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REINFORCEMENT METHOD WITH NON-UNIFORM
QUANTIFICATION AND EXPERT KNOWLEDGE FOR
SMALL SAMPLE SIZE PROBLEM IN TRACK
IRREGULARITY FAULT DIAGNOSIS

Zhenghui LI, Na ZHANG?

Data-driven intelligent fault diagnosis has achieved significant advancements,
garnering increasing interest within the field. Existing data-driven methods generally
assume the availability of sufficient fault samples across various severity levels. In the
electrical and mechanical engineering field, it is a common problem that high-level
fault is difficult to be accurately judged by the fault diagnosis model due to small
sample size of high-level fault. This paper proposes a novel approach for track
irregularity fault diagnosis addressing this small sample challenge, leveraging
reinforcement method with non-uniform quantization and expert knowledge. Initially,
a data-driven neural network extracts features from a comprehensive set of fault
samples to establish a diagnostic model. Subsequently, targeting the limited high-level
fault data, a reinforcement strategy is formulated, integrating non-uniform quantized
reliability and Belief Rule Base (BRB) inference. This strategy reinforces the neural
network's output layer, enhancing diagnostic sensitivity for small samples and
mitigating the risk of high-level fault misdiagnosis, which could adversely impact
train operations. Finally, in data experiment on existing railway trunk lines, 9428 sets
of railway track vertical irregularity level I-1Il samples are selected. Compared with
support vector machine (SVM) and backpropagation neural network (BP) methods,
this method can improve the diagnostic accuracy of vertical irregularity level II-111
samples by more than 90%.

Keywords: Track irregularity; Non-uniform quantification; Data driven; Belief
rule base; Reinforcement method

1. Introduction

The rapid development of China's railway network has led to increased train
speeds, higher carrying capacities, and more frequent departures. As a critical
component of this infrastructure, railway track failures significantly impact
operational efficiency and safety [1]. Rail is susceptible to geometric deformation,
particularly vertical irregularity, due to a confluence of factors. These include
inherent impurities from the forging process, uneven subgrade settlement, chemical
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erosion from the environment, and the stresses of heavy train loads and high-
frequency rolling [2]. Vertical irregularity, defined as the vertical deviation of the
track surface from the ideal rail plane [3], can compromise safety and passenger
comfort. Small irregularities amplify locomotive vibrations, while larger
irregularities generate substantial impact forces between the wheelset and rail. This
can exacerbate track deformation, jeopardizing train safety and potentially leading
to derailments [4].

In recent years, monitoring railway track vertical irregularities using in-
service vehicles has gained significant attention [5,6]. While still under
development, in-service vehicle-based track irregularity measurement systems have
emerged globally. These systems often detect various track vertical irregularity
faults by measuring bogie acceleration. For instance, Guo et al. demonstrated the
monitoring of track irregularities using sensors mounted on bogies [7]. Vibration-
based methods analyze the abnormal vibrations of axles, carriages, and bogies
induced by track irregularities, correlating these vibrations with specific fault types
[8-10]. This method can not only realize real-time fault detection, but also increase
the range of railway lines covered by detection, without occupying the running time
of railway lines.

