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OPTIMIZATION OF PROCESS PARAMETERS IN LASER
MICROGROOVING OF ALUMINA CERAMIC USING
GENETIC ALGORITHM

Debabrata DHUPAL?, Salila RANJAN DIXIT?, Sudhansu Ranjan DAS?®

Requirement of micromachining of advance engineering materials are
extremely demand in present day precision industries as it has extensive application
in diverse domain like automobile, electronic, biomedical, and aerospace
engineering. The present paper addresses the modeling and optimization study on
dimensional deviations of square shaped microgroove in laser micromachining of
aluminum oxide ceramic material with pulsed Nd:YAG laser by considering air
pressure, lamp current, pulse frequency, pulse width and cutting speed as process
parameters. Thirty two sets of laser microgrooving trials based on central composite
design of experiments are performed and response surface method, artificial neural
network and genetic algorithm are subsequently applied for mathematical modeling
and multi response optimization. The performance of the predictive ANN model based
on 5-8-8-3 architecture, gave the minimum error (MSE=0.000099) and presented
highly promising to confidence with percentage of error less than 3% while compared
it with experimental result data set. The ANN model combined with GA leads to
minimum dimensional deviations corresponding to optimum laser microgrooving
process parameters 1.2 kgf/cm? of air pressure, 19.5 A of lamp current, 4 kHz of pulse
frequency, 6% of pulse width, and 24 mm/s of cutting speed. Finally, the results have
verified by performing further confirmation experiment.
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1. Introduction

Advanced engineering ceramics have been widely used in industries
because of their superior characteristics such as electrical insulation, high hardness,
low thermal expansion coefficient, corrosion resistance, high temperature
resistance and low weight-to-strength ratio [1] and particularly these are extremely
hard-to-cut materials due to extreme brittleness. Owing to these complexities, the
task to machine a component with deterministic precision becomes challenging. In
recent past, laser beam machining (LBM) has been explored as an effective and
emerging process for shaping ceramic materials. Pulsed laser is efficient for
micromachining of hard-to-cut material because of low pulse width with high peak
power. Nd:YAG laser beam emit light or photons of shorter wavelength generating
high power densities and small focused spot diameter better than benefits offered
by conventional CO; laser. Laser microgrooving operation considers various
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micromachining input process parameters like laser power, pulse width, spot size
and cutting speed were quite compatible as well as close agreement with derived
energy equation of heat transfer [2,3]. Apart, assist gas pressure substantially affects
the shape, geometry and dimension of cut during laser micromachining operation
[4,5]. The present work dealt with microgrooves produced on aluminum oxide
(Al203) flat workpiece by Nd:YAG laser treatment emphasizing explication of
square microgroove dimension and geometry of the machined quality. During
square microgrooving operation maintaining of squareness and depth are essential
owing to implicit focusing quality of the laser machining process.

When the manufactures are dealing with multiple conflicting objectives,
modeling technigue helps in enhancing the efficacy of machining process. Although
some theoretical models require simplifications, assumptions and approximations
for approaching real machining process, don’t consider any undesirable deficiency
in the process. Therefore, analytical solutions cannot be easily extended to practical
usage [6], and for this reason adequate modelling is essential to do quality
predictions in a function of operating conditions. The model development by RSM
and ANN are convenient methods for product as well as process improvement and
have received considerable attention by the researchers in the last two decades.
Moreover, owing to the complicated behavior of the machining processes, where a
few distinctive and opposing goals must be optimized, at the same time the mono-
objective optimization techniques don't allow to find the comprehensive ideal
cutting conditions value which fulfills all the execution attributes in machining;
hence the multi-objective optimization has turned into an undeniably vital and
challenging assignment [7,8]. For sure, it offers most prominent measure of data
with a specific end goal to settle on a choice on choosing process parameters in
machining process. Amid all the optimization techniques, the genetic algorithm
(GA) has explored as an effective and reliable tool in advanced computing
technology for the outline of high-quality frameworks as it gives a straightforward,
proficient, and well-organized way to optimize output, for example, performance,
cost, and quality.

