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OPTIMIZATION OF PROCESS PARAMETERS IN LASER 

MICROGROOVING OF ALUMINA CERAMIC USING 

GENETIC ALGORITHM 

Debabrata DHUPAL1, Salila RANJAN DIXIT2, Sudhansu Ranjan DAS3 

Requirement of micromachining of advance engineering materials are 

extremely demand in present day precision industries as it has extensive application 

in diverse domain like automobile, electronic, biomedical, and aerospace 

engineering. The present paper addresses the modeling and optimization study on 

dimensional deviations of square shaped microgroove in laser micromachining of 

aluminum oxide ceramic material with pulsed Nd:YAG laser by considering air 

pressure, lamp current, pulse frequency, pulse width and cutting speed as process 

parameters. Thirty two sets of laser microgrooving trials based on central composite 

design of experiments are performed and response surface method, artificial neural 

network and genetic algorithm are subsequently applied for mathematical modeling 

and multi response optimization. The performance of the predictive ANN model based 

on 5-8-8-3 architecture, gave the minimum error (MSE=0.000099) and presented 

highly promising to confidence with percentage of error less than 3% while compared 

it with experimental result data set. The ANN model combined with GA leads to 

minimum dimensional deviations corresponding to optimum laser microgrooving 

process parameters 1.2 kgf/cm2 of air pressure, 19.5 A of lamp current, 4 kHz of pulse 

frequency, 6% of pulse width, and 24 mm/s of cutting speed. Finally, the results have 

verified by performing further confirmation experiment. 

Keywords: Laser microgrooving, Aluminum oxide, RSM, ANN, GA. 

1. Introduction 

Advanced engineering ceramics have been widely used in industries 

because of their superior characteristics such as electrical insulation, high hardness, 

low thermal expansion coefficient, corrosion resistance, high temperature 

resistance and low weight-to-strength ratio [1] and particularly these are extremely 

hard-to-cut materials due to extreme brittleness. Owing to these complexities, the 

task to machine a component with deterministic precision becomes challenging. In 

recent past, laser beam machining (LBM) has been explored as an effective and 

emerging process for shaping ceramic materials. Pulsed laser is efficient for 

micromachining of hard-to-cut material because of low pulse width with high peak 

power. Nd:YAG laser beam emit light or photons of shorter wavelength generating 

high power densities and small focused spot diameter better than benefits offered 

by conventional CO2 laser. Laser microgrooving operation considers various 
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micromachining input process parameters like laser power, pulse width, spot size 

and cutting speed were quite compatible as well as close agreement with derived 

energy equation of heat transfer [2,3]. Apart, assist gas pressure substantially affects 

the shape, geometry and dimension of cut during laser micromachining operation 

[4,5]. The present work dealt with microgrooves produced on aluminum oxide 

(Al2O3) flat workpiece by Nd:YAG laser treatment emphasizing explication of 

square microgroove dimension and geometry of the machined quality. During 

square microgrooving operation maintaining of squareness and depth are essential 

owing to implicit focusing quality of the laser machining process. 

When the manufactures are dealing with multiple conflicting objectives, 

modeling technique helps in enhancing the efficacy of machining process. Although 

some theoretical models require simplifications, assumptions and approximations 

for approaching real machining process, don’t consider any undesirable deficiency 

in the process. Therefore, analytical solutions cannot be easily extended to practical 

usage [6], and for this reason adequate modelling is essential to do quality 

predictions in a function of operating conditions. The model development by RSM 

and ANN are convenient methods for product as well as process improvement and 

have received considerable attention by the researchers in the last two decades. 

Moreover, owing to the complicated behavior of the machining processes, where a 

few distinctive and opposing goals must be optimized, at the same time the mono-

objective optimization techniques don't allow to find the comprehensive ideal 

cutting conditions value which fulfills all the execution attributes in machining; 

hence the multi-objective optimization has turned into an undeniably vital and 

challenging assignment [7,8]. For sure, it offers most prominent measure of data 

with a specific end goal to settle on a choice on choosing process parameters in 

machining process. Amid all the optimization techniques, the genetic algorithm 

(GA) has explored as an effective and reliable tool in advanced computing 

technology for the outline of high-quality frameworks as it gives a straightforward, 

proficient, and well-organized way to optimize output, for example, performance, 

cost, and quality.  