The acquisition of vibration data is hampered by interference from vehicle
body vibrations and external noise stemming from varying track conditions.
Furthermore, sensor inaccuracies introduce additional noise into the acquired
vibration signal, obscuring the nonlinear and uncertain relationship between
vibration data and track irregularities. While existing information processing
methods can detect track irregularities [ 11,12], the presence of this noise limits their
ability to accurately estimate the amplitude and severity of the faults. Recently,
data-driven intelligent fault diagnosis methods have shown considerable promise
due to their strong feature learning capabilities [13], attracting increasing attention
in the field. These methods, including back propagation neural networks (BP) [14]
and support vector machines (SVM) [15], are not constrained by model
assumptions. However, both statistically and from a model training perspective,
data-driven approaches necessitate large amounts of historical track data, a
challenge common throughout the industry [13]. The balance of collected samples
used to monitor irregularities and wheel wear may impact the robustness of data-
driven methodologies. However, for railway track, the number of high-level track
irregularity fault sample is often small. It is very accurate for low-level track
irregularity fault diagnosis with large sample size, but insensitive for high-level
irregularity fault diagnosis with small sample size, and the high-level fault is more
harmful to the train. Some scholars have also attempted to use the knowledge
representation and reasoning abilities of expert systems to achieve small sample
size fault diagnosis. Ming et al. [16] optimized the initial parameters of the Belief
Rule Base (BRB) using the Whale Optimization Algorithm (WOA) to achieve fault
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diagnosis of the flywheel system. Cheng et al. [17] proposed a BRB-based effective
fault diagnosis model for high-speed trains running gear systems,and quantified
weight parameters as static reliability and dynamic reliability of attributes in BRB.
However, the above method only focuses on optimizing the weight parameters of
the antecedent referential point of BRB, without considering the impact of the
actual distribution of antecedent referential point on the reference point interval and
reliability. Therefore, the non-uniform quantization reliability strategy proposed in
this article divides and evaluates the reference point interval and reliability based
on the non-uniformity of the actual distribution of antecedent referential point,
which can further refine the expert system's characterization of input sample
features. This strategy also has strong application value. Moreover, if the input data
of BRB is too much, the number of combination rule will increase explosively,
which seriously affects the real-time performance of fault diagnosis. Therefore, it
is difficult to diagnose high-level small samples submerged in a large amount of
data solely using expert systems.

To attack these above problems, this proposed method integrates the
interpretability of expert systems for small sample analysis with the feature learning
capabilities of data-driven methods typically employed with larger datasets. The
neural network model is used to model a large number of low-level and high-level
fault samples, while the BRB model is used to model a small number of high-level
fault samples and design non-uniform quantization strategy to consider impact of
the actual distribution of antecedent referential point on the reference point interval
and reliability. The BRB model with non-uniform quantization strategy is used to
reinforce the neural network's output layer, enhancing diagnostic sensitivity for
small samples and mitigating the risk of high-level fault misdiagnosis. This
enhances the diagnostic performance of data-driven approaches, mitigating their
sensitivity to limited data. Given the scarcity and critical importance of high-level
fault data, maximizing its utilization is paramount, aligning with the principle of
judicious resource allocation.

2. Reinforcement strategy with data-driven model and expert
knowledge system

2.1. Data collection and pre-processing

fi(H)and f2(¢) as input sample sets for fault diagnosis models, I= {[ fi(?), f>(?)]
| =1, 2,..., T}. I= {[fl(t),}z(z)]u:l, 2,...,T},}61 is the high-level input
sample set with small size. Ir(¢) as the output sample set of the fault diagnosis
model, O={[Ir(?)]| =1, 2,..., T}. Normalize the original input and output samples,

and map the input and output sample features to [-1,1]. The normalization formula
IS :
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The normalized model input is *={[fi(H)*, f,(6)*]| =1, 2,..., T}.The
normalized model output is O*={[Ir(t)*]| =1, 2,..., T}.

2.2. Data-driven fault diagnosis model

Backpropagation (BP) is a prominent supervised learning algorithm for
artificial neural networks (ANNSs). The system learns by computing the error in the
output layer and subsequently propagating this error backward to adjust the weights
of the hidden layers. This backpropagation of error makes it particularly well-suited
for modeling nonlinear relationships between inputs and outputs (see Fig. 1).

an input layer, several hidden layers. an output layer

Fig. 1. The structure diagram of BP neural network

The sigmoid function is used as the activation function for the above model.
The purpose of introducing an activation function is to inject nonlinearity into the
neural network, thereby enabling it to effectively handle nonlinear problems.
Without an activation function, the neural network would remain purely linear. The
sigmoid function performs well when used for classifiers, and its expression is:

Sx)=1/(1+e™) ()
Gradient descent is employed to optimize the network weights by
minimizing the output error. This principle is expressed as:

2
E, =Y, (O0)*=y(0)) 3)
where O,(¢)* and y.(¢) represent the actual sample output and the output value of
the #-th unit, respectively. P denotes the p-th pattern; 7 is the number of the output
units. The gradient descent update rule is given by Equation 4.
OEy»
OWrk

(4)

Wit = — U
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wu is the weight of the #" unit in the (n-1)" layer to the ™ unit in the nth
layer.The BP calculates errors in the output layer 0/, and the hidden layer ¢ are
using the formulas in Equation 5.