Various researchers have employed methods which include statistical and
analytical approach using RSM [9-15] and ANN [16-21] for mathematical
modeling in order to predict the responses and GA [22-24] for multi response
optimization in order to control the process parameters during laser
micromachining process. The appropriate combination and utilization, along with
proper adjustment of pre-cited machining parameters are of prime importance for
acquiring good grade of microgrooving, which generally consumes precious time
and effort due to the dynamic behavior of the laser micromachining process. Yet
almost no systematic study has been reported in laser microgrooving operation that
ensured scope for researchers and also no method currently results in same level of
efficiency for all process. The novelty of the present study focuses on development
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of computational as well as empirical models and multi-response parametric
optimization in microgrooving of aluminum oxide (Al>O3) ceramic material
through Nd:YAG laser treatment. Particularly, design of experiments (DOES),
response surface methodology (RSM), artificial neural network (ANN) and genetic
algorithm (GA) have been applied for process improvement. The following
dimensional deviations of the microgroove are addressed; upper width deviation,
lower width deviation and depth deviation.

2. Experimental setup and procedure

Microgrooving experiments were performed on TEMoo operating mode
using computer numerical control (CNC) pulsed Nd:YAG laser machining system
(model: SLT-SP2000, make: SLT Itd.) consists of various subsystems. For
experimentation, the laser beam (focused by the lens with focal length of 50 mm)
was set at workpiece surface as the focal plane which resulted in laser beam spot
size of nearly 0.1 mm. Al,Oz flat workpiece was subjected to microgrooving by
multiple laser pulses using Nd:YAG laser treatment with actual peak power move
between 0.7 to 5 kW. The compressed as well as regulated gas (here, air) is supplied
into a fine co-axial nozzle to allow the grooving as per the experimental design. The
movement of lens is controlled by the CNC Z-axis controller unit for to attain the
desired height (here, depth) of the microgroove. Multi sawing software is used to
generate square microgroove of size 200x200x200 micron by setting zero taper
angle. Prior to machining, the location of workpiece and focusing condition on

workpiece surface was observed as well as cheeked by CCD camera including CCTV
monitor in order to govern the position of laser beam spot precisely.

Table 1
Properties of workpiece material (alumina, Al203)
Properties Units Value
Density g/c? 3.96
Specific heat J/kgK 775
- ) 0.072 to 100°C
Thermal conductivity (cal/s)/(cm*C/cm) 0.15 1o 1000°C
Compressive strength MPa 2500
Modulus of elasticity GPa 393
Hardness GPa 1800, HB-30
Fracture toughness MPa-Vm 4
Sintering temperature °C 1600
Melting temperature °C 2050

In the present work response surface methodology (RSM) as well as
artificial neural network (ANN) were considered for mathematical modelling and
genetic algorithm (GA) for multi-objective optimization by utilizing the
observational data based on design of experiments (DOEs). Aluminum oxide
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(Al203) plate of size 30 mm x 30 mm was chosen as workpiece material for the
experimentation. The various leading properties of aluminum oxide are presented
in Table 1.

Table 2
Process parameters and levels
Parameters Unit Levels
-2 -1 0 1 2
Air pressure (X1) kgflcm? 0.4 0.8 1.2 1.6 2.0
Lamp current (X2) A 145 17 19.5 22 24.5
Pulse frequency (Xs) kHz 1 2 3 4 5
Pulse width (X4) % 0 2 4 6 8
Cutting speed (Xs) mm/s 12 16 20 24 28
Table 3

