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FAMILIES OF ITERATED FUNCTION SYSTEMS. CONVERGENCES

PROPERTIES OF THE ASSOCIATED ATTRACTORS AND FRACTAL

MEASURES

by Ştefania Constantinescu, Ion Mierluş-Mazilu and Lucian Niţă

           In this paper, we consider a sequence of iterated function system (I.F.S.), which is 
built using a finite family of contractions and a sequence of linear and contin-uous 
operators. We study the problem of the convergence for the sequence of attractors and 
fractal measures associated to the sequence I.F.S. We also study the case of vector fractal 
measures. Some examples are, also, provided.
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1. Introduction

Fractal sets play, nowadays, a very important role, both in mathematics and in other
domains of science. That’s why they should be studied from more and more directions.

In this paper, we discuss about fractal sets which are obtained as attractors of a,
(so called), iterated function system (I.F.S.). These attractors are, in fact, fixed points of
some contractions (obtained using the I.F.S.), defined and taking values on the class K(T )
of the compact and nonempty subsets of a complete metric space (T, d), where, on K(T ),
we consider the Hausdorff-Pompeiu metric.

The problem that we study in this paper is: being given a sequence of I.F.S., having,
each of them, the associated attractor Kn ∈ K(T ), such that the sequence of I.F.S. converges
(in some sense) to an I.F.S. with the associated attractor K, it is true that Kn converges to
K, in the Hausdorff-Pompeiu metric?

More than that, being given an I.F.S. (considering this time, (T, d) compact), one can
consider an operator (called the Markov operator) on the set of normalized Borel measures
on T . This operator is itself a contraction and it has an unique fixed point, called fractal
measure (or Hutchinson measure). It is important to note that the support of this measure
is exactly the attractor of the I.F.S. (see [9]). In [4], using [1], [2], [3] it was proved the
existence of a fractal measure in the case of vector measures (taking values in a normed
vector space).

One can ask the question: given a sequence of I.F.S., with the associated fractal
measures µn, such that it converges to an I.F.S. with the associated fractal measure µ, it is
true that µn converges to µ?

This paper gives the answer to these questions. We have to mention that the idea
for this research was given by [9] (section 3.4.). Other papers in which similar topics were
studied are [5] and [7].
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2. Preliminary facts

2.1. The Hausdorff-Pompeiu metric. The attractor associated to an iterated
function system. In this section, we will present without proofs some results that we will
use throughout the paper. We mention that this results were briefly presented in [7] and [8].
For more details and for some of the proofs of the results, one can consult [1], [2], [3], [4],
[6] and [9].

Let (T, d) be a metric space. We denote by P∗(T ) the family of non-empty and
bounded subsets of T . For any x ∈ T and A ∈ P∗(T ) we will denote: d(x,A) = inf

y∈A
d(x, y)

. If A,B ∈ P∗(T ) we define d(A,B) = sup
x∈A

d(x,B). In a similar way, we define d(B,A) =

sup
y∈B

d(y,A). Now, we denote:

δ(A,B) = max{d(A,B), d(B,A)}. Let us define

K∗(T ) = {K ⊂ T |K is compact and non-empty}.
Proposition 2.1. i) δ : K∗(T ) × K∗(T ) → [0,∞) is a metric on K∗(T ) called the

Hausdorff-Pompeiu metric.;
ii) If ω : T → T is a Lipschitz function , then δ(ω(A), ω(B)) ≤ L · δ(A,B), L being the

Lipschitz constant of ω;

iii) if (Ai)1≤i≤n, (Bi)1≤i≤n ⊂ K∗(T ), then δ

(
n⋃
i=1

Ai,
n⋃
i=1

Bi

)
≤ max

1≤i≤n
δ(Ai, Bi).

Proposition 2.2. i) If (T, d) is complete, then (K∗(T ), δ) is also complete;
ii) If (T, d) is compact, (K∗(T ), δ) is also compact.

Definition 2.1. Let (T, d) be a complete metric space and (ωi)1≤i≤n,
ωi : T → T , i = 1, n such that any ωi is a contraction of ratio ri ∈ [0, 1). The family
(ωi)1≤i≤n is called iterated function system (I.F.S.).

Definition 2.2. If (ωi)1≤i≤n is a I.F.S. on the complete metric space (T, d), we define

S : K∗(T )→ K∗(T ), S(E) =
n⋃
i=1

ωi(E),∀E ∈ K∗(T ).