O = p(Oo(t)* =yo(t)) ' (yol1))
&= gy, owif " (yo(1))
The weights w;; and biases b, are updated according to the equations:
wi(k +1) = wti(k) + uoyo(t)
wi(k +1) = wli(k) + po (6)
bk +1)=bi(k) + uo
Here, £ is the number of the epoch and 4 is the learning rate. According to

)

the trained BP network model, the estimated value of model output is O ={[ Ir(¢)']|
=1,2,..., T} .The actual track irregularity amplitude is O={[Ir(¢)]| =1, 2,***, T}.The
output layer error of the model is defined as Err.

2.3. Reinforcement strategy

Although the above data-driven model can diagnose fault samples with
large amounts of data, it is not sensitive to fault samples with small amounts of data.
High level fault samples are usually small in data size. Therefore, the data-driven
model has low ability to diagnose high-level faults. Therefore, a reinforcement
model based on belief rule base reasoning is constructed by using section (2.1) high

level fault data set }:{[}l(t),fz(t)ﬂt:l, 2,...,7} and section (2.2) model

output layer error Err, combined with the idea of non-uniform quantization, to
reinforce the output layer of BP network model based on data-driven. The workflow
is illustrated in Fig. 2, with detailed steps outlined below.

Fig. 2. The flow diagram of reinforcement strategy

The BRB methodology utilizes an extended if-then rule structure to
represent diverse forms of uncertain information and knowledge. The parameters
within the BRB system (e.g., attribute values and weights, belief distributions, and
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rule weights) possess clear physical interpretations, readily understood by both
domain experts and users. Consequently, BRB demonstrates a strong capacity for
approximating complex nonlinear causal relationships across a broad range of
applications.

The belief rules are developed using accumulated data and insights from
track irregularity experiments. These rules incorporate antecedent attributes

} (D), } ,(¢) and the consequences (the belief distributions about £77). The concept

of BRB construction and the importance of model parameters are outlined in Table
1.
In Table 1, the k-th belief rule Ry is represented as:

If }1 (t)= A"and }Z(z) = A5, then Err ={(D1,Bk1), -...(Dm, Bicm)},

" B, =1,k=1,2, ..L (7)
Table 1
The idea of BRB construction and the significance of model parameter
BRB system significance of model parameter
the referential point set of the antecedent iPPUt variabI?s
attribute 4° ={4' |i=1,2,k=1,2, ...,L} I={lf\®,/,O]lt=1, 2, . LT}

D, is the referential value of the

the consequent attribute of R {(D1fer), -, consequent attribute, S is the belief

(Do, rm) value of Dy,
the weight of the belief rule ¢, € [0, 1] the relative importance of Ry
the weight of the attribute 6, € [0, 1] the relative importance of 9,

Step (1): A reinforcement model is established to describe the relationship
between high-level fault input sample set = {Lf, ), } ,(O]lt=1, 2,...,Tyand BP
network model output layer error Err. L is the total number of rules in the Belief
Rule Base, Dy is the referential value of the consequent attribute Err, g, ; is the
belief degree to which Dy is believed to be the consequent when 7, (£)=4" 7, (¢)

[ [
= A} . At the same time, attribute weight of f (), f,(¢) 1s initialized to

61=0.5, 61=0.5,and their rule weight is all set to 1.
Step (2): Because the track is often in complex environment such as
vibration disturbance of train operation and wheel-pair repeated rolling, the spatial

distribution of fault input }1(0 and }f ,(¢t) shows strong discreteness and

heterogeneity. Therefore, the referential point of £ (r)and 1, (¢) is processed with

the idea of non-uniform quantization, which makes the reference point more refined
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to characterize the characteristics of input samples. The non-uniform quantization
reliability of A4is §,k={§f1 &G q}. The non-uniform quantization reliability

of 4y is&={&,, &8, )

