ϕf(x0) ◦ f)(xn) ≤ tn which gives (ϕf(x0) ◦ f)(xn)→ 0 =
inf
x∈V

(ϕf(x0) ◦ f)(x). Thus, xn → argmin(V, ϕf(x0) ◦ f) = x0. Hence, (V, f) is

B0-well-posed.

Theorem 4.5. Suppose that x0 ∈ WEffK(f, V ). The following statements
hold:
(i) If (V, f) is L-B0-well-posed at x0 then SOP (V, f) is generalised well-posed

provided WEffK(f, V ) is a compact set.
(ii) If SOP (V, f) is generalised well-posed then (V, f) is L-B0-well-posed at

x0.

Proof. (i) Suppose that the problem (V, f) is L-B0-well-posed at x0 and
{xn} is a sequence in V such that (ϕf(x0) ◦ f)(xn)→ inf

x∈V
(ϕf(x0) ◦ f)(x) =

0. Thus, {xn} is a B0-minimizing sequence at x0. So, there exists a
subsequence {xnk

} of {xn} such that d(xnk
,WEffK(f, V ))→ 0. Using the

compactness of WEffK(f, V ) there exists a subsequence {xnkl
} of {xnk

}
such that {xnkl

} → x ∈ WEffK(f, V ) ⊆
⋃
x0∈WEffK(f,V ) argmin(V, ϕf(x0) ◦

f). Hence, SOP (V, f) is generalized well-posed.
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(ii) Suppose that the problem SOP (V, f) is generalized well-posed. Let {xn} ⊆
V be a sequence such that there exists {tn}, tn ≥ 0, tn → 0 and f(xn) ∈
tnB0 + f(x0)−K.
Therefore we get, 0 ≤ (ϕf(x0) ◦ f)(xn) ≤ tn. This implies ϕf(x0)(f(xn))→
0 = inf

x∈V
ϕf(x0)(f(xn)) which gives that {xn} is a minimizing sequence of

SOP (V, f). So, there exists a subsequence {xnk
} → x ∈ argmin(V, ϕf(x0)◦

f) ⊆ WEffK(f, V ). Therefore, d(xnk
,WEffK(f, V )) → 0. Hence, (V, f) is

L-B0-well-posed at x0.
�

Let L(x0, β) be the level set at x0 ∈WEffK(f, V ) with level β ∈ R where

L(x0, β) = {x ∈ V : f(x) ≤K βB0 + f(x0)}.
We now give the characterization of B0-well-posedness of (V, f) in terms

of level sets L(x0, β).

Theorem 4.6. Suppose that x0 ∈ WEffK(f, V ). The problem (V, f) is B0-
well-posed at x0 if and only if infβ≥0 diam L(x0, β) = 0.

Proof. Suppose that the problem (V, f) isB0-well-posed at x0 and infβ≥0 diam L(x0, β) 6=
0. Then there exists α > 0 such that L(x0, βn) ≥ α for all n where βn = 1

2n
.

Then there exists xn, yn ∈ L(x0, βn) such that d(xn, yn) > α
2

for all n. It implies

that {xn}, {yn} are B0-minimizing sequence at x0. Thus, d(xn, x0) → 0 and
d(yn, x0) → 0 as n → ∞ which implies d(xn, yn) → 0 as n → ∞, which is a
contradiction. Hence, infβ≥0 diam L(x0, β) = 0.
Conversly, suppose that infβ≥0 diam L(x0, β) = 0 and let {xn} be a B0-
minimizing sequence at x0. Then, there exists {βn}, βn ≥ 0, βn → 0 such
that f(xn) ≤K βnB0 + f(x0) which follows that xn ∈ L(x0, βn) for all n. Also,
x0 ∈ L(x0, βn) for all n. If xn does not converges to x0, then there exists ε > 0
and a subsequence {xnk

} of {xn} such that d(xnk
, x0) ≥ ε for all k which im-

plies that infβ≥0 diam L(x0, β) > 0, which is a contradiction. Thus, xn → x0

and hence (V, f) is B0-well-posed at x0. �

Theorem 4.7. If the following conditions holds:
(i) V is a convex set;

(ii) ϕf(x0) ◦ f is a convex function;
(iii) argmin(ϕf(x0) ◦ f) is a singleton set.

Then the problem (V, f) is B0-well-posed.

Proof. The proof follows from Proposition 2.1 and Theorem 4.4. �
We illustrate with an example that the above theorem does not hold if

argmin(ϕf(x0) ◦ f) is not a singleton set.
From Example 4.4 we get,

(ϕf(0) ◦ f)(x) =

{
|x
√
x2 + 1|, if − 1 ≤ x ≤ 0,

0, if 0 ≤ x ≤ 1.
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Here, argmin(V, ϕf(0) ◦ f) = [0, 1], which is not a singleton set. Hence, it can 
be verified that (V, f) is not B0-well-posed at x0 = 0.

    5. Conclusions

In this paper, we introduce a scalar function which is non-linear and is valid 
for both solid and non-solid optimization problems. We established that this 
function is convex, monotonic and sub-linear. Two types of well-posedness 
for (V, f) namely, B0-well-posedness and L-B0-well-posedness have been in-
troduced. The equivalence of these well-posedness with the well-posedness 
of corresponding scalar problem have been established via this newly defined 
scalarization function. It is important to note that the results in our paper are 
more general as found in literature in terms of that they are valid not only for 
solid optimization problems but also for non-solid optimization problems.
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