Proposition 2.3. The function S above defined is a contraction of ratio r ≤ max
1≤i≤n

ri.

Hence, using the contraction principle, we deduce that there is an unique set K ∈ K∗(T )
such that K = S(K).

Definition 2.3. The set K introduced by Proposition 2.3 is called the attractor (or: the
fractal) associated to the I.F.S. (ωi)1≤i≤n.

2.2. The Hutchinson metric on the positive normalized Borel measures. The
Markov operator and the Hutchinson measure. Let (T, d) be a compact metric space
and B its Borel subsets.

B = {µ : B → [0, 1]|µ(T ) = 1} (the family of positive normalized Borel measures).
Let also define Lip1(T ) = {f : T → R||f(x)− f(y)| ≤ d(x, y)} and

dH : B× B→ R, dH(µ, ν) = sup
f∈Lip1(T )

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣} .
Proposition 2.4. i) dH is a metric on B called the Hutchinson metric;

ii) (B, dH) is a compact metric space.

We consider an I.F.S. (ωi)1≤i≤n and the positive numbers (pi)1≤i≤n such that
n∑
i=1

pi =

1. Now, we can define the Markov operator M associated to the I.F.S. (ωi)1≤i≤n, acting via

µ 7→M(µ), where M(µ)(A) =
n∑
i=1

piµ(ω−1
i (A)), for any µ ∈ B and for any A ∈ B.
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Proposition 2.5. i) For any µ ∈ B, M(µ) ∈ B;
ii) M : B → B is a contraction of ratio r ≤ max

i
ri (ri being the ratio of the contraction

ωi);
iii) There exists an unique measure µ∗ ∈ B such that M(µ∗) = µ∗;
iv) The support of µ∗ is the attractor associated to the I.F.S. (ωi)1≤i≤n.

Definition 2.4. The measure µ∗ defined by Proposition 2.5 is called the Hutchinson mea-
sure (or the fractal measure) associated to the I.F.S. (ωi)1≤i≤n and to the numbers (pi)1≤i≤n.

2.3. Fractal vector measures. Let (X, 〈 , 〉) be a Hilbert space, (T, d) a compact metric
space and we denote, as before, by B the Borel subsets of T . We consider a σ-additive
measure µ : B→ X. For any Borel set A ⊂ T , the variation of µ on A is:

|µ|(A)
def
= sup

{∑
i

‖µ(Ai)‖
}

, where the supremum is computed with respect to all the

partitions of A with finite families of Borel sets.
If |µ|(T ) <∞ we say that the measure has bounded variation. In this case, denoting

‖µ‖ = |µ|(T ), the application ‖ · ‖ is a norm on the vector space:

cabv(X) = {µ : B→ X|µ is σ-additive and |µ|(T ) <∞}.

It can be proved that (cabv(X), ‖ · ‖) is a Banach space.
Now, we denote L(X) = {R : X → X|R is linear and continuous}. Let

N ∈ N∗; for any i ∈ {1, . . . , N}, we consider the contraction ωi : T → T , with its
ratio ri and Ri ∈ L(X). One can define the following operator, denoted by H, via:

H(µ) =
N∑
i=1

Ri(µ(ω−1
i )), (this means: H(µ)(A) =

N∑
i=1

Ri(µ(ω−1
i (A))),for any A ∈ B and

µ ∈ cabv(X)).

It can be proved that for any µ ∈ cabv(X), H(µ) ∈ cabv(X) and ‖H‖ ≤
N∑
i=1

‖Ri‖o
(‖ · ‖o being the operatorial norm on L(X)).

We recall now the following notations, definitions and results:

1) C(X) = {f : T → X|f is continuous};
2) S(X) = {f : T → X|f is a simple function};
3) For any a > 0, fixed, Ba(X) = {µ ∈ cabv(X)|‖µ‖ ≤ a};
4) BL(X) = {f : T → X|f is a Lipschitz function};
5) TM(X) = {f : T → X | f is totally measurable, that is, ∃(fn)n≥1 ⊂ S(X) such that fn

u−→
f}.

Lemma 2.1. Let f ∈ BL(X); we denote by ‖f‖BL = ‖f‖∞ + ‖f‖L, where ‖f‖L is
the Lipschitz constant of f . Then, ‖ · ‖BL is a norm on BL(X).