PN
&= 4 ®)

)

v=12---,g» 7=l or 2, N is the number of the small samples within the range of

C
reference point ¢, T is the number of the small samples. When v =1, the range

k gk
7,2 ‘77,1

of this reference point i{Af’l, }, whenv = ¢, the range of this reference

k k
point is {”’TW,ATZ} , when ¢ >v >1, the range of this reference point is

Az]'c,v _Af,v»l A‘f,vﬂ _Az]'c,v
2 2 '
Step (3): On the basis of reinforcement model in step (2), when the error

result of the output layer is calculated by the BP neural network in step (1), f1() and
f2(f) will be input into the reinforcement model base on the belief rule base. f1(¢) and

f(t) will match the reference point 4°(r=1 or 2) of the antecedent attribute in
varying degrees, and the matching degree is a' . If f. (t) is greater than reference
point Aﬁ ,» 1ts matching degree to Aﬁ ,is LIF £, (t) is less than reference point

A! |, its matching degree to 4, is 1. If 4, < f. (1)< Af_, its matching degreea;

7,12 7.q°
to the corresponding reference point is calculated as follows:
ar, =[ (45, - fO)/ (4!, =4, ) <&, (10)
o}y = (foO)= AL (AL, =4, )% E (11)

When the antecedent reference point of the belief rule is matched, the
corresponding belief rule will be activated. The weight @, of the activated rule is
updated as follows:
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H _ T H _
“alTe /3 aTTe | .
where ¢, €[0,1] is the weight of belief rules, H is the number of input variables, 5,

is the relative attribute weight of the activated rule:

_ 0
c A%zs@}' =

. k .
According to the above calculated ¢, and@, , the consequent attribute of

the activated rule is fused using the evidential reasoning theory, and the
reinforcement result Err'is calculated as follows:

En'(fo(0), f26) ={(D;. B,).j =1.2,m}, (14)

where

k=1 k:l ;:1

l)’f= ; : : (15)
1-¢f] [(1-9,)]

k=1

s{ZH (¢, r.i+1- %Zﬂw (m~ IH[ %Zﬂhﬂ (16)

j=1 k=1

B; represents the belief level of the j-th subsequent attribute, g ; express

the belief distribution of the j-th subsequent attribute in the k-th belief rule. The
final prediction value O of track vertical irregularity can be calculated by adding
the prediction value O’ in step (1) and the reinforcement value Err'.

3. The setting and diagnosis result analysis of experiments

3.1. Training database built

(1) Collect vibration data of track vertical irregularity

According to the principle based on the vibration analysis method and the
analysis of the detection data obtained, a clear relationship exists between track
irregularity amplitude and vibration signals, as evidenced by the vibration data
collected at both carriage and axle positions [4]. The empirical data consist of track
irregularity measurements, axle acceleration sensor data, and carriage acceleration
sensor data collected by track inspection vehicles over the downline section
(1584.5103 km to 1586.86735 km) of China's existing railway trunk lines [18]. The
track inspection vehicle runs at the speed of 100km/h and collects the relevant
parameter signals of the track every 0.25m. So the time step is =1,...,7, where T is
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the total number of samples and 7=((1586.86735-1584.5103)/0.25) X 103=9428.
The acquired original vibration data in time-domain is shown in Fig. 3. » represents
the amplitude of the track's vertical irregularity, fi and /> denote the vibration data
of the axle and the carriage.

