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CYCLIC CODES AS IDEALS IN ,];[ 02 nax NF ,][2 anxF AND :];[ 0
1

2 abnbx NF  
A LINKAGE 

Tariq SHAH,1, Asma SHAHEEN 2 

Random error correcting codes are not efficient for correcting burst errors; 
therefore, it is required to design specialized codes which can correct burst errors. 
In this study, construction technique of cyclic codes is improved by using monoid 
rings instead of polynomial ring. The new scheme is formulated in such a way, that, 
for a given n  length binary cyclic code

nC , three different binary cyclic codes 

,anC bnC  and 
abnC  of length ,an bn  and abn  are constructed. It is proved that these 

binary cyclic codes are interleaved codes of depths ,,ba  and ab  respectively. 
Therefore, if the initial code nC corrects t  errors, then the interleaved codes ,anC  

bnC  and 
abnC  correct t bursts of length ba,  and ab or less. 

 
Keywords: Monoid rings, binary cyclic codes, generating and parity check 

matrices, interleaved codes. 

1. Introduction 

Algebraic coding theory is one of the most effective and widely applied 
branch of abstract algebra. It forms the basis of modern communication systems 
and is used in essentially all hardware level implementations of smart and 
intelligent machines, such as scanners, optical devices, and telecom equipment. It 
is due to the algebraic codes that we are able to communicate over long distances 
and are able to achieve megabit, bandwidth over a wireless communication 
channel. 
One of the important class of algebraic codes is cyclic codes. Cyclic codes were 
initially studied by Prange in the year 1957 ([19], [20]). He noticed that the class 
of cyclic codes has a rich algebraic structure, the first indication that algebra 
would be a valuable tool in code design. Since then, advancement in the theory of 
cyclic codes for correcting random as well as burst errors has been encouraged by 
many coding theorists (see [4], [18], [8], and [5]). Cyclic codes were first studied 
over the binary field 2F , then were extended to to its Galois field extension ,qF  
where mpq = , p  is a prime number and 1≥m . The correspondence of cyclic codes 
with ideals was observed independently by Peterson [17] and Kasami [7]. A 
cyclic code C  of length n  over a Galois field qF  can be viewed as an ideal of the 
factor ring 

)1(

][

−n
q

x

xF . Many authors have considered properties of cyclic codes defined 

as ideals in ring constructions (see [9], [12], [13], [14] and [15]). 
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Cyclic codes are effectively applied for correcting random as well as burst errors. 
A burst of length 1>l  is a binary vector whose nonzero components are confined 
to l  cyclically consecutive positions, with the first and last positions being 
nonzero. The binary vector 0011010000  has a burst of length 4 . A code is called an 
l burst error correcting code if it can correct all burst errors of length l  or less. 
Cyclic codes for single burst error correction were first studied by Abramson ([1], 
[2]). The most efficient cyclic codes for the correction of random as well as burst 
errors are interleaved codes. By interleaving a t  random error correcting 

),( kn cyclic code to degree ,β  we obtain a ),( kn ββ  cyclic code which is capable of 
correcting any combination of t  bursts of length β  or less [11, Section 9.4]. 
In a sequence of papers [3], [21], [22], [23], [24], [25] and [26], cyclic codes 
using different monoid rings, over a local finite commutative ring were 
constructed. However, in this study our focus is on binary field ,2F  since in present 
digital computers and digital data communication systems, information is coded 
in binary bits, therefore it is more applicable than local finite commutative rings. 
To construct cyclic codes using the monoid ring ];[ 02 NF b

ax , where a  and b  are 
integers satisfying 1, ≥ba  with 1+= ab , we will first construct cyclic codes using 
the monoid ring ];[ 02 NF ax . This is certain because ];[ 02 NF b

ax  does not contain the 
polynomial ring ][2 xF  for ,1, >ba  whereas the ring ];[ 02 NF ax  is properly contained 
in both the rings ][2 xF  and ].;[ 02 NF b

ax  
The factor rings 

)1)((
];[ 02

−nax
ax NF , 

)1)((

];[ 02

−bnb
a

b
a

x

x NF  and 
)1)((

];[
1

0
1

2

−abnb

b

x

x NF  are denoted by ,];[ 02 nax NF  

bnb
ax ];[ 02 NF  and abnbx ];[ 0

1
2 NF , where ),1)(( −nax  )1)(( −bnb

a

x  and )1)((
1

−abnbx  are the principal 
ideals in the monoid rings ],;[ 02 NF ax  ];[ 02 NF b

ax  and ];[ 0
1

2 NF bx  respectively. 
Consequently, a method is devised such that; for a given ),( kn  binary cyclic code 

nC  generated by r degree (generalized) polynomial ];[)( 02 NF axxg a ∈ , we get 
),,( akan  ),( bkbn  and ),( abkabn  binary cyclic codes ,anC  bnC  and abnC  generated by 

brar,  and abr  degree (generalized) polynomials ],[)( 2 xxg F∈  ];[)( 02 NF b
axxg b

a

∈  and 
].;[)( 0

1
2

1

NF bxxg b ∈  By [18, Theorem 11.1], the binary cyclic codes ,anC  bnC  and abnC  
are interleaved codes of degree ,a b and ab , respectively. Therefore, if the initial 
code nC  corrects up to t  errors, then the interleaved codes ,anC  bnC  and abnC  
correct t  bursts of length ba,  and ab  or less. Whereas this t  bits error in each row 
will be corrected by the base code nC . The interleaved codes ,anC bnC and abnC are 
capable of correcting all bursts of length ,al  bl  and abl or less, whenever the base 
code nC  corrects all bursts of length l or less. 
This paper is organized as follows: Section 1 describes a brief introduction to the 