Various researchers have employed methods which include statistical and 

analytical approach using RSM [9-15] and ANN [16-21] for mathematical 

modeling in order to predict the responses and GA [22-24] for multi response 

optimization in order to control the process parameters during laser 

micromachining process. The appropriate combination and utilization, along with 

proper adjustment of pre-cited machining parameters are of prime importance for 

acquiring good grade of microgrooving, which generally consumes precious time 

and effort due to the dynamic behavior of the laser micromachining process. Yet 

almost no systematic study has been reported in laser microgrooving operation that 

ensured scope for researchers and also no method currently results in same level of 

efficiency for all process. The novelty of the present study focuses on development 
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of computational as well as empirical models and multi-response parametric 

optimization in microgrooving of aluminum oxide (Al2O3) ceramic material 

through Nd:YAG laser treatment. Particularly, design of experiments (DOEs), 

response surface methodology (RSM), artificial neural network (ANN) and genetic 

algorithm (GA) have been applied for process improvement. The following 

dimensional deviations of the microgroove are addressed; upper width deviation, 

lower width deviation and depth deviation.  

2. Experimental setup and procedure 

Microgrooving experiments were performed on TEM00 operating mode 

using computer numerical control (CNC) pulsed Nd:YAG laser machining system 

(model: SLT-SP2000, make: SLT ltd.) consists of various subsystems. For 

experimentation, the laser beam (focused by the lens with focal length of 50 mm) 

was set at workpiece surface as the focal plane which resulted in laser beam spot 

size of nearly 0.1 mm. Al2O3 flat workpiece was subjected to microgrooving by 

multiple laser pulses using Nd:YAG laser treatment with actual peak power move 

between 0.7 to 5 kW. The compressed as well as regulated gas (here, air) is supplied 

into a fine co-axial nozzle to allow the grooving as per the experimental design. The 

movement of lens is controlled by the CNC Z-axis controller unit for to attain the 

desired height (here, depth) of the microgroove. Multi sawing software is used to 

generate square microgroove of size 200x200x200 micron by setting zero taper 

angle. Prior to machining, the location of workpiece and focusing condition on 

workpiece surface was observed as well as cheeked by CCD camera including CCTV 

monitor in order to govern the position of laser beam spot precisely. 

 

Table 1  

Properties of workpiece material (alumina, Al2O3) 

Properties Units Value 

Density g/c3 3.96 

Specific heat J/kgK 775 

Thermal conductivity (cal/s)/(cm2C/cm) 
0.072 to 100oC 

0.15 to 1000oC 

Compressive strength MPa 2500 

Modulus of elasticity GPa 393 

Hardness GPa 1800, HB-30 

Fracture toughness MPa-√m 4 

Sintering temperature oC 1600 

Melting temperature oC 2050 

 

In the present work response surface methodology (RSM) as well as 

artificial neural network (ANN) were considered for mathematical modelling and 

genetic algorithm (GA) for multi-objective optimization by utilizing the 

observational data based on design of experiments (DOEs). Aluminum oxide 
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(Al2O3) plate of size 30 mm x 30 mm was chosen as workpiece material for the 

experimentation. The various leading properties of aluminum oxide are presented 

in Table 1. 
Table 2  

Process parameters and levels 

Parameters Unit Levels 

-2 -1 0 1 2 

Air pressure (X1) kgf/cm2 0.4 0.8 1.2 1.6 2.0 

Lamp current (X2) A 14.5 17 19.5 22 24.5 

Pulse frequency (X3)  kHz 1 2 3 4 5 

Pulse width (X4) % 0 2 4 6 8 

Cutting speed (X5) mm/s 12 16 20 24 28 

Table 3 

Design of experimental plan and experimental results 

Test 

no. 

Actual setting of 

parameters 

Dimensions of microgroove 

(mm) 

Dimensional deviations of microgroove 

(mm) 