2 T T T

-20
1.5845 1.585 1.5855 1.586 1.5865 1.587
Distance(m) x108

01 T T T 1

! | |
1.5845 1.585 1.5855 1.588 1.5865 1.587
Distance(m) <108

-1.5545 1.585 1.5855 1.586 1.5865 1.587
Distance(m) x10°

Fig.3. The acquired original vibration data

(2) Pre-processing of training data

At each time step, we use the short-time Fourier transform to obtain the
absolute mean values of the frequency amplitudes of f1 and > with a window size of
5.25m, respectively denoted as f1(¢) and f2(¢), Ir(¢) represents the absolute value of
r, as illustrated in Fig. 4.
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Fig.4. The absolute mean values fi(?), f2(f) and the absolute value /r(¢)

Although the relationship between fi(¢), > (¢) and Ir(¢) is nonlinear, there is
some correlation in the trend of changes between fi(¢), f> (f) and Ir(¢). To
demonstrate the correlation between fi(¢), /> (f)and Ir(¢), we conducted an analysis
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from both physical theory and data analysis perspectives. 1. In terms of physical
theory.When the magnitude of track irregularities changes rapidly, the axle
acceleration sensor data is more sensitive, whereas when the magnitude is larger,
the carriage acceleration sensor data becomes more sensitive. To accurately
estimate the level of vertical irregularity, it is essential to integrate the acceleration
vibration data from both the axle and the carriage. 2. In terms of data analysis. For
example, in the sample intervals of 1000-2000, 5500-6000, and 7500-8500, as the
amplitude of railway track vertical irregularity increases, the vibration amplitude of
the axle and carriage also increases. In the sample interval of 6500-7000, as the
amplitude of railway track vertical irregularity decreases, the vibration amplitude
of axle and carriage also decreases.According to relevant regulations [19], the level
of vertical irregularity of the track in railway track defects is defined in Table 2.

Table 2
The vertical irregularity levels of track
(160 km/h~200 km/h) Acceptance | Discomfort Temporary repair Speed limit

Level I II III v

Standard(mm) 0<Ir<s S5<Ir<8 8<r<12 12<Ir

3.2. Data-driven fault diagnosis model

Based on the analysis of track vertical irregularity sample data, a neural
network was configured with six layers: one input layer, four hidden layers, and
one output layer. The network underwent 5000 training iterations with a training
accuracy threshold of 0.00001 and a learning rate of 0.01. According to the formula
in Section 3, 9428 groups of ( f1(¢) ), (f2(?) ), and ( Ir(¢) ) were input into the network
for model training.Based on the prediction result O'={[ Ir(¢)']| =1, 2,..., T} of the

BP network model and the true value O={[Ir(?)]| =1, 2,..., T} of the track vertical
irregularity amplitude, the prediction error of the model output layer is calculated
as Err. For 9428 groups of fi(f) - fx(¢), the prediction result error is
[2.0703,1.9627,1.5156,0.9646,0.5041,0.1668, ..., 0.0185,0.0197], and the root
mean square error of the error is 1.2840. The diagnostic accuracy for 9,201 groups
at irregularity level I is 99.9%, with 9,195 groups correctly diagnosed. For the 207
groups exhibiting irregularity at level 11, the diagnostic accuracy is 2.4%, with only
five groups accurately identified. For 21 groups with track vertical irregularity at
level III, the diagnostic accuracy is 0%, with no groups accurately identified. This
indicates that the accuracy of the BP network model is insufficient for high-level
faults. Therefore, integrating expert knowledge from small sample theory is
necessary to enhance its compensatory capabilities.
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3.3. Reinforcement strategy

To address the limitations of the aforementioned fault diagnosis model in
effectively diagnosing level II and level III fault data, a reinforcement model has
been developed. This model aims to enhance the diagnostic accuracy for these fault
levels, particularly when dealing with small sample sizes, by utilizing belief rule

base inference. Let level I and level III fault input data set as } (D), } ,(t), and the

reference points of}’l(t) is [0.129,0.2,0.25,0.8,1,1.25, 3.015], the non-uniform
reliability of the above reference points is calculated as [0.7, 0.8, 0.65, 0.8, 0.5,

0.75, 0.85] by the formula in section 2.3. Similarly, the reference points of 1, () is