Cyclic codes as ideals in ,];[ 02 nax NF ,][2 anxF and :];[ 0
1

2 abnbx NF  A linkage           207 

semigroup rings. In section 2, the construction of binary cyclic codes ,anC  bnC  and 
,abnC as ideals in the rings ,][2 nxF  bnb

ax ];[ 02 NF  and ,];[ 0
1

2 abnbx NF  is explained. In 
section 3, the relationship among all of these binary cyclic codes is obtained 
through interleaving technique and by their generator and parity check matrices. 
Their error correction capability and decoding is discussed in section 4. The last 
section 5 concludes the findings. 

2. Semigroup Rings 

Throughout, Z  denotes the ring of integers, 0N  the additive monoid of all non-
negative integers, and qF  is a Galois field of q  elements, where q  is a prime or a 
power of a prime. 
Let 2F  be a binary field, and let x  be a variable. For an additive semigroup S , 

];[2 SxF  denotes the set of all finite sums of the form is
i

n

i
xf

1=
∑ , where ,0N∈n  

20 F∈≠ if  and Ssi ∈ . The set ];[2 SxF  is a ring with respect to binary operation 
addition defined as; 

,)(
000

iii s
ii

n

i

s
i

n

i

s
i

n

i

xgfxgxf +=+ ∑∑∑
===

                                                         (1) 

where ,0N∈n  2, F∈ii gf  and Ssi ∈ . Whereas multiplication is defined by the 
distributive law and the rule  .).(. 2121

2121
ssss xffxfxf +=                                                 (2) 

In particular we have   
,)(.

,00

jiji ss
ji

ji

s
j

m

j

s
i

n

i

xgfxgxf +∑∑∑ =
==

                                                  (3) 

where ,, 0N∈mn  
2, F∈ji gf  and Sss ji ∈, . The set ];[2 SxF  is called a semigroup ring 

of S  over 2F . If S  is a monoid, then ];[2 SxF  is called a monoid ring. The monoid 
ring ];[2 SxF  is a polynomial ring in one indeterminate if the monoid S  is 0N . Let 
us refer to [10, Section 3.2], for an alternative equivalent definition of a 
semigroup ring. 
In semigroup rings, the concepts of degree and order are not defined generally. 
However, if S  is a totally ordered semigroup then, the degree and order of an 
element of the semigroup ring ];[2 SxF  is defined as: Let is

i

n

i
xff

1=
∑=  be the arbitrary 

nonzero element in ];[2 SxF , where nsss <<< 21 , then ns  is the degree of f  and 
the order of f  is 1s . 
In this study, the monoid S  is taken to be totally ordered monoids ,...}2,,0{0 aaa =N  
and ,...},,,0{ 2

0 b
a

b
a

b
a =N  where a  and b  are integers satisfying ,a  b  1≥  with 1+= ab . 

3. Cyclic codes as ideals in bnb
ax ];[ 02 NF  

Definition 1: A subspace of the vector space of all −n tuples over the binary field 
2F  is called a linear code C  of length n . 
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Definition 2: A linear code C  over 2F  is a cyclic code, if Cvvvv n ∈= − ),,,( 110
, then 

every cyclic shift Cvvvv nn ∈= −− ),,,( 201
)1( , where 2F∈iv  and 10 −≤≤ ni . 

Due to the fact that ];[][ 0
1

22 NFF bxx ⊂ , the generator polynomials of cyclic codes in 

)1(
][2

−nx
xF  and 

)1)((

];[
1

0
1

2

−bnb

b

x

x NF  have a relationship. But since ];[][ 022 NFF b
axx ⊆/ , this posed a 

hurdle to construct the cyclic codes in the factor ring 
)1)((

];[ 02

−bnb
a

b
a

x

x NF . However, the fact 

];[];[ 0202 NFNF b
axax ⊂  provides a justification for constructing the binary cyclic 

codes in bnb
ax ];[ 02 NF  by using an n  length cyclic code nC  obtained from 

nax ];[ 02 NF . Let 
];[)()()()( 02

2
20 NF axxfxfxffxf na

an
a

a
a

a
a ∈++++=                   (4) 

be a generalized polynomial of degree ,n  then )( axf  has degree bn  in the monoid 
ring ];[ 02 NF b

ax  and is represented by  

.)()()()( 2
20

bn
n

bb b
a

b
a

b
a

b
a

b
a

b
a

b
a

xfxfxffxf ++++=                                   (5) 