X1 X2 X3 X4 X5 
Upper 

width 

Lower 

width 
Depth 

Upper width 

deviation 

Lower width 

deviation 

Depth 

deviation 

1 1.6 17.0 2 2 16 0.1967 0.1390 0.160 -0.003 -0.061 -0.040 

2 0.8 22.0 2 2 16 0.2210 0.2020 0.200 0.021 0.002 0.000 

3 1.6 17.0 4 6 16 0.1840 0.1550 0.168 -0.016 -0.045 -0.032 

4 1.6 22.0 4 6 24 0.2154 0.1910 0.212 0.0154 -0.009 0.012 

5 0.8 17.0 4 2 16 0.1930 0.1280 0.162 -0.007 -0.072 -0.038 

6 1.2 24.5 3 4 20 0.2330 0.2005 0.234 0.033 0.001 0.034 

7 1.2 19.5 3 4 28 0.2490 0.1620 0.209 0.049 -0.038 0.009 

8 1.2 19.5 3 4 20 0.2210 0.1355 0.165 0.011 -0.064 -0.035 

9 1.2 19.5 3 4 20 0.2054 0.1525 0.176 0.005 -0.047 -0.024 

10 1.2 19.5 3 0 20 0.2137 0.1565 0.142 0.013 -0.043 -0.058 

11 1.6 22.0 4 2 16 0.2062 0.1495 0.164 0.006 -0.050 -0.036 

12 1.2 19.5 3 4 20 0.1950 0.1350 0.202 -0.005 -0.065 0.002 

13 0.4 19.5 3 4 20 0.1853 0.1295 0.164 -0.014 -0.070 -0.036 

14 1.2 19.5 3 8 20 0.1792 0.1295 0.149 -0.021 -0.070 -0.051 

15 0.8 22.0 4 2 24 0.1915 0.1365 0.185 -0.008 -0.063 -0.015 

16 1.2 19.5 3 4 12 0.2090 0.1265 0.189 0.009 -0.073 -0.011 

17 0.8 17.0 4 6 24 0.2040 0.1135 0.159 0.004 -0.086 -0.041 

18 0.8 17.0 2 6 16 0.1956 0.1255 0.136 -0.004 -0.074 -0.063 

19 1.6 22.0 2 6 16 0.1915 0.1745 0.193 -0.008 -0.025 -0.006 

20 1.2 19.5 5 4 20 0.1996 0.1700 0.163 -0.001 -0.030 -0.037 

21 1.2 19.5 3 4 20 0.2060 0.1430 0.155 0.006 -0.057 -0.045 

22 2.0 19.5 3 4 20 0.1995 0.1470 0.142 -0.001 -0.053 -0.058 

23 1.2 19.5 3 4 20 0.1992 0.1420 0.142 -0.001 -0.058 -0.057 

24 0.8 17.0 2 2 24 0.2040 0.1440 0.132 0.004 -0.056 -0.067 

25 0.8 22.0 4 6 16 0.2050 0.1425 0.228 0.005 -0.057 0.028 

26 0.8 22.0 2 6 24 0.2370 0.1735 0.183 0.037 -0.026 -0.016 

27 1.6 22.0 2 2 24 0.2316 0.1700 0.205 0.032 -0.030 0.005 

28 1.2 14.5 3 4 20 0.1940 0.1190 0.117 -0.006 -0.081 -0.083 

29 1.6 17.0 2 6 24 0.1907 0.1255 0.120 -0.009 -0.074 -0.080 
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30 1.6 17.0 4 2 24 0.2160 0.1535 0.126 0.016 -0.046 -0.074 

31 1.2 19.5 1 4 20 0.2125 0.2091 0.170 0.012 0.009 -0.030 

32 1.2 19.5 3 4 20 0.2067 0.1630 0.168 0.006 -0.037 -0.032 

 

 

Fig. 1 Schematic of experimental setup and methodology presented 
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In the current investigation air pressure, lamp current, pulse frequency, 

pulse width and cutting speed are considered to be the process parameters which 

affect the response of interest in laser microgrooving operation namely upper width 

deviation, lower width deviation and depth deviation. The identified process 

parameters and their associated levels are presented in Table 2. Using the selected 

factors (five) and parameters levels (five), a design matrix was formulated in 

conformance with central composite design (CCD) design of experiments (DOEs) 

associated with thirty two (32) experimental runs. Design of experimental plan with 

actual value of process parameters, measured responses and estimated deviation 

parameters are presented in Table 3. The different dimensional deviations 

(responses) of machined micro-groove were measured by utilizing optical 

microscope (model: STM6, make: Olympus) at the magnification level of 10X. 

Figure 1 shows the schematic layout of the experimental setup for Nd:YAG laser 

machining unit with methodology followed in the current study.  

The various dimensional deviations like: (i) upper width deviation (YUWD) 

is calculated by taking the difference between actual upper width (YAUW) and target 

upper width (YTUW), (ii) for lower width deviation (YLWD) is calculated by 

considering the variation between actual lower with (YALW) and target lower width 

(YTLW), and (iii) in case of depth deviation (YDD) is similarly estimated by 

subtracting target depth (YTD) from actual depth (YAD). 