[0.0026,0.005,0.006,0.008,0.0111,0.015,0.0167], the non-uniform reliability of the
above reference points is calculated as [0.9,0.6,0.8,0.8,0.7,0.85,0.5] by the formula
in section 2.3. The reference points of Err is [0.04, 0.45, 1, 1.5, 2.1, 6.02], some
belief rules constructed by expert knowledge are shown in Table 3. The specific
fusion reasoning process is as follows:

Table 3
Some belief rules of the belief rule base
Err
[
INo
O f](t)& fz(t) Bi B B3 P Bs Bs

1 1.0 VS & VS 0 0 0 0 0.6403 0.3597
15 1.0 |[VS&VL 1 0 0 0 0 0
25 1.0 PM & VL 0 0 0 0 0.5906 | 0.4094
35 1.0 |PM & PS 0 0 0.3900 0.610 0 0
49 1.0 VL& VL 0 0.0455 0.9545 0 0 0

Step (1): Calculate the matching degree of input parameters
In this study, f1(¢) and f2(¢) are utilized as inputs for the reinforcement model.
The model calculates the matching degree of each fault characteristic data group

relative to their respective reference points, 4 and A} , using equations (9) and (10)

in Section 2.3. For example, when the 5737-th group of feature data is input, the
input parameter is [0.1710, 0.0051], the matching degree between fi(¢f) and
reference points [0.129,0.2] is 0.2856,0.4737, the matching degree between f>(¢)
and reference points [0.005,0.006] is 0.5303,0.0930.

Step (2): Calculate the weight of the activated rule
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After obtaining the matching degree @/ of the input data to the reference
point in each rule, calculate the weight ¢, of the activated rule using formulas (12)

and (13). For example, for the 5737-th group of feature data, we can get the
activation weight of some belief rules (R2, R3, Ro, R10) is 2=0.3605, ¢3=0.0474,

@0 =0.5233 and g0 =0.0688 respectively, while the activation weight of other rules

is all 0, four belief rules are activated.
Step (3): Fusion mechanism of activated rule

The fused output  belief  structure  Er'(f1(?), f2(2)) =
{(D;,B;),j=12,--,6} is obtained by using evidential reasoning theory, where
D, and g . can be calculated by formula (15) and formula (16) respectively. For
example, bring ¢, and § ; of the 5737-th group of characteristic data into formula
(14), Err'(f1(2), f2(2)) = {(D,, 0.0266), (D,,0),(D;,0), (D,,0),(Ds,0.4514),
(D4,0.7178)} . Finally, the error compensation estimate £7'=1.1958.

Step (4): Analysis of experimental result

The above 5737-th group of data is substituted into the calculation, and the
predicted value (O’ =4.5064) of track irregularity amplitude obtained by the neural
network model, plus the error reinforcement estimated value ( Er7’ =1.1958)
calculated by the reinforcement model, the final track irregularity amplitude
estimated value O= O' + Err’ =4.5064+1.1958=5.7022mm. This method can
compensate the sample which 1s misjudged as track vertical irregularity fault level
I to track vertical irregularity fault level II.

3.4. Diagnosis result analysis

The confusion matrix of diagnostic results is depicted in Table 4. Each
column of the confusion matrix represents the predicted value (unbolded number),
and each row represents the actual category (bolded number). The results of the
proposed method are highlighted in bold, whereas the results of the BP method are
indicated in regular font with numbers in parentheses. The data-driven BP method
maintains high sensitivity for large samples but lacks sensitivity for small samples.
Due to the limited data, the data-driven model incorrectly assumes that small
samples are insignificant during the training process. Among 207 sets of irregularity
level II samples, this method misdiagnosed 200 sets as irregularity level I samples.
The proposed method achieves a diagnostic accuracy of 99.9% (9196 sets correct)
for 9201 sets of irregularity level I samples. For 207 sets of irregularity level 11
samples, the diagnostic accuracy improves to 96.6% (200 sets correct). For 20 sets
of irregularity level III samples, the diagnostic accuracy increases to 90.0% (19 sets
correct). This proposed method integrates the interpretability of expert systems for
small sample processing with the feature learning ability of data-driven methods for
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large samples, enhancing the diagnostic capacity of data-driven methods for small

samples.