If )( b
a

xf  is monic, then the factor ring 
))((

];[ 02

b
a

b
a

xf

x NF  is the ring of residue classes of 

generalized polynomials in ];[ 02 NF b
ax  modulo ideal ))(( b

a

xf . Thus, if we take )( b
a

xf  
to be 1)( −bnb

a

x , then the factor ring is  

},,...,,:...{
)1)((

];[
2)1(0

1
)1(0

02 FNF
∈+++=

−
−

−
− n

bn
nbn

b
a

b
a

b
a

b
a

b
a

b
a cccccc

x

x
ββ

                     (6) 

Where β  denotes the coset )1)(( −+ bnb
a

b
a

xx . Also, 0)( =βf , when β  satisfies the 
relation 01=−bnβ . By writing b

a

x  in place of β ,the ring 
)1)((

];[ 02

−bnb
a

b
a

x

x NF  becomes 

bnb
ax ];[ 02 NF  in which the relation 1)( =bnb

a

x  holds. The factor ring bnb
ax ];[ 02 NF  is 

algebra over the field 2F . The multiplication ∗  in the ring bnb
ax ];[ 02 NF  is defined 

as: for )( b
a

xc  in bnb
ax ];[ 02 NF  the product )()( b

a
b
a

xcx ∗  is given by: 

1
)2(

2
0)1(

1
)1(

2
20

)(...)()(

))(...)()(()()()(

−
−−

−
−

++++=

++++∗=∗

n
nn

n
n

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

xcxcxcc

xcxcxccxxcx                       (7) 

Following results give a method of obtaining the generator generalized 
polynomial, which generates a principal ideal of the factor ring bnb

ax ];[ 02 NF . 
Theorem 1: A subset bnC  in bnb

ax ];[ 02 NF  is a binary cyclic code if and only if bnC  
is an ideal in the ring bnb

ax ];[ 02 NF . 
The following Theorem extends [16, Theorem 4.3.6] for the monoid ring 

];[ 02 NF b
ax . 

Theorem 2: Let bnC  be a nonzero ideal in the ring bnb
ax ];[ 02 NF . Then the following 
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hold. 
1) There exists a unique monic generalized polynomial )( b

a

xg  of least degree in 
bnC , 

2) )( b
a

xg  divides 1)( −bnb
a

x  in ];[ 02 NF b
ax , 

3) For all bnCxc b
a

∈)( , it follows that )( b
a

xg divides )( b
a

xc  in ];[ 02 NF b
ax , and 

4) ))(( b
a

xgCbn = . 

Conversely, if bnC is the ideal generated by ,];[)( 02 bnb
axxp b

a

NF∈ then )( b
a

xp  is a 
generalized polynomial of least degree in bnC  if and only if )( b

a

xp  divides 1)( −bnb
a

x  
in ];[ 02 NF b

ax . 
Similar to [N], the following Theorem gives the generator matrix of the binary 
cyclic code bnC . 
Theorem 3: Let bnb

a
bn xC ];[ 02 NF⊂  be a binary cyclic code with generator 

polynomial  
1 ,)()()()( 2

20 =++++=
b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

r
br

r
bb gxgxgxggxg .                            (8) 

Then bnC  is of dimension )( rnbbk −=  , which has a generator matrix of order 
bnbk ×  given by: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

b
a

b
a

b
a

b
a

b
a

b
a

r

r

r

br

ggg

ggg
ggg

G

0000000

0000000
0000000

0

0

0
                                        (9) 

The sequence 00  between ig 's in brG  has length 1−b . 
Definition 3: The generalized polynomial ),( b

a

xh  such that ),()(1)( b
a

b
a

b
a

xhxgx n =−  is 
called the check generalized polynomial of binary cyclic code 

,];[ 02 bnb
a

bn xC NF⊂ where )( b
a

xg  is the generator generalized polynomial of bnC . 
Theorem 4: Let bnC  be a bn  length binary cyclic code in bnb

ax ];[ 02 NF  with check 
generalized polynomial )( b

a

xh . Then 
bnCxa b

a

∈)( , where ,];[)( 02 bnb
axxa b

a

NF∈  if and only if 
0)()( =∗ b

a
b
a

xhxa . 
The following Theorem gives a parity check matrix for a binary cyclic code bnC  in 

bnb
ax ];[ 02 NF . 

Theorem 5: Let bnC  be a binary cyclic ),( bkbn  code with check generalized 
polynomial  

.1 ,)()()( 0 =+++= k
bk

k
b

b
a

b
a

b
a

b
a

b
a

b
a

hxhxhhxh                                      (10) 

Then the bnknb ×− )(  matrix given by:  
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

0)1(

0)1(

0)1(

0000

00000
0000

hhh

hhh
hhh

H

kk

kk

kk

bk

b
a

b
a

b
a

b
a

b
a

b
a                               (11) 

is a parity check matrix for bnC  and the sequence 00  in bkH  has length .1−b  
Remark 1: All of the above results follow for ];[ 02 NF ax , by taking 1=b . 
Now shift the generalized polynomial )( b

a

xf of arbitrary degree n  in ];[ 02 NF b
ax  to a 

generalized polynomial )(
1
bxf  in ];[ 0

1
2 NF bx  as  

.)()()()(
11

2

1

1

1 2
0

anaa b

b
n

b

b

b

b

b xfxfxffxf ++++=                                     (12) 

