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DYNAMIC OF EVOLUTIVE OPTIMIZATION PROBLEMS

Constantin Udriste1, Ionel Ţevy2, Ali Sapeeh Rasheed3

This is a paper about continuous time deterministic evolutionary dynamics for

optimization problems. The topics include: (i) evolution of objective function; (ii) evo-

lution of constraints; (iii) evolution of minimum value; (iv) evolution of catastrophe

manifold; (v) evolution of an optimal control problem. For the context of optimal con-

trol problems, we also described: (1) a general theory about evolution of a curve described

by an ODE; (2) a general theory about evolution of a surface described by a PDE; (3)

evolution of a curve following a first order ODE.
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1. Evolution of an optimization problem

In general terms, ”optimization problems that change over time” are called dynamic

problems/time-dependent problems. The first idea about the evolution of a free optimization

problem appeared in [5]. Now this subject can be included in the geometric evolution of

ODEs and PDEs [1],[3], [4]. Related topics are found in [2], [6], [7].

In trade-off analysis of an optimum problem we vary the constraints, and see the

effect on the optimal value of the problem. Sensitivity analysis of an optimum problem is

closely related to trade-off analysis. In sensitivity analysis, we consider how small changes

in the constraints affect the optimal objective value. Both problems reflect the idea that in

many practical problems, the constraints are not really set in stone, and can be changed,

especially if there is a compelling reason to do so (such as a drastic improvement in the

objective obtained). We extend trade-off analysis and sensitivity analysis to evolution of an

optimization problem.

Let x = (x1, ..., xn) ∈ Rn be the vector of decision variables, f : Rn → R be a

C2 objective function and gi : Rn → R, i = 1, ..., k, be C2 functions that describe the

constraints. A general optimization problem is of the form:

min
x
f(x)

subject to

g1(x) ≤ 0, ..., gk(x) ≤ 0.
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The t-evolution of the graph of f and the t-evolution of the ”manifold” described by

constraints have a geometrical sense and are very clear. Here we solve the following problem:

what is the significance of the t-evolution of an optimization problem? Of course, though the

transition from the evolution single time parameter t to the evolution multi-time parameter

t = (t1, ..., tm) is not so difficult, the multitime case has own specifical problems.

1.1. Evolution of objective function

Without loss of generality, we consider a simplified problem of optimization:

min
x
f(x) subject to g(x) = 0.

Suppose the objective function f : Rn → R in this problem is smooth and regular. Its

graph G(f) : y = f(x) is a submanifold in Rn+1, characterized by the metric gij , g
ij ,

gij = δij + fifj , g
ij = δij − fifj

1 + |∇f |2
,

the normal versor n, the second fundamental form hij ,

n =
((fi),−1)√
1 + |∇f |2

, hij =
fij√

1 + |∇f |2
,

the mean curvature H, and the Gauss curvature K,

H = div

(
∇f√

1 + |∇f |2

)
, K = det

∇2f

(1 + |∇f |2)n+2
2

.

The graph submanifold is described by the embedding vector field X(x) = (x, f(x)). There-

fore, its evolution in time, after the normal vector, is introduced by an extension

F = F (x, t), F (x, 0) = f(x), t ∈ [0, T ]

and the associated vector field Y (x, t) = (x, t, F (x, t)), which satisfies the evolution PDE

∂tY (x, t) = −H(x, t)n(x, t), Y (x, 0) = X(x).

The last PDE is equivalent to a flow PDE. It follows

Proposition 1.1. The normal evolution of objective function is described by the flow

Ḟ =
√
1 + |∇F |2 H, F (x, 0) = f(x).

1.2. Evolution of constraint manifold

Let S : g(x) = 0 be a regular implicit hypersurface representing the constraint in an

optimization problem

min
x
f(x) subject to g(x) = 0.