Now, we can define
6) BL1(X) = {f ∈ BL(X) | ‖f‖BL ≤ 1};

Definition 2.5. Let f ∈ S(X), f =
m∑
i=1

ϕAixi, where (Ai)1≤i≤m is a partition of T with

Borel sets and ϕAi is the characteristic function of Ai, xi ∈ X. The number
m∑
i=1

〈xi, µ(Ai)〉

is called the integral of f with respect to µ and is denoted by
∫
fdµ (it is easy to prove that

the value of the integral doesn’t depend on the representation of f).

Definition 2.6. If f ∈ TM(X), we define
∫
fdµ = lim

n→∞

(∫
fndµ

)
, (fn)n≥1 being a sequence

of simple functions which converges uniformly to f (one can prove that this integral doesn’t
depend on the sequence (fn)n≥1, uniformly convergent to f).
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Lemma 2.2. a) The application ‖ · ‖MK : cabv(X) → [0,∞) defined by ‖µ‖MK =
sup{|

∫
fdµ|, f ∈ BL1(X)} is a norm on cabv(X), called the Monge-Kantorovich

type norm;
b) Let a > 0. If X = Kn (where K = R or C), then the topology generated on Ba(Kn)

by ‖ · ‖MK is the same with the weak-∗ topology;
c) Ba(Kn) equipped with the metric generated by ‖ · ‖MK is a compact metric space.

Lemma 2.3 (Change of variable formula). For any f ∈ C(X) and H as before, we have:∫
fdH(µ) =

∫
gdµ, where g =

N∑
i=1

R∗i ◦ f ◦ ωi (R∗i being the adjoint of Ri).

Theorem 2.1. a) Let us consider f ∈ BL1(Kn) and g =
N∑
i=1

R∗i ◦ f ◦ ωi, as in Lemma

2.3. Then g is a Lipschitz function and ‖g‖L ≤
N∑
i=1

‖Ri‖ori;

b) Let H be as before. We consider the normed vector space (cabv(Kn),

‖ · ‖MK). Then, H ∈ L(cabv(Kn)) and ‖H‖o ≤
N∑
i=1

‖Ri‖(1 + ri).

Theorem 2.2. Let us suppose that the hypothesis of Theorem 2.1 are fulfilled and
N∑
i=1

‖Ri‖o(1+

ri) < 1. Let a > 0, µ0 ∈ cabv(Kn); we define P : cabv(Kn)→ cabv(Kn), P (µ) = H(µ)+µ0.
Let, also, A ⊂ Ba(Kn), non-empty, weak-∗ close, such that P (A) ⊂ A. We denote by P0

the restriction of P to A. Then there is a unique measure µ∗ ∈ A such that P0(µ∗) = µ∗. If
µ0 = 0 (the zero-measure) then µ∗ = 0.

Definition 2.7. The measure µ∗ introduced by Theorem 2.2 is called the Hutchinson vector
measure (or the fractal vector measure).

Remark 2.1. For the proofs of the results in sections 2.1 and 2.2. one can see [9]. For
the proofs of lemmas 2.1 and 2.2 one can consult [2] (respectively [3]) and for the proofs of
lemma 2.3 (respectively theorems 2.1 and 2.2) one can consult [6] (respectively [4] and [8]).
For more details about the definitions 2.5 and 2.6 consult the paper [2].

3. Results

3.1. The general framework. Let X,Y Banach spaces and ω : Y → X a contraction of

ratio r. Let, also, (Tn)n≥1 ⊂ L(X,Y ) such that α
not
= sup

n≥1
‖Tn‖o < 1

r . For any n ≥ 1 we

consider the operators Un : Y → Y,Un
def
= Tn ◦ ω.

The following two lemmas were proved in [7].

Lemma 3.1. For any n, Un is a contraction of ratio less or equal to α · r.

Lemma 3.2. Let us suppose that there exists T ∈ L(X,Y ) such that Tn
‖·‖o−−→ T . Then, for

any K ∈ K∗(Y ), Un(K)
δ−→ U(K), where we denoted: U = T ◦ ω.

Remark 3.1. In the proof of lemma 3.2, for an arbitrarily and fixed ε > 0, we find a rank
N0 such that for any n ≥ N0, δ(Un(K), U(K)) ≤ ε. This rank depends not only on ε, but
also on K. However, if we take Y0 ⊂ Y , compact, such that Un(Y0) ⊂ Y0 and U(Y0) ⊂ Y0,
denoting again by Un and U the restrictions of these functions on Y0, it is easy to prove (see
[7]) that N0 depends only on ε.

