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FAMILIES OF ITERATED FUNCTION SYSTEMS. CONVERGENCES
PROPERTIES OF THE ASSOCIATED ATTRACTORS AND FRACTAL
MEASURES

by Stefania Constantinescu, Ion Mierlus-Mazilu and Lucian Nita

In this paper, we consider a sequence of iterated function system (I.F.S.), which is
built using a finite family of contractions and a sequence of linear and contin-uous
operators. We study the problem of the convergence for the sequence of attractors and
fractal measures associated to the sequence I.F.S. We also study the case of vector fractal
measures. Some examples are, also, provided.
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1. Introduction

Fractal sets play, nowadays, a very important role, both in mathematics and in other
domains of science. That’s why they should be studied from more and more directions.

In this paper, we discuss about fractal sets which are obtained as attractors of a,
(so called), iterated function system (I.F.S.). These attractors are, in fact, fixed points of
some contractions (obtained using the I.F.S.), defined and taking values on the class K(T')
of the compact and nonempty subsets of a complete metric space (7', d), where, on X(7T'),
we consider the Hausdorff-Pompeiu metric.

The problem that we study in this paper is: being given a sequence of I.F.S., having,
each of them, the associated attractor K,, € X(T'), such that the sequence of I.F.S. converges
(in some sense) to an L.F.S. with the associated attractor K, it is true that K,, converges to
K, in the Hausdorff-Pompeiu metric?

More than that, being given an I.F.S. (considering this time, (T, d) compact), one can
consider an operator (called the Markov operator) on the set of normalized Borel measures
on T'. This operator is itself a contraction and it has an unique fixed point, called fractal
measure (or Hutchinson measure). It is important to note that the support of this measure
is exactly the attractor of the LF.S. (see [9]). In [4], using [1], [2], [3] it was proved the
existence of a fractal measure in the case of vector measures (taking values in a normed
vector space).

One can ask the question: given a sequence of I.LF.S., with the associated fractal
measures fi,, such that it converges to an I.F.S. with the associated fractal measure p, it is
true that p,, converges to u?

This paper gives the answer to these questions. We have to mention that the idea
for this research was given by [9] (section 3.4.). Other papers in which similar topics were
studied are [5] and [7].
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2. Preliminary facts

2.1. The Hausdorff-Pompeiu metric. The attractor associated to an iterated
function system. In this section, we will present without proofs some results that we will
use throughout the paper. We mention that this results were briefly presented in [7] and [8].
For more details and for some of the proofs of the results, one can consult [1], [2], [3], [4],
[6] and [9].

Let (T,d) be a metric space. We denote by P*(T") the family of non-empty and
bounded subsets of T'. For any € T and A € P*(T') we will denote: d(z, A) = yuelg d(z,y)

. If A,B € P*(T) we define d(A, B) = supd(x, B). In a similar way, we define d(B, A) =
€A

sup d(y, A). Now, we denote:
yeB
0(A, B) = max{d(A, B),d(B, A)}. Let us define

X*(T) ={K C T|K is compact and non-empty}.
Proposition 2.1. i) § : KNT) x XK*(T) — [0,00) is a metric on K*(T) called the
Hausdorfl-Pompeiu metric.;
it) If w: T — T is a Lipschitz function , then 6(w(A),w(B)) < L-§(A, B), L being the
Lipschitz constant of w;

’L’LZ) ’Lf (Ai)lgigna (Bi)lgign C fK*(T), then & (U Ai, U Bz) < 1rga<x 5(A2»Bz)
=1 =1 <i<n

Proposition 2.2. i) If (T,d) is complete, then (KX*(T),0) is also complete;
it) If (T,d) is compact, (X*(T),0) is also compact.

Definition 2.1. Let (T, d) be a complete metric space and (w;)i1<i<n,
wi : T = T, i=1,n such that any w; is a contraction of ratio r; € [0,1). The family
(wi)i<i<n s called iterated function system (IF.S.).
Definition 2.2. If (w;)i<i<n s ¢ LF.S. on the complete metric space (T,d), we define
S:KH(T) = X(T),S(E)= | wi(E),VE € X*(T).

i=1

Proposition 2.3. The function S above defined is a contraction of ratio r < lrga<x Ty
SN

Hence, using the contraction principle, we deduce that there is an unique set K € fK*(T)
such that K = S(K).