The degree of an arbitrary generalized polynomial in ];[ 02 NF b
ax  has exceeded 

from n  to an  in ];[ 0
1

2 NF bx . Consequently, the degree of the generator generalized 
polynomial ))((

1
bxg  also exceeds from brr =′  to abrr =′′ , where )(

1
bxg  divides 

1)(
1

−abnbx  and generates a binary cyclic ),( abkabn  code abnC  in abnbx ];[ 0
1

2 NF . 
Thus, from the generator and parity check matrices of the code bnC  we obtain the 
generator and parity check matrices of the code abnC . 
Theorem 6: Let abnbabn xC ];[ 0

1
2 NF⊂  be a binary cyclic code with generator 

polynomial               1 ,)()()())(( 2
0

1

2

1

1

1

=++++=
b
r

b
a

b
r

b

b

b

b

b gxgxgxggxg brbab .                                    (13) 

Then abnC  is of dimension ),( rnababk −=  which has a generator matrix of order 
abnabk×  given by  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

b
r

b

b
r

b

b
r

b

ggg

ggg
ggg

Gabr

0000000

0000000
0000000

1

1

1

0

0

0                                           (14) 

Where the sequence 00  between ig 's in abrG  has length 1−ab . 
Theorem 7: Let abnC  be a binary cyclic ),( abkabn  code with check generalized 
polynomial                  .1 ,)()()(

11

1

1

0 =+++=
b
k

b

b
k

b

b

b hxhxhhxh abkab                                        (15) 

Then the abnknab ×− )(  matrix given by 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

0

0

0

)1(

)1(

)1(
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hhh

hhh
hhh

H

b
k

b
k

b
k

b
k

b
k

b
k

abk

                                (16) 

is a parity check matrix for abnC  and the sequence 00  between ih 's in abkH  has 
length 1−ab . 
Example 1: Let ]2;[)()(1)( 02

2222 NF xxxxg ∈++=  be the generalized polynomial with 
degree 2=r  and divides 1)( 32 −x . Clearly )( 2xg  generates a binary cyclic )1,3(  code 
in 302 ]2;[ NF x  which has a generator matrix  
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[ ].1112 =G                                                                   (17) 
In ][2 xF , the polynomial .1  divides  and 24  degree  has 1)()( 6422 −=++== xrxxxgxg  
Therefore, generates a binary cyclic )2,6(  code in 62 ][xF  which has a generator 
matrix  

.
101010
010101

4 ⎥
⎦

⎤
⎢
⎣

⎡
=G

                                                          (18) 

Since )),(1)()(1(1)( 222232 xxxx +++=−  it follows that )(1)( 22 xxh +=  is the parity check 
generalized polynomial of )1,3(  code in .]2;[ 302 NF x  This gives the parity check 
matrix  

.
110
011

1 ⎥
⎦

⎤
⎢
⎣

⎡
=H

                                                                   (19) 

In ],[2 xF  1)( 32 −x  becomes ).1)(1(1 2426 xxxx +++=−  Hence 21)( xxh +=  is the parity 
check polynomial of )2,6(  code and the corresponding parity check matrix is  

.

101000
010100
001010
000101

2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=H

                                                        (20) 

Let 63 )()(1)( 3
2

3
2

3
2

xxxg ++=  be a generator generalized polynomial of degree 6  and it 
divides 1)( 93

2

−x , then )( 3
2

xg generates a binary cyclic )3,9( code with generator 
matrix  

.
100100100
010010010
001001001

6

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=G

                                                     (21) 

Whereas, in ];[ 03
1

2 NF x , )( 3
2

xg  becomes 126 )()(1))(( 3
1

3
1

3
1

xxxg ++=  and has degree 12  and 
divides 1)( 183

1

−x . Thus, it generates a cyclic )6,18(  code having generator matrix  

.

100000100000100000
010000010000010000
001000001000001000
000100000100000100
000010000010000010
000001000001000001

12

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=G

                               (22) 

The parity check generalized polynomials are 
.)(1))(( and )(1)( 63 3

1
3
1

3
2

3
2

xxhxxh +=+=                                                    (23) 
Which give the following parity check matrices 

and 

100100000
010010000
001001000
000100100
000010010
000001001

3

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎢

⎣

⎡

=H

                                                 (24) 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000100000000000
010000010000000000
001000001000000000
000100000100000000
000010000010000000
000001000001000000
000000100000100000
000000010000010000
000000001000001000
000000000100000100
000000000010000010
000000000001000001

4H

               (25) 