 

3. Results and Discussion 

3.1 Model prediction using response surface methodology 

 

Response surface methodology is an integration of mathematical as well as 

statistical technique, useful for modeling [25] in various fields of engineering. In 

RSM, the second-order quadratic equation is the most common response model and 

the approximation of the response function is obtained in the form of predictive 

variables by establishing the relationship between input parameters and desired 

responses (output).This is usually expressed in following equation, 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑖𝑋𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖

𝑘
𝑖=1 𝑋𝑖

2 + ∑ .𝑖 ∑ 𝛽𝑖𝑗𝑋𝑖𝑗 𝑋𝑗,                               (1) 

where Y is the estimated response, β0 is the constant, βi , βii and βij represents the 

coefficients of linear, quadratic and cross-product terms respectively. X reveals the 

coded variables that correspond to the studied process parameters.  

The empirical models in the form of quadratic regression equations to 

predict the various dimensional deviations of microgroove (YUWD, YLWD, and YDD) 

with air pressure (X1), lamp current (X2),  pulse frequency (X3), pulse width (X4) 

and cutting speed (X5) are given below. Later these proposed regression models are 

employed as objective functions for multi response optimization via genetic 

algorithm (GA). The upper width deviation (YUWD) is presented in Eq. (2). Its 
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coefficients of determination (experimental and adjusted) are R2 = 89.1%, R2 (adj.) 

= 87%, respectively. 

YUWD = 0.00448 + 0.01610X1 – 0.00657X2 – 0.00882X3 + 0.01477X4 + 0.00079X5 

+ 0.007279X1
2 - 0.00016X2

2 – 0.00971X3
2 + 0.02279X4

2 – 0.01381X5
2 - 

0.01822X1X2 + 0.00848X1X3 + 0.00157X1X4 – 0.00015X1X5 + 

0.01003X2X3 - 0.00497X2X4 - 0.01880X2X5 + 0.01123X3X4 - 

0.02525X3X5 + 0.01335X4X5,                                                                   (2) 

The lower width deviation (YLWD) is presented in Eq. (3). Its coefficients of 

determination (experimental and adjusted) are R2 = 91.7%, R2 (adj.) = 90.1%, 

respectively. 

YLWD = -0.05375 + 0.03488X1 - 0.01356X2 - 0.00629X3 + 0.00521X4 + 0.01063X5 

+ 0.01026X1
2 + 0.04006X2

2 – 0.0649X3
2 – 0.00524X4

2 – 0.01124X5
2 + 

0.029121X1X2 + 0.01713X1X3 + 0.00338X1X4 – 0.00788X1X5 + 

0.02262X2X3 + 0.01188X2X4 + 0.04113X2X5 + 0.00513X3X4 + 

0.02237X3X5 + 0.01313X4X5,                                                                  (3) 

The depth deviation (YDD) is presented in Eq. (4). Its coefficients of 

determination (experimental and adjusted) are R2 = 89.4%, R2 (adj.) = 87.4%, 

respectively. 

YDD = -0.03239 + 0.05355X1 + 0.00489X2 + 0.00675X3 – 0.00405X4 - 0.00671X5 

+ 0.00972X1
2 + 0.00057X2

2 – 0.02018X3
2 + 0.03322X4

2 – 0.01293X5
2 - 

0.01464X1X2 + 0.01499X1X3 + 0.02249X1X4 – 0.00094X1X5 + 

0.04886X2X3 + 0.00236X2X4 - 0.02251X2X5 - 0.00371X3X4 + 0.00236X3X5 

+ 0.01136X4X5.                                                                                                (4) 

 

3.2 Model prediction using artificial neural network 

 

Artificial neural network has been turned into designed to mimic the linear 

order characteristics of structure inter-linked nerve cells of human brain called 

biological neurons. Briefly, a group of certain inputs are mostly employed, every 

of one which designate the output of any other neuron. Every input is multiplied by 

an associated weight corresponding a synaptic connection, and these are summed 

up to establish the actuation standard of the neuron. 