Design of experimental plan and experimental results

Test| Actual setting of |Dimensions of microgroove| Dimensional deviations of microgroove
no. parameters (mm) (mm)
Upper | Lower Upper width| Lower width Depth
Xi| X X3 Xa| Xs wFi)gth width | DePth ggviation deviation devigtion
1 1161702 |2 |16/ 0.1967 | 0.1390 | 0.160 -0.003 -0.061 -0.040
2 10.8[220|2|2]16] 0.2210 | 0.2020 | 0.200 0.021 0.002 0.000
3 |16(170|4|6]16] 0.1840 | 0.1550 | 0.168 -0.016 -0.045 -0.032
4 11.6/22.0][4 |6 (24| 0.2154 | 0.1910 | 0.212 0.0154 -0.009 0.012
5 |08[17.0/4|2|16] 0.1930 | 0.1280 | 0.162 -0.007 -0.072 -0.038
6 [1.2]245|3|4]20] 0.2330 | 0.2005 | 0.234 0.033 0.001 0.034
7 [12]195|3|4]28] 0.2490 | 0.1620 | 0.209 0.049 -0.038 0.009
8 [1.2]195|3|4]20] 0.2210 | 0.1355 | 0.165 0.011 -0.064 -0.035
9 |12]195|3|4]20] 0.2054 | 0.1525 | 0.176 0.005 -0.047 -0.024
10 [1.2]195]3 |0 [20] 0.2137 | 0.1565 | 0.142 0.013 -0.043 -0.058
11 [1.6]22.0] 4|2 |16] 0.2062 | 0.1495 | 0.164 0.006 -0.050 -0.036
12 [1.2]195]3 |4 (20| 0.1950 | 0.1350 | 0.202 -0.005 -0.065 0.002
13 |0.4]195]3 |4 (20| 0.1853 | 0.1295 | 0.164 -0.014 -0.070 -0.036
14 [1.2]195]3 |8 (20| 0.1792 | 0.1295 | 0.149 -0.021 -0.070 -0.051
15 [0.8]22.0] 4|2 |24] 0.1915 | 0.1365 | 0.185 -0.008 -0.063 -0.015
16 [1.2]195]3 |4 [12] 0.2090 | 0.1265 | 0.189 0.009 -0.073 -0.011
17 10.8]17.0| 4| 6 [24] 0.2040 | 0.1135 | 0.159 0.004 -0.086 -0.041
18 |0.8]17.0| 2|6 [16] 0.1956 | 0.1255 | 0.136 -0.004 -0.074 -0.063
19 [1.6]22.0]2 |6 [16] 0.1915 | 0.1745 | 0.193 -0.008 -0.025 -0.006
20 11.21195]|5|4]20| 0.1996 | 0.1700 | 0.163 -0.001 -0.030 -0.037
21 11.21195|3 |4 ]20| 0.2060 | 0.1430 | 0.155 0.006 -0.057 -0.045
22 12.0]195[3 |4 ]20| 0.1995 | 0.1470 | 0.142 -0.001 -0.053 -0.058
23 11.21195[3 |4 ]20| 0.1992 | 0.1420 | 0.142 -0.001 -0.058 -0.057
24 10.8|17.0[2 |2 |24]| 0.2040 | 0.1440 | 0.132 0.004 -0.056 -0.067
25 10.8/22.0]4 |6 |16| 0.2050 | 0.1425 | 0.228 0.005 -0.057 0.028
26 10.8122.0|2 |6 |24| 0.2370 | 0.1735 | 0.183 0.037 -0.026 -0.016
27 11.6]122.0[2 |2 |24| 0.2316 | 0.1700 | 0.205 0.032 -0.030 0.005
28 11.21145]3 |4 ]20| 0.1940 | 0.1190 | 0.117 -0.006 -0.081 -0.083
29 |16)17.0] 2|6 |24] 0.1907 | 0.1255 | 0.120 -0.009 -0.074 -0.080
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30 |16/170|4 ]2 |24| 0.2160 | 0.1535 | 0.126 0.016 -0.046 -0.074
31 |1.2/195|1]4]20] 0.2125 | 0.2091 | 0.170 0.012 0.009 -0.030
32 [1.2]195]3]4]20| 0.2067 | 0.1630 | 0.168 0.006 -0.037 -0.032
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Fig. 1 Schematic of experimental setup and methodology presented
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In the current investigation air pressure, lamp current, pulse frequency,
pulse width and cutting speed are considered to be the process parameters which
affect the response of interest in laser microgrooving operation namely upper width
deviation, lower width deviation and depth deviation. The identified process
parameters and their associated levels are presented in Table 2. Using the selected
factors (five) and parameters levels (five), a design matrix was formulated in
conformance with central composite design (CCD) design of experiments (DOESs)
associated with thirty two (32) experimental runs. Design of experimental plan with
actual value of process parameters, measured responses and estimated deviation
parameters are presented in Table 3. The different dimensional deviations
(responses) of machined micro-groove were measured by utilizing optical
microscope (model: STM6, make: Olympus) at the magnification level of 10X.
Figure 1 shows the schematic layout of the experimental setup for Nd:YAG laser
machining unit with methodology followed in the current study.