4. Relationship among the cyclic codes bnann CCC ,,  and abnC   
In this section, we demonstrate the association between the binary cyclic codes 

bnann CCC ,,  and abnC  by two ways: 
(i) Using the technique of interleaving,. (ii) Through the generator and parity 
check matrices of the binary cyclic codes ,nC  ,anC , bnC  and abnC . 
Relationship of bnann CCC ,,  and abnC  by interleaving 
For a given ),( kn  cyclic code, a ),( kn ββ  cyclic code can be constructed by 
interleaving. This is done by simply arranging β  code vectors in the original code 
into β  rows of a rectangular array and then transmitting them column by column. 
In this way a codeword of nβ digits is obtained whose two consecutive bits are 
now separated by 1−β  positions. The parameter β  is called interleaving degree. 
Proposition 1: The codes ,anC  bnC  and abnC  are interleaved codes of degree ,a  b  
and ab  respectively, where the code nC  is the base code. 
Proof: Take a  code vectors from the base code nC  and arrange them into a rows 
of an na×  array. Then by transmitting this code array column by column in serial 
manner we get the binary cyclic code anC . Similarly, the binary cyclic code bnC  is 
obtained by taking b  code vectors from the base code ,nC arranging them into b  
rows of an nb×  array and then transmitting it column by column in serial manner. 
In this way codewords of an  and bn  digits are obtained whose two consecutive 
bits are now separated by 1−a  and 1−b  positions respectively. Now, by arranging 
ab  code vectors from the code nC  and arranging them into ab  rows of an nab×  
array and then transmitting it column by column, the binary cyclic code abnC  is 
obtained. This gives codewords of abn digits whose two consecutive bits are 
separated by 1−ab  positions. 
Example 2: In Example 1, the )1,3(  code 3C  acts as a base code. The code 6C  is 
obtained by arranging 2  codewords 111 and 000 in 3C  into 2  rows of an 32×  
array, that is:                             

,
000
111                                                               (26) 
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and then by transmitting this code array column by column we get ,101010  which 
is a codeword in .6C  Similarly, by arranging 3  and 6  codewords in 3C  into 3  and 
6  rows of an 33×  and 36×  arrays, that is: 

,

111
000
000
000
111
000

  and  
111
000
111

                                        (27) 

we get the codewords by transmitting them column by column 
. and in  010100010100010100 and 101101101 189 CC  

Relationship of bnann CCC ,,  and abnC  by the generator and parity check matrices 
Now, we explain the relationship between the codes ,nC ,anC bnC  and abnC  through 
their generator and parity check matrices, using the notion of direct sum of codes. 
Definition 4: [6] (a) Let iC  be an ),( ii kn  code, where }2,1{∈i , both having symbols 
from the same Galois field qF . Then their direct sum  

},|),{( 22112121
CcCcccCC ∈∈=⊕  is a ),( 2121 kknn ++  code. 

(b) For },2,1{∈i  if iC  has generator matrix iG  and parity check matrix iH , then  

⎥
⎦

⎤
⎢
⎣

⎡
=⊕⎥

⎦

⎤
⎢
⎣

⎡
=⊕

2

1
21

2

1
21 0

0
 and 

0
0

H
H

HH
G

G
GG                                             (28) 

 are the generator and parity check matrices for the code 
21

CC ⊕ . 
The following result explains the relationship between the binary cyclic codes 

bnann CCC ,,  and abnC  through their generator matrices. 
Theorem 8: Let ,,, brarr GGG  and ,abrG  be the generator matrices corresponding to 
the generator generalized polynomials  

abrababrbararaaa bbbb
a

b
a

b
a

xxxgxxxgxxxgxxxg )()(1))((  and )()(1)(,1)( ,)()(1)(
111

++=+++=+++=+++=  
 of the binary cyclic codes bnann CCC ,,  and abnC  in ,];[ 02 nax NF  ,][2 anxF  bnb

ax ];[ 02 NF  
and abnbx ];[ 0

1
2 NF . Then the following conditions hold. 

1) 
r

a
ar GG 1⊕∼  , 

2) 
r

b
arrbr GGGG 1⊕∼⊕∼ , and 

3) 
r

ab
arr

a
br

a
abr GGGGG 111 ⊕∼⊕⊕∼⊕∼ . 

Proof: As raaa xxxg )()(1)( +++=  divides 1)( −nax  in ];[ 02 NF ax , therefore the generator 
matrix rG  has order nk × , where rnk −=  In ][2 xF , the generalized polynomial 

araa xxxgxg +++== 1)()(  divides 1−anx . Consequently, a generator matrix arG  of 
order anak ×  is obtained which after some suitable column operations becomes  
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)(
00
0

000
00

nkar

r

r

ar

G

G
G

G

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∼

                                                         (29) 

This implies that arG  contains a  blocks of rG  at its main diagonal and hence 

r
a

ar GG 1⊕∼  Similarly, brb
a

b
a

b
a

xxxg )()(1)( +++=  divides ,1−bnx  which have generator 
matrix brG  of order bnbk× . On applying suitable column operations, blocks of arG  
and rG  are obtained at the main diagonal of brG   

))(1(
0

0

nkar

ar
br G

G
G

×+
⎥
⎦

⎤
⎢
⎣

⎡
∼

                                                         (30) 

Putting the value of arG  from (31) in (32) we get,  

.

00
0

000
00

))(1( nkar

r

r

br

G

G
G

G

×+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∼

                                                  (31) 

The generator polynomial abraba bbb xxxg )()(1))((
111

+++=  divides 1−abnx  and gives a 
generator matrix abrG  of order abnabk ×  which after suitable column operations 
gives  

.