Definition 2.3. The set K introduced by Proposition 2.8 is called the attractor (or: the
fractal) associated to the LF.S. (w;)1<i<n-

2.2. The Hutchinson metric on the positive normalized Borel measures. The
Markov operator and the Hutchinson measure. Let (T, d) be a compact metric space
and B its Borel subsets.

B ={p:B — [0,1]|u(T) = 1} (the family of positive normalized Borel measures).
Let also define Lip,(T) = {f : T — R||f(x) — f(y)| < d(x,y)} and

di :BxB — R, dy(u,v) = sup {‘/fd,u /fdl/
Proposition 2.4. i) dg is a metric on B called the Hutchinson metric;

feLipy (T
it) (B,dp) is a compact metric space.

n
We consider an LF.S. (w;)1<i<n and the positive numbers (p;)1<i<n such that > p; =
i=1
1. Now, we can define the Markov operator M associated to the I.F.S. (w;)i<i<n, acting via

w— M(u), where M(p)(A) = Zn: pip(w; H(A)), for any p € B and for any A € B.
i=1
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Proposition 2.5. i) For any p € B, M(p) € B;
it) M : B — B is a contraction of ratio r < maxr; (r; being the ratio of the contraction
1
wi)z'
i11) There exists an unique measure p* € B such that M (u*) = p*;
iv) The support of u* is the attractor associated to the LF.S. (w;)1<i<n-

Definition 2.4. The measure p* defined by Proposition 2.5 is called the Hutchinson mea-
sure (or the fractal measure) associated to the LF.S. (w;)1<i<n and to the numbers (p;)1<i<n-

2.3. Fractal vector measures. Let (X, (,)) be a Hilbert space, (T, d) a compact metric
space and we denote, as before, by B the Borel subsets of 7. We consider a c-additive
measure 4 : B — X. For any Borel set A C T, the variation of p on A is:

d . .
|| (A) et sup {Z ||u(AZ)||}, where the supremum is computed with respect to all the

i

partitions of A with finite families of Borel sets.

If |u|(T) < oo we say that the measure has bounded variation. In this case, denoting
lleell = |p|(T), the application || - || is a norm on the vector space:

cabv(X) = {u: B — X|u is o-additive and |u|(T) < co}.

It can be proved that (cabv(X),|| - ||) is a Banach space.
Now, we denote £L(X) = {R: X — X|R is linear and continuous}. Let
N € N* for any 7 € {1,...,N}, we consider the contraction w; : T — T, with its
ratio r; and R; € L£(X). One can define the following operator, denoted by H, via:
N

N
H(p) = Y Ri(u(w; ), (this means: H(u)(A) = Y. Ri(u(w;'(A))),for any A € B and
1=1 i=1
w € cabv(X)).
N
It can be proved that for any pu € cabv(X), H(u) € cabv(X) and [[H| < > [|Rillo
i=1

(]| - ||o being the operatorial norm on £(X)).

We recall now the following notations, definitions and results:
) C(X)=A{f:T — X|f is continuous};
) S(X)=A{f:T — X|fis a simple function};
3) For any a > 0, fixed, B,(X) = {u € cabv(X)|||p|]l < a};
4) BL(X)={f:T — X|f is a Lipschitz function};
)

N =

Ut

[}

Lemma 2.1. Let f € BL(X); we denote by || fllsr = ||fllcc + || fllz, where ||f||L is
the Lipschitz constant of f. Then, || - ||pr s a norm on BL(X).

Now, we can define
6) BL1(X)={f€ BL(X) |[lflsr <1}

m
Definition 2.5. Let f € S(X), f = Y @a,x;, where (A;)i<i<m 15 a partition of T with
i=1
m
Borel sets and ¢4, is the characteristic function of A;,x; € X. The number > (x;, u(A;))
i=1
is called the integral of f with respect to pu and is denoted by [ fdu (it is easy to prove that
the value of the integral doesn’t depend on the representation of f).