The various dimensional deviations like: (i) upper width deviation (Yuwp)
is calculated by taking the difference between actual upper width (Y auw) and target
upper width (Ytuw), (ii) for lower width deviation (Yowp) is calculated by
considering the variation between actual lower with (Y aLw) and target lower width
(Y7uw), and (iii) in case of depth deviation (Ypp) is similarly estimated by
subtracting target depth (Y1p) from actual depth (Y ap).

3. Results and Discussion
3.1 Model prediction using response surface methodology

Response surface methodology is an integration of mathematical as well as
statistical technique, useful for modeling [25] in various fields of engineering. In
RSM, the second-order quadratic equation is the most common response model and
the approximation of the response function is obtained in the form of predictive
variables by establishing the relationship between input parameters and desired
responses (output).This is usually expressed in following equation,

Y =Bo+ X BuXi + Tl Bu XZ + X0 X5 BiiXi X;, (1)
where Y is the estimated response, Po is the constant, i, Bii and Bij represents the
coefficients of linear, quadratic and cross-product terms respectively. X reveals the
coded variables that correspond to the studied process parameters.

The empirical models in the form of quadratic regression equations to
predict the various dimensional deviations of microgroove (Yuwb, Yviwp, and Ypp)
with air pressure (X1), lamp current (Xz), pulse frequency (Xs), pulse width (X4)
and cutting speed (Xs) are given below. Later these proposed regression models are
employed as objective functions for multi response optimization via genetic
algorithm (GA). The upper width deviation (Yuwp) is presented in Eq. (2). Its
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coefficients of determination (experimental and adjusted) are R? = 89.1%, R? (adj.)

= 87%, respectively.

Yuwp = 0.00448 + 0.01610X1 — 0.00657X2 — 0.00882X3 + 0.01477X4 + 0.00079Xs
+0.007279X:2 - 0.00016X22 — 0.00971X5? + 0.02279X42 — 0.01381Xs? -
0.01822X1X> + 0.00848X:1X3 + 0.00157X1Xs — 0.00015X:Xs +
0.01003X2Xs - 0.00497X2Xs - 0.01880X2Xs + 0.01123X3Xs -
0.02525X3X5 + 0.01335X4Xs, (2

The lower width deviation (YLwp) is presented in Eq. (3). Its coefficients of

determination (experimental and adjusted) are R? = 91.7%, R? (adj.) = 90.1%,

respectively.

YwLwp = -0.05375 + 0.03488X1 - 0.01356X> - 0.00629X3 + 0.00521X4 + 0.01063Xs
+0.01026X12 + 0.04006X2% — 0.0649X3% — 0.00524X4? — 0.01124Xs* +
0.029121X1X> + 0.01713X1Xz + 0.00338X1Xs — 0.00788X1Xs +
0.02262X2X3 + 0.01188X>Xs + 0.04113X>Xs + 0.00513X3Xs +
0.02237X3X5 + 0.01313X4Xs, (3)

The depth deviation (Ypp) is presented in Eq. (4). Its coefficients of

determination (experimental and adjusted) are R? = 89.4%, R? (adj.) = 87.4%,

respectively.

Ypp = -0.03239 + 0.05355X; + 0.00489X> + 0.00675X3 — 0.00405X4 - 0.00671Xs
+ 0.00972X:2 + 0.00057X,? — 0.02018X32 + 0.03322X4% — 0.01293Xs? -
0.01464X1X> + 0.01499X:1Xs + 0.02249X:Xs — 0.00094X1Xs +
0.04886X2X3 + 0.00236X2X4 - 0.02251X2Xs - 0.00371X3X4 + 0.00236X3X5
+0.01136X4Xs. 4)

3.2 Model prediction using artificial neural network

Artificial neural network has been turned into designed to mimic the linear
order characteristics of structure inter-linked nerve cells of human brain called
biological neurons. Briefly, a group of certain inputs are mostly employed, every
of one which designate the output of any other neuron. Every input is multiplied by
an associated weight corresponding a synaptic connection, and these are summed
up to establish the actuation standard of the neuron.