Let now (ωj)1≤j≤m, ωj : Y0 → X be contractions of ratio rj , Y0 being a compact and
non-empty subset of a Banach space Y . We denote r = max

i
ri. Let us consider Tn, T ∈
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L(X,Y ) such that α
not
= sup

n
‖Tn‖o < 1

r and Tn
‖·‖o−−→ T . We denote Unj = Tn◦ωj , Uj = T ◦ωj

and we will suppose, as before, that Unj (Y0) ⊂ Y0, Uj(Y0) ⊂ Y0. Using lemma 3.1, we have
that the functions Unj : Y0 → Y0 and Uj : Y0 → Y0 are contractions of ratios less or equal by

αr. [Here, if Y is finite dimensional, we can take Y0 = B[0, R], R ≥ αβ
1−αr , β = max

j
‖ωj(0)‖].

We can deduce that (Unj )j is an I.F.S. on K∗(Y0). Y0 being compact in the Banach space
Y , it results that Y0 is a complete metric space (with respect to the metric given by the
restriction on Y0 of the norm on Y ). Consequently, (proposition 2.2), K∗(Y0) is complete.

Hence (proposition 2.3) there exists an unique set Kn ∈ K∗(Y0) such that Kn =
m⋃
j=1

Unj (Kn)

(the attractor associated to the I.F.S. (Unj )j . Similar, (Uj)j is an I.F.S. with its attractor

K =
m⋃
j=1

Uj(K).

The following result was also proved in [7].

Theorem 3.1. We suppose that the above conditions are fulfilled. Then, we have: Kn
δ−→ K.

3.2. Convergences properties for positive Hutchinson measures. Let us denote B

the Borel subsets of Y0 and B = {µ : B → [0,∞)|µ(Y0) = 1}. Let, also, p1, . . . , pn ∈ (0, 1)

such that
m∑
j=1

pj = 1. We define (as in the section 2.2) the Markov operator M(µ), via

M(µ)(A) =
m∑
j=1

pjµ(ω−1
j (A)), for any µ ∈ B and A ∈ B.

We will use the following result:

Lemma 3.3. With the above notations, for any continuous function f : Y0 → R we have:∫
fdM(µ) =

m∑
j=1

pj

∫
f ◦ ωjdµ.

(for the proof one can consult [9]). It is also easy to prove that:

Lemma 3.4. For any ε > 0, there exists N0 ∈ N such that for any n ≥ N0, x ∈ Y0 and
j ∈ {1, . . . ,m} we have: ‖Unj (x)− Uj(x)‖ < ε.

Consequence. Let N0 given by lemma 3.4. We have:
max
j

sup
x∈Y0

‖Unj (x)− Uj(x)‖ ≤ ε, ∀n ≥ N0.

Now let us consider p1, . . . , pm ∈ (0, 1) with
m∑
j=1

pj = 1, Mn,M : B → B,Mn(µ) =

m∑
j=1

pj ·µ
(
(Unj )−1

)
respectively M(µ) =

m∑
j=1

pj ·µ
(
(Uj)

−1
)

(the Markov operators associated

to the I.F.S. (Unj )j , respectively (Uj)j). We also denote by µn, respectively µ the Hutchinson
measures associated to Mn, respectively M .

Theorem 3.2. With the above notations, we have: lim
n→∞

dH(µn, µ) = 0.

Proof. Let ε > 0, arbitrarily, fixed. We have:

dH(µn, µ) = dH(Mn(µn),M(µ)) ≤ dH(Mn(µn),Mn(µ)) + dH(Mn(µ),M(µ)) (3.1)

According proposition 2.5 (ii), we have:

dH(Mn(µn),Mn(µ)) ≤ αrdH(µn, µ) (3.2)

From (3.1) and (3.2) we deduce:

(1− rα)dH(µn, µ) ≤ dH(Mn(µ),M(µ)) (3.3)
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For any f : Y0 → R, f ∈ Lip1(Y0), we can write (according to lemma 3.3):∣∣∣∣∫ fdMn(µ)−
∫
fdM(µ)