In this work, artificial neural network is applied to propose a model to train 

in order that a set of inputs to return the appropriated or useful set of outputs. ANN 

uses milti-layer architecture consisting of different layers (input, hidden and output) 

for solving the non-linear and complex problems with the help of feed-forward 

back-propagation training algorithm [26]. Usually, in back propagation NN, the net 

input is expressed as follows:  

Yj=∑ 𝑤𝑖𝑗𝑥𝑖
𝑖=𝑛
𝑖=1 ,                                                      (5) 
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 And the network output (Zj) of each neuron i is obtained by processing the 

net input via an activation or transfer function (here, tangent hyperbolic type) as 

follows: 

𝑍𝑗 = 𝑓(𝑌𝑗) =  
1−𝑒

−𝑌𝑗

1+ 𝑒
−𝑌𝑗

.                                                        (6) 

where Yj net input considered as linear combination of input variables in terms of 

weights, j number of neurons, n is the input parameters, xi is the input parameter i 

of the network, wij represents the synaptic weight to jth neuron in the output layer 

from the ith neuron in the previous layer. 

 

 
Fig. 4 Developed 5-8-8-3 ANN architecture 

 

In this study, many network architectures were tried, prior to use the optimal 

neural network architecture of 5-8-8-3 (with the lowest MSE), which is shown in 

Fig. 4. The network consist of one input layer which have five neuron, two hidden 

layer which have eight neuron each and there output layer which have three neuron 

severally. For calculation of connection weights requires a set of desired network 

output values which are occasionally referred as training data set. The desired 

output values are generated utilizing experimental data set, as reflected in Table 3. 

The Matlab function TRAINGD was used for reforming the data of the network 

which functions on the back propagation algorithm [27]. TRAINGD is a network 

training function which works in accordance to gradient descent method which is 

used to update the weight variable repetitively and also to reduce the mean-square-

error (MSE) between expected data and training data set. The change in weight 

variables is given in Eq. (7).  

∆𝑤𝑖𝑗 =  −ƞ
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑍𝑗;                                               (7) 
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where E is the mean-square-error estimating the gradient of the error,  is the 

learning rate parameter generally control the stability and rate of convergence of 

the ANN model.  is considered as 0.0001 which is the constant value of learning 

rate. The MSE value calculated from the ANN is found to be 0.000099. Figure 5 

shows the data observed based on experiment of ANN training by means of 

MATLAB. 
 

 

 
Fig. 5 Generation curve: MSE versus epochs during training and validation session 

 

The results data obtained from experimentation and predicted data received 

by neural network were compared. Out of the 32 experimental data received in 

accordance with DOEs, 29 data was performed for training of the neural network 

model. Subsequently, the remaining three (32-29) experimental results (check data) 

were compared with trained ANN model. Tables 4 and 5 showed the comparison 

results between the experimental and ANN for 3 check data set and 29 training set, 

respectively. It can be seen that, a close agreement between the ANN prediction 

and the experimental results. Figures 6-8 compare the ANN prediction results for 

upper width, lower width and depth with the results of experiment for training and 

check data set. It is observed that the variation in ANN and experimental result is 

under 3%, which avoids the misleading conclusion to consider reliable model, 

particularly ANN for predicting the responses satisfactorily under pre-cited process 

parameters in laser microgrooving operations. 
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Table 4 

Check data set for testing ANN model and comparison results of predicted and measured 

dimensions of microgroove 

Test 

No. 

Responses in mm 

Upper width Lower width Depth 

ANN pred. Experimental 

result 

ANN pred. Experimental 

result 

ANN pred. Experimental 

result 

1 0.18640 0.1840 0.1979 0.202 0.2130 0.2127 

2 0.2142 0.21375 0.1499 0.1525 0.1640 0.1621 

3 0.2031 0.2050 0.1279 0.1255 0.1168 0.12 

 

Table 5 

Training data set for testing ANN model and comparison results of predicted and measured 

dimensions of microgroove 

Sl. 

No. 

Responses in mm 

Upper width Lower width Depth 

ANN  

pred. 

Experimental 

result 

ANN 

pred. 

Experimental 

result 

ANN 

pred. 