In this work, artificial neural network is applied to propose a model to train
in order that a set of inputs to return the appropriated or useful set of outputs. ANN
uses milti-layer architecture consisting of different layers (input, hidden and output)
for solving the non-linear and complex problems with the help of feed-forward
back-propagation training algorithm [26]. Usually, in back propagation NN, the net
input is expressed as follows:

Yj: l:? WiiXi, (5)
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And the network output (Z;) of each neuron i is obtained by processing the
net input via an activation or transfer function (here, tangent hyperbolic type) as
follows:
1-e7¥J
2 =f(0) = 77 ©
where Yj net input considered as linear combination of input variables in terms of
weights, j number of neurons, n is the input parameters, X; is the input parameter i
of the network, wij represents the synaptic weight to j™ neuron in the output layer
from the i neuron in the previous layer.

Input layers Hidden layers Qutput layers

Upper
X Width
e

Lowrer
}% Width
%
KS Depth

Fig. 4 Developed 5-8-8-3 ANN architecture

In this study, many network architectures were tried, prior to use the optimal
neural network architecture of 5-8-8-3 (with the lowest MSE), which is shown in
Fig. 4. The network consist of one input layer which have five neuron, two hidden
layer which have eight neuron each and there output layer which have three neuron
severally. For calculation of connection weights requires a set of desired network
output values which are occasionally referred as training data set. The desired
output values are generated utilizing experimental data set, as reflected in Table 3.
The Matlab function TRAINGD was used for reforming the data of the network
which functions on the back propagation algorithm [27]. TRAINGD is a network
training function which works in accordance to gradient descent method which is
used to update the weight variable repetitively and also to reduce the mean-square-
error (MSE) between expected data and training data set. The change in weight
variables is given in Eq. (7).

0E
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where E is the mean-square-error estimating the gradient of the error, 7 is the
learning rate parameter generally control the stability and rate of convergence of
the ANN model. 7 is considered as 0.0001 which is the constant value of learning
rate. The MSE value calculated from the ANN is found to be 0.000099. Figure 5
shows the data observed based on experiment of ANN training by means of
MATLAB.

Perfarmance is 9.99854e-005, Goal is 0.0001
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Fig. 5 Generation curve: MSE versus epochs during training and validation session

The results data obtained from experimentation and predicted data received
by neural network were compared. Out of the 32 experimental data received in
accordance with DOEs, 29 data was performed for training of the neural network
model. Subsequently, the remaining three (32-29) experimental results (check data)
were compared with trained ANN model. Tables 4 and 5 showed the comparison
results between the experimental and ANN for 3 check data set and 29 training set,
respectively. It can be seen that, a close agreement between the ANN prediction
and the experimental results. Figures 6-8 compare the ANN prediction results for
upper width, lower width and depth with the results of experiment for training and
check data set. It is observed that the variation in ANN and experimental result is
under 3%, which avoids the misleading conclusion to consider reliable model,
particularly ANN for predicting the responses satisfactorily under pre-cited process
parameters in laser microgrooving operations.
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Table 4

Check data set for testing ANN model and comparison results of predicted and measured

dimensions of microgroove

Test Responses in mm
No. Upper width Lower width Depth
ANN pred. | Experimental | ANN pred. | Experimental | ANN pred. | Experimental
result result result

1 0.18640 0.1840 0.1979 0.202 0.2130 0.2127

2 0.2142 0.21375 0.1499 0.1525 0.1640 0.1621

3 0.2031 0.2050 0.1279 0.1255 0.1168 0.12

Table 5

Training data set for testing ANN model and comparison results of predicted and measured