Suppose x = x(u), u ∈ Rn−1 is a parametrization of S, i.e., g(x(u)) = 0, ∀u ∈ Rn−1. The

time evolution S(t) is described by the implicit equation

S(t) : G(x(u, t), t) = 0, u ∈ Rn−1, t ∈ [0, T ], S(0) = S,

i.e., G(x, 0) = g(x). Using X = x(u, t), and derivation with respect to t, we find that the

function G must verify the relation

∇G ·Xt +Gt = 0

or, explicitly, the PDE
∂G

∂xi
∂xi

∂t
+
∂G

∂t
= 0.



Dynamic of evolutive optimization problems 25

If we impose ∂
∂tx = αY , then we find the PDE Gt = −α(∇G,Y ), with unknown G, fixed

by the initial condition.

Let n = ∇G
||∇G|| be the versor normal to the hypersurface S(t). If we accept the

evolution after the normal versor, i.e., ∂
∂tx = β n, then we get Gt = −β||∇G||. Some

authors introduce β = K, attending a nonlinear second order PDE in the unknown G.

Summing up, we find

Proposition 1.2. The normal evolution of constraint function is described by the flow

Gt = −β||∇G||, G(x, 0) = g(x).

1.3. Evolution of minimum value

Suppose that x∗ and f∗ = f(x∗) is solution of the problem

min
x
f(x) subject to g(x) = 0.

Let us analyse what happen with these data during the evolution.

Theorem 1.1. The minimum value F ∗ satisfies the relation

dF ∗

dt
− ∂F ∗

∂t
= λ(t)

∂G∗

∂t
.

Proof. By t-evolution, the Lagrange function l(x) = f(x) + λg(x) becomes

L(x, t, λ) = F (x, t) + λG(x, t).

The critical point condition ∂L
∂x = 0 gives x = x(λ, t). From the constraint condition

G(x, t) = 0, i.e., G(x(λ, t), t) = 0, we find λ = λ(t) and finally x(t) = x(λ(t), t). Conse-

quently the minimum value satisfies the relation in Theorem. �

Remark 1.1. For example, if F (x, t) = f(x) and G(x, t) = g(x)− t, then the previous PDE

reduces to the well-known relation
df∗

dt
= −λ(t).

In other words, a classical optimization problem ”f(x)=extremum, subject to g(x) = c”

is a particular case of evolution of the optimization problem ”f(x)=extremum, subject to

g(x) = 0”.

If F (x, t) is combined to G(x, t) = g(x), then we get

df∗

dt
=
∂f∗

∂t

(see also the properties of ”minimum functions”).

If G is a vectorial function, then in the relation of Theorem, the right hand term

becomes a scalar product. The optimization problem ”f(x)=extremum, subject to g1(x) =

t, g2(x) = t” leads to
df∗

dt
= −(λ1(t) + λ2(t)).

2. Evolution of catastrophe manifold

associated to a Lagrange potential

We start with a Lagrange function

L : Rn × Rk → R, L(x, λ) = f(x)+ < λ, g(x) >,

where f and g are of class C2. The point x ∈ Rn is called state. The point λ ∈ Rk is called

control. The partial function x→ L(x, λ) is called potential.



26 Constantin Udriste, Ionel Ţevy, Ali Sapeeh Rasheed

The set of all critical pointsM ⊂ Rn×Rk of the potentials x→ L(x, λ), characterized

by
∂f

∂xi
+ < λ,

∂g

∂xi
> = 0, i = 1, ..., n,

is called the catastrophe manifold.

Let π : Rn ×Rk → Rk, π(x, λ) = λ be the natural projection. The restriction of π to

M is denoted by χ and is called catastrophe application. The subset S ⊂ M consisting of

the singular points of the catastrophe application χ :M → Rk, i.e., the points at which the

rank of the Jacobian matrix J(χ) is smaller than m, is called the singularity set. The set S

is described by the equations

∂f

∂xi
+ < λ,

∂g

∂xi
> = 0, det

(
∂2L

∂xi∂xj

)
= 0.