Experimental 

result 

1 0.1958 0.1967 0.1341 0.1390 0.1601 0.1600 

2 0.2215 0.2210 0.1534 0.1550 0.1932 0.2000 

3 0.2163 0.2154 0.1715 0.1910 0.1667 0.1680 

4 0.1206 0.1930 0.1262 0.1280 0.1524 0.1620 

5 0.2327 0.2330 0.1931 0.2005 0.2323 0.2343 

6 0.2131 0.2490 0.1515 0.1620 0.1688 0.2090 

7 0.2003 0.2210 0.1468 0.1355 0.1669 0.1650 

8 0.2003 0.2054 0.1534 0.1565 0.1758 0.1760 

9 0.2073 0.2062 0.1479 0.1495 0.1522 0.1420 

10 0.2003 0.1950 0.1468 0.1350 0.1609 0.1640 

11 0.2035 0.1853 0.1297 0.1295 0.1636 0.1640 

12 0.1789 0.1792 0.1348 0.1295 0.1517 0.1495 

13 0.2131 0.1915 0.1516 0.1365 0.1819 0.1850 

14 0.209 0.2090 0.1292 0.1265 0.1898 0.1893 

15 0.2039 0.2040 0.1114 0.1135 0.1605 0.1590 

16 0.1957 0.1956 0.1242 0.1255 0.1407 0.1367 

17 0.1918 0.1915 0.1714 0.1745 0.1946 0.1937 

18 0.1996 0.1996 0.1659 0.1700 0.1685 0.1630 

19 0.2003 0.2060 0.1468 0.1430 0.1669 0.1550 

20 0.2024 0.1995 0.1569 0.1470 0.1305 0.1420 

21 0.2003 0.1992 0.1468 0.1420 0.1669 0.1427 

22 0.2124 0.2040 0.1371 0.1440 0.1336 0.1327 

23 0.2371 0.2370 0.1396 0.1425 0.2295 0.2280 

24 0.2316 0.2316 0.1853 0.1735 0.1909 0.1832 

25 0.1937 0.1940 0.194 0.1700 0.2058 0.2057 

26 0.2035 0.1907 0.1234 0.1190 0.1229 0.1170 

27 0.215 0.2160 0.1589 0.1535 0.127 0.1260 

28 0.2151 0.2125 0.1861 0.2091 0.1698 0.1700 

29 0.2003 0.2067 0.1468 0.1630 0.1669 0.1683 
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Fig. 6 Graphical comparison of predicted ANN with measured (a) check data, and (b) training data 

set of upper width 

 
Fig. 7 Graphical comparison of predicted ANN with measured (a) check data, and (b) training data 

set of lower width 
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Fig. 8 Graphical comparison of predicted ANN with measured (a) check data, and (b) training data 

set of depth 

3.3 Optimization using genetic algorithm  

 

Genetic algorithm is a population-based search methodology for solving 

optimization problems stochastically that is based on the mechanism of natural 

selection that simulates the biological progression process developed from 

Darwin’s theory of survival of the fittest [28]. In this systematic method, originally 

a set of possible solutions or chromosomes (normally as a string of genes) are 

randomly chosen, which serves as the generation (initial population). In GA, new 

generations are created by five major operations such as encoding (ranks and 

signifies the chromosomes by means of a string of bits); selection (choosing better 

fitness function value for minimization or maximization problems); reproduction 

(pairing the chromosomes by probabilistically to reproduce new generation); 

crossover (interchanging the information and genes between chromosomes); and 

mutation (flipping a particular bit of a chromosome to obtain smart convergence). 

This process continues in a repetitive manner until the chromosomes have the best 

fitness or potential (optimum) solution for a specific problem is obtained. 

Immediately after the new generation is created, it is further assessed and checked 

through experimentation for the conformability and agreement [29]. 

In this work Matlab toolbox was utilized for optimization purpose by 

implementing GA technique with the aim to minimize the dimensional deviation. 

In laser microgrooving, multi-objective optimization problem can be formally 

defined in following manner: 
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Find: input parameter (X1, X2, X3, X4, and X5),                                                    (8) 

Minimize: f (YUWD, YLWD, and YDD),                                                                    (9) 

Allowable range of parameters are: 0.4kgf/cm2 ≤ air pressure (X1) ≤ 2.0kgf/cm2, 

14.5A ≤ lamp current (X2) ≤ 24.5A, 1kHz ≤ pulse frequency (X3) ≤ 5kHz, 0% ≤ 

pulse width (X4) ≤ 8%, and 12mm/s ≤ cutting speed (X5) ≤ 28mm/s                          (10) 