∣∣∣∣≤ m∑
j=1

pj

∣∣∣∣∫ (f ◦ Unj − f ◦ Uj)dµ
∣∣∣∣≤

≤
(µ(Y0)=1)

m∑
i=1

pj sup
x∈Y0

|f(Unj (x))− f(Uj(x))| ≤
m∑
j=1

pj sup
x∈Y0

‖Unj (x)− Uj(x)‖ ≤

≤ max
j

sup
x∈Y0

‖Unj (x)− Uj(x)‖ ·

 m∑
j=1

pj


︸ ︷︷ ︸

=1

≤ ε

for n big enough, using lemma 3.4 and its consequence. Hence,

sup
f∈Lip1(Y0)

∣∣∣∣∫ fdMn(µ)−
∫
fdM(µ)

∣∣∣∣≤ ε
for n big enough, that is dH(Mn(µ),M(µ)) ≤ ε. It means: lim

n→∞
dH(µn, µ) = 0. �

3.3. Convergence properties for fractal vector measures. In this section, K will be R
or C, N ∈ N. We will use now the section 2.3 and the notations from section 3.1. We denote
by B the Borel subsets of Y0, cabv(KN ) = {µ : B→ KN |µ is σ-additive and |µ|(Y0) <∞}.
Let (Rj)1≤j≤m ⊂ L(KN ),

Hn : cabv(KN )→ cabv(KN ), Hn(µ) =

m∑
j=1

Rj ◦ µ ◦ (Unj )−1,

that means: Hn(µ)(A) =
m∑
j=1

Rj(µ(Unj )−1(A)), for any Borel subset of KN . Similar, let

H(µ) =
m∑
j=1

Rj ◦ µ ◦ U−1
j . We consider a > 0, arbitrarily, fixed and Ba(KN ) = {µ ∈

cabv(KN )|‖µ‖ ≤ a}. Let

Pn : cabv(KN )→ cabv(KN ), Pn(µ) = Hn(µ) + µ0,

and
P : cabv(KN )→ cabv(KN ), P (µ) = H(µ) + µ0,

where µ0 ∈ cabv(KN ) is arbitrarily and fixed. We will suppose that there exists A ⊂
Ba(KN ), weak-∗ close such that Pn(A) ⊂ A and P (A) ⊂ A. For example, if ‖H‖o ≤(

m∑
j=1

‖Rj‖o

)
(1+αr) < 1 (r = max

j
rj , α = sup ‖Tn‖o) and ‖µ0‖ ≤ a

[
1−

n∑
j=1

‖Rj‖o(1 + αr)

]
,

then we can take A = Ba
(
KN

)
.

Indeed, for µ ∈ Ba
(
KN

)
we have:

‖P (µ)‖ ≤ ‖H(µ)‖+ ‖µ0‖ ≤ ‖µ0‖+

 m∑
j=1

‖Rj‖o(1 + rα)

 ‖µ‖︸︷︷︸
≤a

≤

≤ a

1−
m∑
j=1

‖Rj‖o(1 + αr)

+

 m∑
j=1

‖Rj‖o(1 + αr)

 · a = a

=⇒ P (µ) ∈ Ba
(
KN

)
. Similar, if for any n ∈ N∗, ‖Hn‖o ≤

(
m∑
j=1

‖Rj‖o

)
(1 + αr) we obtain

Pn(µ) ∈ Ba
(
KN

)
.
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Let us suppose that all these conditions are fulfilled. Then, according theorem 2.2,
there exists µ∗ ∈ Ba

(
KN

)
such that P (µ∗) = µ∗, and, for any n ≥ 1, there exists µ∗n ∈

Ba
(
KN

)
such that Pn(µ∗n) = µ∗n (the fractal vector measures associated to P , respectively

Pn).
We will denote by qn the ratio of Pn.

Theorem 3.3. We suppose that all the above hypotheses are fulfilled. Then lim
n→∞

‖µ∗n −
µ∗‖MK = 0 (‖ · ‖MK is the Monge-Kantorovich type norm (see lemma 2.2).

Proof.

‖µ∗n − µ∗‖MK = ‖Pn(µ∗n)− P (µ∗)‖MK ≤ ‖Pn(µ∗n)− Pn(µ∗)‖MK+

+‖Pn(µ∗)− Pn(µ∗)‖MK ≤ qn‖µ∗n − µ∗‖MK + ‖Pn(µ∗)− P (µ∗)‖MK (3.4)

We have, obviously: qn ≤ ‖Hn‖o ≤

(
m∑
j=1

‖Rj‖o

)
(1 + αr) < 1.