dimensions of microgroove

Sl. Responses in mm
No. Upper width Lower width Depth
ANN Experimental ANN Experimental ANN Experimental
pred. result pred. result pred. result
1 0.1958 0.1967 0.1341 0.1390 0.1601 0.1600
2 0.2215 0.2210 0.1534 0.1550 0.1932 0.2000
3 0.2163 0.2154 0.1715 0.1910 0.1667 0.1680
4 0.1206 0.1930 0.1262 0.1280 0.1524 0.1620
5 0.2327 0.2330 0.1931 0.2005 0.2323 0.2343
6 0.2131 0.2490 0.1515 0.1620 0.1688 0.2090
7 0.2003 0.2210 0.1468 0.1355 0.1669 0.1650
8 0.2003 0.2054 0.1534 0.1565 0.1758 0.1760
9 0.2073 0.2062 0.1479 0.1495 0.1522 0.1420
10 | 0.2003 0.1950 0.1468 0.1350 0.1609 0.1640
11 | 0.2035 0.1853 0.1297 0.1295 0.1636 0.1640
12 | 0.1789 0.1792 0.1348 0.1295 0.1517 0.1495
13 | 0.2131 0.1915 0.1516 0.1365 0.1819 0.1850
14 0.209 0.2090 0.1292 0.1265 0.1898 0.1893
15 | 0.2039 0.2040 0.1114 0.1135 0.1605 0.1590
16 | 0.1957 0.1956 0.1242 0.1255 0.1407 0.1367
17 | 0.1918 0.1915 0.1714 0.1745 0.1946 0.1937
18 | 0.1996 0.1996 0.1659 0.1700 0.1685 0.1630
19 | 0.2003 0.2060 0.1468 0.1430 0.1669 0.1550
20 | 0.2024 0.1995 0.1569 0.1470 0.1305 0.1420
21 | 0.2003 0.1992 0.1468 0.1420 0.1669 0.1427
22 | 0.2124 0.2040 0.1371 0.1440 0.1336 0.1327
23 | 0.2371 0.2370 0.1396 0.1425 0.2295 0.2280
24 | 0.2316 0.2316 0.1853 0.1735 0.1909 0.1832
25 | 0.1937 0.1940 0.194 0.1700 0.2058 0.2057
26 | 0.2035 0.1907 0.1234 0.1190 0.1229 0.1170
27 0.215 0.2160 0.1589 0.1535 0.127 0.1260
28 | 0.2151 0.2125 0.1861 0.2091 0.1698 0.1700
29 | 0.2003 0.2067 0.1468 0.1630 0.1669 0.1683
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Fig. 7 Graphical comparison of predicted ANN with measured (a) check data, and (b) training data
set of lower width
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Fig. 8 Graphical comparison of predicted ANN with measured (a) check data, and (b) training data
set of depth

3.3 Optimization using genetic algorithm

Genetic algorithm is a population-based search methodology for solving
optimization problems stochastically that is based on the mechanism of natural
selection that simulates the biological progression process developed from
Darwin’s theory of survival of the fittest [28]. In this systematic method, originally
a set of possible solutions or chromosomes (normally as a string of genes) are
randomly chosen, which serves as the generation (initial population). In GA, new
generations are created by five major operations such as encoding (ranks and
signifies the chromosomes by means of a string of bits); selection (choosing better
fitness function value for minimization or maximization problems); reproduction
(pairing the chromosomes by probabilistically to reproduce new generation);
crossover (interchanging the information and genes between chromosomes); and
mutation (flipping a particular bit of a chromosome to obtain smart convergence).
This process continues in a repetitive manner until the chromosomes have the best
fitness or potential (optimum) solution for a specific problem is obtained.
Immediately after the new generation is created, it is further assessed and checked
through experimentation for the conformability and agreement [29].

In this work Matlab toolbox was utilized for optimization purpose by
implementing GA technique with the aim to minimize the dimensional deviation.
In laser microgrooving, multi-objective optimization problem can be formally
defined in following manner:
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Find: input parameter (X1, X2, X3, X4, and Xs), (8)
Minimize: f (Yuwp, YLwp, and Ypp), 9
Allowable range of parameters are: 0.4kgf/cm? < air pressure (X1) < 2.0kgf/cm?,
14.5A < lamp current (X2) < 24.5A, 1kHz < pulse frequency (X3) < 5kHz, 0% <
pulse width (X4) < 8%, and 12mm/s < cutting speed (X5) < 28mm/s (10)