00

000
00

)( bnbkabr

br

br

abr

G

G
G

G

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∼

                                                (32) 

Putting the value of brG  from (33) we get 

,

00
0

00
00

)( nkabr

r

r

abr

G

G
G

G

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∼

                                                 (33) 

which shows that abrG  contains ab  blocks of rG  , that is, r
ab

abr GG 1⊕∼ . 
The following example illustrates Theorem 8. 
Example 3: Let 2=a , 3=b  and 2=r . From Example 1 equation 24 we get the 
generator matrix 12G  which after applying some suitable column operations 
becomes: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∼

100100100000000000
010010010000000000
001001001000000000
000000000100100100
000000000010010010
000000000001001001

12G

                                  (34) 

By Example 1 equation 14 it is clear that 
6612 GGG ⊕∼ . 

Again on applying suitable column operations on 6G , it gives 
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24

6

111000000
000101010
000010101

GG

G

⊕∼
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∼

                                                           (35) 

and similarly 4G  becomes   
.

111000
000111

22

4

GG

G

⊕∼

⎥
⎦

⎤
⎢
⎣

⎡
∼

                                                (36) 

. and   So, 222222122226 GGGGGGGGGGG ⊕⊕⊕⊕⊕∼⊕⊕∼  
Encoding: In the matrix abrG , the matrices brG , arG  and rG  exist as block matrices 
and the generator generalized polynomial of the cyclic ),( abkabn  code abnC  can be 
used for encoding. So, a message word abku 2F∈  is encoded as abruG . Hence the 
code }.:{ 2

abk
abrabr FuuGC ∈=  On partitioning u  as ),::( 111 kab uuuu ×××=  where ,21

bk
bu F∈×

 
ak

au 21 F∈×  and k
k Fu 21 ∈×  , we get }::{ 111 rkarabrbabr GuGuGuC ×××∼ . 

Example 4: Let 2=a , 3=b  and ,2=r  then 6
2Fu∈  is given by ]110011[=u . 

The row matrix u  has order 61× . By partitioning the matrix u  we get 
]::[]]1[:]10[:]011[ 321112131 uuuu == ×××
 and  

101011111101101100
]::[

)31()62()93( 23426112

=
=

×××
GuGuGuuG                                                (37) 

Thus, the message word u  is encoded as the codeword 12uG . 
For parity check matrix, Theorem 8 doesn't hold, whereas it holds for the 
canonical parity check matrix. In general, for a linear code, a generator matrix G  
is transformed into the canonical form by applying elementary row operations. 
But, in the case of a cyclic code, the canonical form can be obtained by using the 
generator generalized polynomial and the division algorithm in the Euclidean 
domain ];[ 02 NF b

ax . For any generalized polynomial ];[)( 02 NF b
axxf b

a

∈ , let ))(( b
a

xfr  
denote the remainder on dividing )( b

a

xf  by ).( b
a

xg  
Theorem 9: Let )( b

a

xg  be the generator generalized polynomial of a binary cyclic 
),( bkbn  code bnC  in bnb

ax ];[ 02 NF  and brA  be a )( knbbk −×  matrix whose i -th row is 
))(( 1)( −+− iknbb

a

xr , for ki ,,1= . Then the canonical generator and parity check 
matrices of bnC  respectively are  

[ ] [ ].)(  and )( knb
T

bkbrbkbr IAHAIG br −==                                           (38) 
Theorem 10: Let ,rA  ,arA  brA  and abrA  be the matrices as taken in Theorem 9 with 
respect to the corresponding generator (generalized) polynomials )( axg , )(xg , 

)( b
a

xg  and ))((
1
bxg  in nax ];[ 02 NF  , anx][2F , bnb

ax ];[ 02 NF  and abnbx ];[ 0
1

2 NF  respectively. 
Then 
 1  r

a
ar AA 1⊕∼  ,   2  r

b
arrbr AAAA 1⊕∼⊕∼  , and    3  r

ab
arr

a
br

a
abr AAAAA 111 ⊕∼⊕⊕∼⊕∼ . 

Proof: For the generator generalized polynomial ,)()(1)( raaa xxxg +++=  the 
remainders jaxr )( , where 1−≤≤− njkn  give the matrix rA  of order )( knk −× . 
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Similarly, for ,1)( ara xxxg +++=  the matrix arA  of order )( knaak −×  is obtained 
through the remainders )( jxr , where 1)( −≤≤− anjkna . After applying suitable 
column operations on ,arA  it gives  

.
00

000
000

1

)(

r
a

knkar

r

r

ar

A
A

A
A

A

⊕∼

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∼

−×

                                                  (39) 

For the generator generalized polynomial ,)()(1)( brb b
a

b
a

b
a

xxxg +++=  the remainders 
))(( jb

a

xr  gives the matrix brA  of order ),( knbbk −×  where )1()( −≤≤− nbjknb . On 
applying suitable column operations it gives submatrices of order )( knaak −×  and 

knk −× , that is,  

.1
1

))(1(

r
ba

arr

knkar

ar
br

A
AA
AO
OA

A

=+

−×+

⊕∼
⊕∼

⎥
⎦

⎤
⎢
⎣

⎡
∼

                                                          (40) 