The image B = χ(S) ⊂ Rk is called bifurcation set. The bifurcation set B is the set on

which the number and nature of critical points change; the change takes place only when

passing through a degenerate critical point.

2.1. Evolution preserving the catastrophe manifold

Now we introduce a variation parameter ϵ ∈ [0, T ) independent of x. Then it appears

the perturbed functions f(x, ϵ), λ(ϵ), g(x, ϵ). We impose the initial conditions

f(x, 0) = f(x), λ(0) = λ, g(x, 0) = g(x).

Also, we need a new Lagrange function

L(x, λ(ϵ), ϵ) = f(x; ϵ)+ < λ(ϵ), g(x; ϵ) >

and the associated critical point condition(
∂f

∂xi
+ < λ,

∂g

∂xi
>

)
(x, λ(ϵ), ϵ) = 0.

To continue, we must declare the variational objects

∂f

∂ϵ
|ϵ=0 = ξ(x),

∂g

∂ϵ
|ϵ=0 = η(x),

∂λ

∂ϵ
|ϵ=0 = ς.

Theorem 2.1. Let x(λ) be a critical point. The vector ∇ξ(x(λ)) belongs to the space

generated by ∇η(x(λ)) and ∇g(x(λ)), i.e.,
∂ξ

∂xi
+ < λ,

∂η

∂xi
> + < ς,

∂g

∂xi
> = 0.

Proof. Variant 1 Taking the derivative with respect to ϵ, in critical point condition, setting

ϵ = 0, we find the equation on variations in the Theorem.

Variant 2 We set

f(x, ϵ) = f(x) + ϵξ(x) + o(ϵ),

g(x, ϵ) = g(x) + ϵη(x) + o(ϵ),

λ(ϵ) = λ+ ϵς + o(ϵ).

Then

L(x, λ, ϵ) = L(x, λ) + ϵ(ξ(x)+ < λ, η(x) > + < ς, g(x) >) + o(ϵ).

Taking the partial derivative with respect to xi and using the initial critical point condition,

we find the equation in Theorem. �
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2.2. All ingredients are evolutive

Initially, to an optimization problem, we attach the Lagrange function

L(x, λ) = f(x)+ < λ, g(x) >

and the critical point conditions

∂f

∂xi
+ < λ,

∂g

∂xi
> = 0, i = 1, ..., n.

We consider a differentiable variation x(ϵ) and we introduce the general perturbation

L(x(ϵ), λ(ϵ), ϵ) = f(x(ϵ), ϵ)+ < λ(ϵ), g(x(ϵ), ϵ) >

together critical point condition(
∂f

∂xi
+ < λ,

∂g

∂xi
>

)
(x(ϵ), λ(ϵ), ϵ) = 0.

By derivation with respect to ϵ, setting ϵ = 0, and denoting dxi

dϵ |ϵ=0 = y, we produce

a variational linear system associated to the system describing catastrophe manifold. Of

course, we use the differential operator

d

dϵ
=

∂

∂xj
dxj

dϵ
+

∂

∂ϵ
,

together variational objects (hypothesis)

dxj

dϵ
|ϵ=0 = yj ,

∂f

∂ϵ
|ϵ=0 = ξ(x),

∂g

∂ϵ
|ϵ=0 = η(x),

∂λ

∂ϵ
|ϵ=0 = ς,

The differential operators ∂
∂xi and ∂

∂ϵ commute.

Theorem 2.2. At a critical point x(λ), the tangent space to catastrophe manifold, if it

exists, is described by the system(
∂2f

∂xi∂xj
+ < λ,

∂2g

∂xi∂xj
>

)
yj +

∂ξ

∂xi
+ < ς,

∂g

∂xi
> + < λ,

∂η

∂xi
>= 0.