Here for mathematical descriptions, the objective function f(YUWD), 

f(YLWD) and f(YDD) are developed by RSM model Eqs. (2)-(4) for deviation of 

upper width, lower width and depth, respectively. Figure 9 presents the 

optimization history, which aims to minimize the various dimensional deviations 

(YUPD, YLWD, YDD) of microgroove in the presence of algorithm-specific parameters 

of GA. In the present study, the critical (algorithm-specific) parameters are taken 

concerning population size of 250, mutation rate of 0.10, crossover rate of 1.0, 

number of genes in each population member equal to 20, and maximum number of 

iterations equal to 500. By solving the optimization problem with GA, the 

optimized process parameters for minimizing microgrooving variables in laser 

machining of aluminum oxide (Al2O3) ceramic material are pressure 1.2 kgf/cm2, 

lamp current 19.5 A, pulse frequency 4 kHz, pulse width 6%, cutting speed 24 

mm/s, with estimated deviations of upper width (UWD) of -0.0278 mm, lower 

width (LWD) of 0.0102 mm and depth (DD) of -0.0308 mm. Same has presented 

in Table 6. 

 

 
Fig. 9 GA based multi-objective optimization results for upper width, lower width and depth 

 

Table 6 

Dimensional deviations of microgroove under GA-based optimum parametric conditions 

Optimum process parameters Targeted output in mm Dimensional deviations in mm 

Lamp 

current 

(A) 

Pulse 

frequency 

(kHz) 

Pulse 

width 

(%) 

Air  

pressure 

(kgf/cm2) 

Cutting  

speed 

(mm/s) 

Upper 

width 

Lower 

width 

Depth Upper 

width 

deviation 

Lower 

width 

deviation 

Depth 

deviation 

19.5  4 kHz 6 1.2  24  0.2 0.2 0.2 -0.0278 0.0102 -0.0308 
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Table 7  

Comparison results of ANN prediction, GA-based optimization and actual experimentally 

observed dimensional deviations of microgroove on Al2O3 

Responses 

ANN prediction in 

accordance with GA 

process parameters 

Optimization 

result based on 

GA 

Experimental result in 

accordance with GA process 

parameters 

Upper width deviation -0.025 -0.0278 -0.0261 

Lower width deviation 0.0098 0.0102 0.0110 

Depth deviation -0.0276 -0.0308 -0.0301 

Finally, an additional experiment is performed with the optimal 

configuration (suggested by GA) in order to compare this result with the ANN 

prediction model using same pre-cited optimum conditions, are listed in Table 7. 

As can be seen, the experimental result obtained by confirmation test, matches the 

predicted results obtained by ANN and GA fairly well with a realistic degree of 

approximation. Therefore, the proposed approach (RSM-ANN-GA) can be 

effectively used to predict the various responses in laser microgrooving operation. 

The comparison results of ANN-GA-Experimental are presented in Fig. 10, which 

predicts upper width and depth are continuously negative while lower width is 

constantly positive. 

 
Fig. 10 Comparison of ANN, GA and experimental results 

4. Conclusions 

 

In the present study, design of experiments (DOEs), response surface 

methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA) 

have been applied for experimentation, mathematical modeling and multi response 

optimization of laser microgrooving operation on aluminum oxide ceramic 

workpiece. Based on the series of experiment and analysis of results, the following 

conclusions are drawn. 

• The quadratic (second order) mathematical model proposed for various 

dimensional deviations of microgroove using RSM not only capable of 

achieving precise required dimension of microgrooves on aluminum oxide but 

also useful for predicting new experiments. 

• The performance of predictive ANN model based on 5-8-8-3 architecture, gave 

the minimum error (MSE = 0.000099) and presented highly promising to 
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confidence with percentage of error less than 3% while compared it with 

experimental result data sets. 

• Optimization employing GA technique shows the optimal setting of process 

parameters in microgrooving operation of aluminum oxide by Nd:YAG laser 

treatment at lamp current of 19.5 A, pulse frequency of 4 kHz, pulse width 6%, 

cutting speed of 24 mm/s and air pressure of 1.2 kgf/cm2 with estimated minimal 

deviation of upper width -0.0278 mm, lower width 0.0102 mm and depth -

0.0308 mm.  

• The present research based on GA, ANN, and statistically multi-regression 

analysis (RSM) have demonstrated the ability to optimize and to accurately 

model the dimensional deviations of microgroove through advances in 

computer technology. 

• The proposed multiple approaches (experimental, evolutional, statistic, and 

stochastic) present reliable methodologies to improve laser microgrooving 

process and they can be employed in real-time process monitoring, model 

predictive control and optimization in several machining processes.   
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