Finally, for abraba bbb xxxg )()(1))((
111

+++= , the remainders ))((
1 jbxr , where 

)1()( −≤≤− nabjknab  gives abrA  of order )( knababk −× . Which on applying suitable 
column operations gives submatrices of order ),( knbbk −×  that is,  

,

0

00

1

11

))((

r
ab

arr
a

br
a

knbbkabr

br

abr

A
AAA

A

A
A

⊕∼
⊕⊕∼⊕∼

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∼

−×                                                     (41) 

which proves the theorem. 
The following example illustrates Theorem 10. 
Example 5: To find the parity check matrix for )6,18(  code obtained by the 
monoid ring ];[ 03

1
2 NF x , we first divide jx )( 3

1  by 126 )()(1))(( 3
1

3
1

3
1

xxxg ++= , where 
17,,13,12=j , to get the remainders  

.)()()(  ,)()()(
 ,)()()(  ,)()()( 

,)()()(  ,)(1)(

1151710416

93158214

713612

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

xxxrxxxr
xxxrxxxr

xxxrxxr

+=+=

+=+=

+=+=                                         (42) 

Therefore, 

.

100000100000
010000010000
001000001000
000100000100
000010000010
000001000001

12

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=A

                                                        (43) 

Accordingly,                    [ ].)( 121212 IAH T=                                                              (44) 
Similarly,  

[ ] gives 11 and 
1010
0101

,
100100
010010
001001

246 =⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= AAA

                  (45) 
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[ ] [ ] [ ].)(  and )(  ,)( 222444666 IAHIAHIAH TTT ===                                  (46) 
Thus by Theorem 10, 

[ ] [ ] [ ]. and )()( ,)( 42
2
146426126

2
112 IAHIAAHIAH TTT ⊕=⊕=⊕=                    (47) 

 
5. Decoding procedure 

 
The codes ,nC  anC , bnC  and abnC  have the same minimum distance and hence the 
same error correction capability along with the same code rate, but as it is shown 
in section sec4, the codes ,anC  bnC  and abnC  are interleaved codes of degree ba,  
and ,ab  where the base code nC  is cyclic. Thus, if the initial code nC  is capable of 
correcting t  errors, then the interleaved codes ,anC  bnC  and abnC  are capable of 
correcting t  bursts of length ba,  and ab  or less, no matter where it starts, will 
affect no more than t  bits in each row. This t  bits error in each row will be 
corrected by the base code nC . If nC  is capable of correcting all bursts of length l  
or less, then the interleaved codes ,anC  bnC  and abnC  are capable of correcting all 
bursts of length ,al  bl  and abl  or less. 
We give decoding scheme only for the code bnC , through which decoding of nC  
and anC  can easily be obtained. Decoding of the code abnC  can be obtained by 
shifting )( b

a

x  to abx )(
1 . 

The following theorem gives the syndrome for binary cyclic codes bnC  through its 
canonical parity check matrix bkH . 
Theorem 11: Let bnC  be a binary cyclic ),( bkbn  code in bnb

ax ];[ 02 NF  with generator 
polynomial )( b

a

xg  and the canonical parity check matrix bkH . Then, for any vector 
bnc 2F∈ , the syndrome ))()(()( )( b

a
b
a

xcxrcS knb −= . 
In a similar way, we get the syndromes for the binary cyclic codes abnC  and anC  
through their canonical parity check matrices abkH  and akH . 
In a binary cyclic code bnC , with generator generalized polynomial )( b

a

xg , two 
vectors bndc 2, F∈  lie in the same coset if and only if )( b

a

xg  divides )()( b
a

b
a

xdxc − , that 
is, )).(())(( b

a
b
a

xdrxcr =  Let 
bnCxv b

a

∈)(  be a generalized code polynomial, and )( b
a

xu  be a 
generalized received polynomial. Then, ),()()( b

a
b
a

b
a

xexuxv −=  where )( b
a

xe  is a 
generalized error polynomial. Then their syndromes 

.0)( as )()(  implies  )()()( ==−= vSeSuSeSuSvS  Based on the previous discussion, we 
deduce the following decoding steps. 
Decoding Algorithm 
1) For the received vector bn

bnb
a

b
a uuuu 2)1(0 ),,,( F∈= −

 with generalized received 
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polynomial ,)()()( )1(
)1(0

−
−+++= bn

bn
b
a

b
a

b
a

b
a

b
a

xuxuuxu  find the syndrome ))()(()( )( b
a

b
a

xuxruS knb −= . 

2) Construct a syndrome table for the generalized error polynomials. 
3) Verify by the table that for which ,i  where 11 −≤≤ ni , )()( ieSuS = . Then the 

generalized error polynomial )( b
a

xei
 for the generalized received polynomial 

)( b
a

xu  is obtained. 
4) Consequently, )()()( b

a
b
a

b
a

xexuxv −=  is the generalized decoded code polynomial 
of the binary cyclic code bnC . 