Proof. Applying ∂
∂ϵ to (1), we find

∂

∂xi

(
df

dϵ

)
+ <

∂λ

∂ϵ
,
∂g

∂xi
> + < λ,

∂

∂xi
dg

dϵ
>= 0,

where

df

dϵ
=

∂f

∂xj
dxj

dϵ
+
∂f

∂ϵ
,
dg

dϵ
=

∂g

∂xj
dxj

dϵ
+
∂g

∂ϵ
.

Setting ϵ = 0, we get the linear system in Theorem. More precisely, at a nonsingular

critical point x(λ) of catastrophe manifold, we have a unique solution yj(x(λ)), i.e., an n-

dimensional vector of parameter λ; at a singular point x(λ) of catastrophe manifold, we have

a linear variety of solutions, i.e., n-dimensional vectors depending on λ and p parameters,

yj(x(λ);α1, ..., αp). �
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3. Evolution of an optimal control problem

The constituents of an optimal control problem are: the independent variable (gen-

erally speaking, time) t, the initial time t0, the terminal time tf , the state vector x(t), the

control vector u(t), a cost functional J , and a dynamic constraint (controlled ODE system)

or an isoperimetric constraint.

Let us consider an abstract optimal control problem of the form: minimize the continuous-

time cost functional

J =

∫ tf

t0

L(t, x(t), u(t))dt,

subject to the first-order dynamic constraints (the state controlled ODE)

ẋ(t) = X(t, x(t), u(t)).

The function L is called Lagrangian.

We consider an evolution after τ ∈ [0, ϵ), where w = w(t, τ), τ ∈ [0, ϵ), is fixed by the

partial flow

wτ = φ(t, τ, w(t, τ), v(t, τ)), w(t, 0) = x(t), v(t, 0) = u(t).

The objective functional is changed into

J =

∫ tf

t0

L(t, τ, w(t, τ), v(t, τ))dt,

with the initial condition

L(t, 0, w(t, 0), v(t, 0)) = L(t, x(t), u(t)).

The ODE constraint is changed into a dynamic PDE

wt(t, τ) = X(t, τ, w(t, τ), v(t, τ)),

with the properties

X(t, τ, w(t, τ), v(t, τ))|τ=0 = X(t, x(t), u(t)), φt = Xτ + Xwφ+ Xvvτ .

For the new problem we can use the Hamiltonian

H = L(t, τ, w(t, τ), v(t, τ)) + qi(t)X
i(t, τ, w(t, τ), v(t, τ)).

Theorem 3.1. The evolution of an optimal control problem is characterized by Euler-

Lagrange PDE for

Lτ =
∂L

∂τ
+
∂L

∂w

∂w

∂τ
+
∂L

∂v

∂v

∂τ
=
∂L

∂τ
+
∂L

∂w
φ+

∂L

∂v

∂v

∂τ
.

3.1. Evolution of a curve described by

a second order ODE

Let us consider a C2 curve x = x(t), t ∈ I, solution of the second order ODE

F (t, x(t), ẋ(t), ẍ(t)) = 0, t ∈ J ⊃ I.

Its evolution w = w(t, τ), τ ∈ [0, ϵ), given by wτ = φ(t, τ, w(t, τ)), wτ=0 = x, is a surface,

solution of the PDE

F(t, τ, w(t, τ), wt, wtt) = 0, Fτ=0 = F.

The new function F is solution of a linear PDE,

∂F

∂τ
+
∂F

∂w
wτ +

∂F

∂wt
wτt +

∂F

∂wtt
wτtt = 0,
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since the derivatives wτt, wτtt are obtained from evolution condition.

Remark 3.1. This theory can be applied to auto-parallel curves,

ẍi(t) + Γi
jk(x(t))ẋ

j(t)ẋk(t) = 0, x(t0) = x0, ẋ
i(t0) = ξix0

.

3.2. Evolution of a surface described by

a second order PDE

We start with a C2 surface u = u(x, y), (x, y) ∈ D, solution of second order PDE

F (x, y, u(x, y), ux, uy, uxx, uxy, uyy) = 0, (x, y) ∈ E ⊃ D.