Hence q
def
= sup

n
qn < 1. According (3.4), we can write:

‖µ∗n − µ∗‖MK ≤ q‖µ∗n − µ∗‖MK + ‖Pn(µ∗)− P (µ∗)‖MK =⇒

=⇒ (1− q)‖µ∗n − µ∗‖MK ≤ ‖Pn(µ∗)− P (µ∗)‖. (3.5)

Let now ε > 0 arbitrarily fixed and f ∈ BL1

(
KN

)
. We can write:∣∣∣∣ m∑

j=1

(∫
R∗j ◦ f ◦ Unj dµ∗ −

∫
R∗j ◦ f ◦ Ujdµ∗

) ∣∣∣∣︸ ︷︷ ︸
lemma 2.2

=

∣∣∣∣∫ fdHn(µ∗)−
∫
fdH(µ∗)

∣∣∣∣
=

=

∣∣∣∣ m∑
j=1

∫
R∗j ◦ (f ◦ Unj − f ◦ Uj)dµ∗

∣∣∣∣≤ m∑
j=1

∣∣∣∣∫ R∗j ◦ (f ◦ Unj − f ◦ Uj)dµ∗
∣∣∣∣≤

≤
m∑
j=1

∫
‖R∗j ◦ (f ◦ Unj − f ◦ Uj)‖d|µ∗| ≤

m∑
j=1

∫
‖R∗j‖o‖f ◦ Unj − f ◦ Uj‖d|µ∗| ≤

≤
m∑
j=1

‖R∗j‖o
∫
‖Unj (x)− Uj(x)‖d|µ∗|(x) ≤ max

j
sup
x∈Y0

‖Unj (x)− Uj(x)‖ · |µ∗|(Y0) < ε,

for n big enough, according the consequence of lemma 3.4 and using the fact that
m∑
j=1

‖R∗j‖o <

1.

Hence, sup
f∈BL1(KN )

∣∣∣∣∫ fdHn(µ∗)−
∫
fdH(µ∗)

∣∣∣∣≤ ε;
=⇒ ‖Hn(µ∗)−H(µ∗)‖MK ≤ ε =⇒ ‖Pn(µ∗)− P (µ∗)‖MK ≤ ε

(3.5)
=⇒ (1− q)‖µ∗n − µ∗‖MK ≤ ε, for n large enough.

We deduce that µ∗n
‖·‖MK−−−−→ µ∗. �

Example 4.1. We consider X = Y = L2([0, 1])
not
= L2. For any j ∈ N, j ≥ 1 let

Kj : [0, 1]× [0, 1]→ R, continuous, such that max
(x,y)

Kj(x, y) = 1
j+1 (for example, we can take

Kj(x, y) = xjyj

j+1 ). We define for any f ∈ L2, ωj(f)(x) =
∫

[0,1]

Kj(x, y) sin |f(y)|dλ(y), λ being

the Lebesgue measure.
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i) We prove that ωj(f) ∈ L2 : ∀x ∈ [0, 1], we have:

|ωj(f)(x)|2 =

∣∣∣∣ ∫
[0,1]

Kj(x, y) sin |f(y)|︸ ︷︷ ︸
≤|f(y)|

dλ(y)

∣∣∣∣2≤
 ∫

[0,1]

|Kj(x, y)||f(y)|dλ(y)


2

≤ 1

(j + 1)2

 ∫
[0,1]

|f(y)|dλ(y)


2

≤ 1

(j + 1)2

 ∫
[0,1]

dλ(y)

 · ∫
[0,1]

|f(y)|2dλ(y) =
1

(j + 1)2
‖f‖22

(we denoted by ‖·‖2 the norm on L2([0, 1])); Hence, we can write:
∫

[0,1]

|ωj(f)(x)|2dλ(x) ≤∫
[0,1]

1
(j+1)2 ‖f‖

2
2dλ(x) = 1

(j+1)2 ‖f‖
2
2.