5) The received interleaved sequence in bnC  is de-interleaved and rearranged 
back to a rectangular array of b  rows of the binary cyclic code nC . Then each 
row is decoded based on binary cyclic code nC . 

Example 6: In Example 1, the )1,3(  code acts as a base code capable of correcting 
single error. Let 9=n , 3=k  and 63 )()(1)( 3

2
3
2

3
2

xxxg ++=  nx 303
2

2 ];[ NF∈  be the generator 
generalized polynomial. Let 903

2
2

6 ];[)()(1)( 3
2

3
2

3
2

NF xxxxu ∈++=  be the generalized 
received polynomial, then following are the syndrome tables of error generalized 
polynomials )( 3

2

xei , for 80 ≤≤ i  and )( 3
1

xei , for 170 ≤≤ i : 

58
8

47
7

36
6

25
5

4
4

3
3

522
2

4
1

3
0

)()()(
)()()(
)()()(
)()()(
)()()(

1)()(
)()()()(

)()()(
)(11)(

)()()(

I Table Syndrome

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

xxxe
xxxe
xxxe
xxxe
xxxe

xxe
xxxxe

xxxxe
xxe

eSxexei

+

+

+  

1016
17,16

814
15,14

612
13,12

410
11,10

28
9,8

6
7,6

1044
5,4

822
3,2

6
1,0

)()()(

)()()(

)()()(

)()()(

)()()(

1)()(

)()()()(

)()()()(

)(11)(
)()()(

II Table Syndrome

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

xxxe

xxxe

xxxe

xxxe

xxxe

xxe

xxxxe

xxxxe

xxe
eSxexei

+

+

+  

From the Syndrome Table I we find that )()()( 31 eSeSuS += . So the generalized error 
polynomial is 3)()()( 3

2
3
2

3
2

xxxe +=  which has error pattern ,010100000=e  which is a 
burst of length 3 . Therefore, ,)()(1)()()( 63 3

2
3
2

3
2

3
2

3
2

xxxexuxv ++=−=  which is the 
generator generalized polynomial of the code 9C , its vector form is 100100100. 
Now, on shifting the generalized received polynomial 

,]
3
1;[)()(1)(  to)()(1)( 1802

1226 3
1

3
1

3
1

3
2

3
2

3
2

NF xxxxuxxxu ∈++=++=   

we get the received word 001000001010000000=u  in 18C . The syndrome of )( 3
1

xu  is 
.1)()()( 28 3

1
3
1

++= xxuS  From the Syndrome Table II we get )).(())(()( 3
1

3
1

7,63,2 xeSxeSuS +=   
This gives the generalized error polynomial 6)()()( 3

1
3
1

3
1

xxxe +=  which has error 
pattern ,000000000010001000=e  which is a burst of length 5.  
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Therefore, ,)()(1)()()( 126 3
1

3
1

3
1

3
1

3
1

xxxexuxv ++=−=  is the generator generalized polynomial of 
the binary cyclic code ,18C  and its vector form is 001000001000001000 . The vector 
u  in 9C  is formed by interleaving 3  rows ,1011 =u  1002 =u  and 0003 =u  in 3C  which 
have respectively the error vectors ,0101 =e  1002 =e  and 0003 =e . On interleaving 
the vectors 1011 =u  and 1002 =u  in ,3C  we get a received vector 110010=u  in 6C . Its 
decoding gives the error vector 011000=e  which is a burst of length 2 . Hence, the 
interleaved codes ),6,18(  )3,9(  and )2,6(  are capable of correcting single burst of 
length ,6  3  and 2  or less. 

6. Conclusions 
In this study, a new technique of constructing binary cyclic codes is 

introduced using the monoid rings ],;[ 02 NF ax  ];[ 02 NF b
ax  and ];[ 0

1
2 NF bx  instead of 

the polynomial ring ][2 xF . So, a scheme is articulated in such a manner that; for 
an n  length binary cyclic code ,nC  an ideal in the factor ring nax ];[ 02 NF ; there 
exists binary cyclic codes ,anC  bnC  and abnC  of lengths ,an  bn  and abn . The 
pronouncements of this study are as follows: 
1) The generator and parity check matrix of the binary cyclic code abnC  contains 

blocks of the generator and parity check matrices of the binary cyclic codes 
ann CC ,  and bnC . Hence, encoding and decoding of all the binary cyclic codes 

,nC  anC  and bnC  can be done simultaneously by the encoding and decoding of 
the binary cyclic code abnC . 

2) The constructed binary cyclic codes ,anC  bnC  and abnC  are interleaved codes of 
degree a , b  and ab , respectively, where the binary cyclic code nC  is the base 
code. Therefore, if the base code nC  corrects t  errors, then the interleaved 
codes ,anC  bnC  and abnC  are capable of correcting t  bursts of length ,a  b  and 
ab  or less. If nC  is capable of correcting all bursts of length l  or less, then the 
interleaved codes ,anC  bnC  and abnC  are capable of correcting all bursts of 
length ,al  bl  and abl  or less. 

This study can further be extended to arrayq −  cyclic codes instead of .2 array−  
Also, using the same monoid rings, the BCH codes can be constructed for better 
error correction capability. 
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