Its evolution w = w(x, y, t), t ∈ [0, ϵ) is given by the condition

wt = φ(t, x, y, w(x, y, t)), wt=0 = u,

satisfying a new PDE

F(t, x, y, w(x, y, t), wx, wy, wxx, wxy, wyy) = 0, Ft=0 = F.

The function F is solution of a linear PDE,

∂F

∂t
+
∂F

∂w
wt +

∂F

∂wx
wxt +

∂F

∂wy
wyt +

∂F

∂wxx
wxxt +

∂F

∂wxy
wxyt +

∂F

∂wyy
wyyt = 0,

since the derivatives wxt, ..., wyyt are obtained from evolution condition.

Example 3.1. Let us take the Laplace PDE uxx + uyy = 0, with a solution (harmonic

surface) u(x, y) = x2 − y2. We impose the evolution wt = w + x2. It follows the Poisson

PDE wxx + wyy = 2et − 2, as equation F = 0. The function w(x, y, t) = (2et − 1)x2 − ety2

verifies both the evolution condition and the Poisson PDE. The uniqueness is connected to

problems on PDEs with unique solutions.

Example 3.2. Now we start with wave PDE uxx − uyy = 0, and the solution u(x, y) =

x2 + y2. We impose the evolution wt = w + x2. It follows the nonhomogeneous wave PDE

wxx − wyy = 2et − 2, as equation F = 0. The general solution of the last PDE is

w(x, y, t) = f(x+ y, t) + g(x− y, t) + etx2 − y2

and the function that verifies both the initial condition and the evolution relation is

w(x, y, t) = (2x2 + y2)et − x2.

Example 3.3. Let us consider the Tzitzeica PDE

zxxzyy − z2xy = c(xzx + yzy − z)4,

and a solution z = a
xy , xy ̸= 0, 9a2 = 1

c . We impose the evolution wt = w+ x2, w|t=0 = z.

It follows the evolution PDE

((wxx − 2)e−t + 2)wyye
−t − w2

xye
−2t = c((xwx + ywy − w)e−t + x2(1− e−t))4,

as equation F = 0. The function w(x, y, t) =
(

a
xy + x2

)
et − x2 verifies both the evolution

condition and the equation F = 0.

Example 3.4. Let us take into discussion the Monge-Ampere PDE

zxxzyy − z2xy = H(x, y, z, zx, zy),

and a solution z = ς(x, y). We impose the evolution wt = w + x2, w|t=0 = ς. It follows the

evolution PDE

((wxx − 2)e−t + 2)wyye
−t − w2

xye
−2t = H(t, x, y, w,wx, wy),
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as equation F = 0. The function w(x, y, t) =
(
ς(x, y) + x2

)
et−x2 verifies both the evolution

condition and the equation F = 0.

Remark 3.2. Evolution PDE - based methods are widely used in image processing and com-

puter vision. For many of these evolution PDEs, we can formulate the following questions:

(i) how are they created? (ii) what we can say about the existence and regularity of solu-

tions? (iii) how to implement them effectively to produce the desired effects? In this work,

we study the generation of an arbitrary evolution PDE starting from a stationary ODE or

PDE.

On the other hand, PDEs can be regarded as evolution equations on an infinite di-

mensional state space. The solution u(x, t) belongs to a function space in x at each instant

of time t. For example, second order PDEs are evolution equations for second order ODEs.

The monographs [1] offers the reader a treatment of the theory of evolution PDEs with

nonstandard growth conditions. This class includes parabolic and hyperbolic equations with

variable or anisotropic nonlinear structure. Similar problems are found in [4].

Problem Given a second order PDE regarded as evolutionary equation,

F(t, τ, w(t, τ), wt, wτ , wtt, wtτ , wττ ) = 0, (t, τ) ∈ E ⊃ D

with respect to the parameter τ , find an originating ODE

F (t, u(t), u̇(t), ü(t)) = 0, t ∈ J ⊃ I,

where F = Fτ=0, u(t) = w(t, 0).