We can deduce that ωj(f) ∈ L2 and ‖ωj(f)‖ ≤ 1
j+1‖f‖2.

ii) We prove that the functions ωi are contractions: for any f , g ∈ L2 we have:

|ωj(f)(x)− ωj(g)(x)|2 ≤

 ∫
[0,1]

|Kj(x, y)|| sin |f(y)| − sin |g(y)||dλ(y)


2

≤

≤ 1

(j + 1)2

 ∫
[0,1]

dλ(y)

 · ∫
[0,1]

(sin |f(y)| − sin |g(y)|)2
dλ(y) =

=
4

(j + 1)2

∫
[0,1]

sin2 ||f(y)| − |g(y)||
2

cos2 ||f(y)|+ |g(y)||
2

dλ(y) ≤

≤ 1

(j + 1)2

∫
[0,1]

||f(y)| − |g(y)||2dλ(y) ≤ 1

(j + 1)2

∫
[0,1]

|f(y)− g(y)|2dλ(y) =

=
1

(j + 1)2
‖f − g‖22; it results that:

∫
[0,1]

|ωi(f)(x)− ωj(f)(x)|2dλ(x) ≤

≤
∫

[0,1]

1

(j + 1)2
‖f − g‖22dλ(y) =

1

(j + 1)2
‖f − g‖22 =⇒ ‖ωj(f)− ωj(g)‖ ≤ 1

j + 1
‖f − g‖2.

Hence, for m ∈ N∗, fixed, we have the contractions (ωj)1≤j≤m of fixed ratio rj ≤ 1
j+1 .

Example 4.2. For any n ∈ N, n ≥ 1, we define:

Tn(f)(x) =

∫
[0,1]

n sin
xy

n
f(y)dλ(y),∀f ∈ L2.

Obviously, Tn is a linear operator.
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i) We prove that Tn(f) ∈ L2:

|Tn(f)(x)|2 ≤


∫

[0,1]

n | sin xy
n
|︸ ︷︷ ︸

≤ xy
n ≤

1
n

|f(y)|dλ(y)


2

≤

 ∫
[0,1]

|f(y)|dλ(y)


2

≤
∫

[0,1]

|f(y)|2dλ(y) = ‖f‖22;

we deduce that
∫

[0,1]

|Tn(f)(x)|2dλ(x) ≤ ‖f‖22 and this inequality shows that Tn ∈ L(L2)

and ‖Tn‖o ≤ 1.
We consider now T (f)(x) =

∫
[0,1]

xyf(y)dλ(y). One can easily prove that T ∈ L(L2)

(in the same way as for Tn). We shall prove that
‖(Tn − T )(f)‖2 → 0 for any f ∈ L2 with ‖f‖2 ≤ 1. We have (for x ∈ (0, 1]):

|Tn(f)(x)− T (f)(x)|2 ≤

 ∫
[0,1]

∣∣∣∣n sin
xy

n
− xy

∣∣∣∣|f(y)|dλ(y)


2

≤

≤
∫

[0,1]

f2(y)

[
xy

(
sin xy

n
xy
n

− 1

)]2

dλ(y); (3.6)

let fn : [0, 1]→ R, fn(y) = f2(y) · x2y2 ·
(

sin xy
n

xy
n
− 1
)2

,∀y ∈ (0, 1], fn(0) =

= 0. Obviously, the functions fn are λ-measurable and |fn| ≤ f2, for any y ∈ (0, 1],
fn(y) → 0. Using the Lebesgue theorem of dominate convergence, we obtain that
lim
n→∞

∫
(0,1]

fn(y)dλ(y) =
∫

(0,1]

0dλ(y) = 0 and, from (3.6),

lim
n→∞

∣∣[Tn(f)− T (f)](x)
∣∣= 0,∀x ∈ [0, 1] (for x = 0 the equality is obvious).

But, for f ∈ L2 such that ‖f‖2 ≤ 1, we have:

|(Tn − T )(f)(x)|2 ≤

 ∫
[0,1]

|f(y)|2dλ(y)


2

= ‖f‖42 ≤ 1,

(Tn−T )(f)(x)→ 0,∀x ∈ [0, 1] and using again the dominate convergence theorem we
deduce: ∫

[0,1]

|(Tn(f)− T (f))(x)|2dλ(x)→
∫

[0,1]

0dλ(x) = 0,

that means : ‖(Tn − T )(f)‖2 → 0,∀f ∈ L2, with ‖f‖2 ≤ 1.

Remark 3.2. Using 4.1 and 4.2 together, we can write:

Tn(ωj(f))(x) =

∫
[0,1]

n sin
xy

n

 ∫
[0,1]

Kj(y, z) sin |f(z)|dλ(z)

 dλ(y);

Tn(ωj(f))(x) =

∫
[0,1]

xy

 ∫
[0,1]

Kj(y, z) sin |f(z)|dλ(z)

 dλ(y).
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