Here for mathematical descriptions, the objective function f(Yuwb),
f(YLwp) and f(Yop) are developed by RSM model Egs. (2)-(4) for deviation of
upper width, lower width and depth, respectively. Figure 9 presents the
optimization history, which aims to minimize the various dimensional deviations
(Yurp, YLwo, Yop) of microgroove in the presence of algorithm-specific parameters
of GA. In the present study, the critical (algorithm-specific) parameters are taken
concerning population size of 250, mutation rate of 0.10, crossover rate of 1.0,
number of genes in each population member equal to 20, and maximum number of
iterations equal to 500. By solving the optimization problem with GA, the
optimized process parameters for minimizing microgrooving variables in laser
machining of aluminum oxide (Al.O3) ceramic material are pressure 1.2 kgf/cm?,
lamp current 19.5 A, pulse frequency 4 kHz, pulse width 6%, cutting speed 24
mm/s, with estimated deviations of upper width (UWD) of -0.0278 mm, lower
width (LWD) of 0.0102 mm and depth (DD) of -0.0308 mm. Same has presented

in Table 6.
-0.03

-0.04
f(Yuwp)

f(Yrwo) 0.15
02 008

Fig. 9 GA based multi-objective optimization results for upper width, lower width and depth

Table 6

Dimensional deviations of microgroove under GA-based optimum parametric conditions
Optimum process parameters Targeted output in mm|Dimensional deviations in mm

Lamp | Pulse |Pulse| Air Cutting | Upper (Lower|Depth| Upper | Lower | Depth
currentffrequency|width| pressure | speed | width |width width width |deviation
(A) | (kH2) | (%) |(kgflcm?)| (mm/s) deviation| deviation
19.5 | 4kHz 6 1.2 24 0.2 0.2 | 0.2 |-0.0278 | 0.0102 | -0.0308
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Table 7
Comparison results of ANN prediction, GA-based optimization and actual experimentally
observed dimensional deviations of microgroove on Al203

ANN prediction in Optimization Experimental result in
Responses accordance with GA | result based on | accordance with GA process
process parameters GA parameters
Upper width deviation -0.025 -0.0278 -0.0261
Lower width deviation 0.0098 0.0102 0.0110
Depth deviation -0.0276 -0.0308 -0.0301

Finally, an additional experiment is performed with the optimal
configuration (suggested by GA) in order to compare this result with the ANN
prediction model using same pre-cited optimum conditions, are listed in Table 7.
As can be seen, the experimental result obtained by confirmation test, matches the
predicted results obtained by ANN and GA fairly well with a realistic degree of
approximation. Therefore, the proposed approach (RSM-ANN-GA) can be
effectively used to predict the various responses in laser microgrooving operation.
The comparison results of ANN-GA-Experimental are presented in Fig. 10, which
predicts upper width and depth are continuously negative while lower width is

constantly positive.
0.02
0.01 -

0 T T
2001 4 1 2 3
-0.02 A

-0.03 A

Devitions

ANN GA Experimental

I @ Deviation of Upper Width B Deviation of Lower Width O Deviation of Depth |
Fig. 10 Comparison of ANN, GA and experimental results

4. Conclusions

In the present study, design of experiments (DOESs), response surface
methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA)
have been applied for experimentation, mathematical modeling and multi response
optimization of laser microgrooving operation on aluminum oxide ceramic
workpiece. Based on the series of experiment and analysis of results, the following
conclusions are drawn.

e The quadratic (second order) mathematical model proposed for various
dimensional deviations of microgroove using RSM not only capable of
achieving precise required dimension of microgrooves on aluminum oxide but
also useful for predicting new experiments.

e The performance of predictive ANN model based on 5-8-8-3 architecture, gave
the minimum error (MSE = 0.000099) and presented highly promising to
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[6]
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(8]

(9]
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confidence with percentage of error less than 3% while compared it with
experimental result data sets.

Optimization employing GA technique shows the optimal setting of process
parameters in microgrooving operation of aluminum oxide by Nd:YAG laser
treatment at lamp current of 19.5 A, pulse frequency of 4 kHz, pulse width 6%,
cutting speed of 24 mm/s and air pressure of 1.2 kgf/cm? with estimated minimal
deviation of upper width -0.0278 mm, lower width 0.0102 mm and depth -
0.0308 mm.

The present research based on GA, ANN, and statistically multi-regression
analysis (RSM) have demonstrated the ability to optimize and to accurately
model the dimensional deviations of microgroove through advances in
computer technology.

The proposed multiple approaches (experimental, evolutional, statistic, and
stochastic) present reliable methodologies to improve laser microgrooving
process and they can be employed in real-time process monitoring, model
predictive control and optimization in several machining processes.
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