Example 3.5. Let us take the Laplace PDE

uxx + uyy = 0

as evolution equation with respect to the parameter y. Since the general solution of the

Laplace PDE is of the form u(x, y) = f(x + iy) + g(x − iy), the attached generating ODE

must be of the form

uxx(x, y) = φ(x+ iy) + ψ(x− iy).

Let us consider the wave PDE

a2uxx − uyy = 0

as evolution equation with respect to the parameter y. Since the general solution of the

wave PDE is of the form u(x, y) = f(x+ay)+g(x−ay), the attached generating ODE must

be of the form

uxx(x, y) = φ(x+ ay) + ψ(x− ay).

Example 3.6. A conditioning system of two diffusion PDEs

w(x, y, τ = (τ1, τ2)); wτ1 = wxx, wτ2 = wyy, wτ1 + wτ2 = 0,

on Oxyτ1τ2, has as trace on the plane Oxy, the Laplace PDE

wxx + wyy = 0.

Example 3.7. Let us consider two Newton Laws

uxx(x, y) = F (x, y, u), uyy(x, y) = G(x, y, u).

The equilibrium condition

F (x, y, u) +G(x, y, u) = 0

leads to Laplace PDE uxx + uyy = 0. Another condition, as for example,

F (x, y, u) = c2G(x, y, u)
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gives the wave PDE uxx − c2uyy = 0.

3.3. Evolution of a curve satisfying

a first order PDE

Problem Solve the first order pseudo-linear PDE

a(x, y, u)
∂u

∂x
+ b(x, y, u)

∂u

∂y
= f(x, y, u),

with the condition that, at y = 0, the function u(x, 0) to be solution of the Cauchy problem

u̇ = g(x, u), u(x0, 0) = u0.

Let us show that this problem lies with a problem of evolution. We look for the

evolution of the curve u = u(x) satisfying the Cauchy problem

u̇ = g(x, u), u(x0) = u0,

with respect to the parameter y. We accept that the evolution is via the surface w = w(x, y)

described by first order pseudo-linear PDE

a(x, y, w)
∂w

∂x
+ b(x, y, w)

∂w

∂y
= f(x, y, w), w(x, 0) = u(x).

To solve the problem, suppose we have two first integrals C1, C2 for the characteristic system

dx

a(x, y, w)
=

dy

b(x, y, w)
=

dw

f(x, y, w)
,

associated to the last PDE. The general solution of the PDE is given implicitly by

F (C1(x, y, w), C2(x, y, w)) = 0,

where F is an arbitrary function of class C1 that we must determine. The function F can

be recovered in three steps: (i) we replace y = 0, obtaining

F (C1(x, 0, u), C2(x, 0, u)) = 0;

(ii) taking the derivative with respect to x, it follows

∂F

∂C1

(
∂C1

∂x
+
∂C1

∂u
u̇

)
+

∂F

∂C1

(
∂C1

∂x
+
∂C1

∂u
u̇

)
= 0

and hence

∂F

∂C1

(
∂C1

∂x
+
∂C1

∂u
g(x, u)

)
+

∂F

∂C1

(
∂C1

∂x
+
∂C1

∂u
g(x, u)

)
= 0;

(iii) from the algebraic system C1(x, 0, u) = C1, C2(x, 0, u) = C2, we obtain x = x(C1, C2), u =

u(C1, C2), which fix the relation in (ii) as a linear PDE

A(C1, C2)
∂F

∂C1
+B(C1, C2)

∂F

∂C2
= 0.
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[4] O. C. Schnürer, Geometric Evolution Equations, Lecture notes for the Summer School of the Interna-

tional Research Training Group Arithmetic and Geometry, 02.09.2007-07.09.2007, in Alpbach (Tirol),

Austria.

[5] P. A. Samuelson, Foundations of Economic Analysis, Harward University Press, Cambridge, 1947.
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