To further validate the effectiveness of the proposed method, this paper
compared the diagnostic performance of the Support Vector Machine (SVM) and
Backpropagation (BP) methods on 9428 sets of track irregularity samples at varying

levels, as presented in Table 5.

Table 4
The confusion matrix of diagnostic results
The confusion matrix of Data-Driven(BP) method and proposed method
Track irregularity Level Level II Level 111 Total Diagnostic
level accuracy
Level I 9196(9195) 5(4) 0(2) 9201 99.9%1(99.9%)
Level II 5(202) 200(5) 2(0) 207 96.6%(2.4%)
Level 111 0(15) 2(5) 18(0) 20 90.0%(0%)
Table 5
The diagnostic accuracy for different levels track irregularity samples
Method Diagnostic accuracy
Level I Level I Level IIT
SVM-test 97.1% 1.5% 0%
BP-test 99.9% 2.4% 0%
Proposed method 99.9% 96.6% 90.0%

-
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Amplitude of track vertical irregularity {mm)

-
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=
f=]

w

Comparison results of small sample diagnosis

Regulations level
True sample
Proposed method
BP-test

SVM-test

100

150

Number of small samples

Fig. 5. The diagnostic results for small samples

250

The diagnostic accuracy of the SVM method for irregularity level I samples
1s 97.1%, while for level II samples, it is only 1.5%, and for level III samples, it is
0%. Similarly, the BP method achieves a diagnostic accuracy of 99.9% for level I
samples, 2.4% for level II samples, and 0% for level III samples. These results
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indicate that both SVM and BP methods struggle to accurately diagnose small
sample sizes. To enhance the clarity of diagnostic performance comparisons for
small samples, this paper categorizes 207 sets of irregularity level II samples and
20 sets of level III samples. The diagnostic results for these small samples are
depicted in Fig. 5. This figure illustrates that both SVM and BP methods have
difficulty fitting the nonlinear trend of small samples. For the irregularity level III
samples, which comprise only 20 data sets, neither method can accurately identify
the irregularities. The proposed method effectively fits the nonlinear trend of small
samples and enhances diagnostic accuracy for larger samples.

4. Conclusion

The amplitude of track irregularities significantly impacts the train safe
operation. A prevalent challenge in diagnosing severe track irregularities is the
contradiction between the small sample size and the high risk they pose. Due to the
limited samples of severe faults, accurately diagnosing these faults is challenging
for traditional models. To address this issue, we propose a reinforcement approach
that incorporates non-uniform quantification and expert knowledge to tackle the
small sample size problem in track irregularity fault diagnosis. The experimental
results demonstrate that expert knowledge systems have significant advantages in
diagnosing high-level track irregularities with limited sample sizes, whereas data-
driven methods inherently excel in identifying low-level track irregularities when
ample samples are available. In industrial electrical and mechanical engineering
field, high-level faults occur infrequently, whereas low-level faults are more
prevalent. Consequently, data on high-level faults is extremely valuable. Relying
solely on data-driven methods for fault diagnosis in these systems can result in the
overshadowing of valuable high-level fault data by the abundance of low-level fault
data. Importantly, high-level faults are often the most dangerous and destructive.
Thus, employing a non-uniform quantization expert knowledge system to enhance
data-driven fault diagnosis methods addresses the limitations of accurately
identifying faults in small samples. This approach is theoretically significant and
offers even greater practical benefits.

Test results indicate that this method holds promise for application in railway
engineering.

This paper concludes with several suggestions for future research: (1) The
proposed method represents a significant effort to address the small sample size
issue in track irregularity fault diagnosis using both data and knowledge. This
approach is not confined to data-driven methods like BP or SVM. (2) While the
proposed method offers a viable solution for the small sample size problem,
exploring state estimation might also be an effective strategy for managing random
disturbances.
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