Definition 2.6. If f € TM(X), we define [ fdp = lim ([ fndu), (fa)n>1 being a sequence
n—oo -

of simple functions which converges uniformly to f (one can prove that this integral doesn’t
depend on the sequence (fn)n>1, uniformly convergent to f).

TM(X)={f:T — X | f is totally measurable, that is, 3(f,)n>1 C S(X) such that f, —
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Lemma 2.2.  a) The application || - ||mx : cabv(X) — [0,00) defined by ||pl|lmx =
sup{| [ fdul|,f € BLi(X)} is a norm on cabv(X), called the Monge-Kantorovich

type norm;

b) Let a > 0. If X = K™ (where K =R or C), then the topology generated on B,(K™)
by || - ||amx is the same with the weak-+ topology;

¢) Bo(K™) equipped with the metric generated by || - ||k s a compact metric space.

Lemma 2.3 (Change of variable formula). For any f € C(X) and H as before, we have:
N

[ fdH(u) = [ gdp, where g =Y R} o fow,; (R being the adjoint of R;).
i=1

N
Theorem 2.1.  a) Let us consider f € BL1(K"™) and g = > Rf o f ow;, as in Lemma
=1

N
2.3. Then g is a Lipschitz function and ||l < Y [|Rillori;
i=1
b) Let H be as before. We consider the normed vector space (cabv(K™),
N
I llarx). Then, H € L(cabv(K™)) and || H|lo < > [|R:l|(1 4+ 7).
i=1

N
Theorem 2.2. Let us suppose that the hypothesis of Theorem 2.1 are fulfilled and > || R;||o(1+
i=1

r;) < 1. Leta > 0, u® € cabv(K™); we define P : cabv(K™) — cabv(K™), P(u) = H(p)+u°.
Let, also, A C B,(K™), non-empty, weak-x close, such that P(A) C A. We denote by P,
the restriction of P to A. Then there is a unique measure u* € A such that Py(p*) = p*. If
p® =0 (the zero-measure) then pu* = 0.

Definition 2.7. The measure p* introduced by Theorem 2.2 is called the Hutchinson vector
measure (or the fractal vector measure).

Remark 2.1. For the proofs of the results in sections 2.1 and 2.2. one can see [9]. For
the proofs of lemmas 2.1 and 2.2 one can consult [2] (respectively [3]) and for the proofs of
lemma 2.3 (respectively theorems 2.1 and 2.2) one can consult [6] (respectively [4] and [8]).
For more details about the definitions 2.5 and 2.6 consult the paper [2].

3. Results

3.1. The general framework. Let X,Y Banach spaces and w : Y — X a contraction of
1

ratio r. Let, also, (T),)n>1 C £(X,Y) such that « ot sup |7 |lo < . For any n > 1 we
n>1
consider the operators U,, : Y — Y, U, def T, ow.
The following two lemmas were proved in [7].

Lemma 3.1. For any n, U, is a contraction of ratio less or equal to o - r.

Lemma 3.2. Let us suppose that there exists T € L(X,Y) such that T, M T. Then, for

any K € X*(Y), U, (K) LN U(K), where we denoted: U =T o w.

Remark 3.1. In the proof of lemma 3.2, for an arbitrarily and fixed € > 0, we find a rank
Ny such that for any n > Ny, §(U,(K),U(K)) < e. This rank depends not only on ¢, but
also on K. However, if we take Yo C'Y, compact, such that U, (Yy) C Yo and U(Yy) C Yo,
denoting again by Uy, and U the restrictions of these functions on Yy, it is easy to prove (see
[7]) that No depends only on e.

Let now (w;)1<j<m, w; : Yo — X be contractions of ratio r;, Y; being a compact and
non-empty subset of a Banach space Y. We denote r = maxr;. Let us consider T, T €
3
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not ll-1lo

L(X,Y) such that a« "= sup || T, [, < L and T,, —= T. We denote U = Thowj, Uj = Tow;

and we will suppose, as before, that U (Yy) C Yo, U;(Yp) C Yo. Using lemma 3.1, we have

that the functions U Yo=Y and U; : Yy — Y{ are contractions of ratios less or equal by

ar. [Here, if Y is finite dimensional, we can take Y, = B[0, R], R > £ = max [lw;(0)|[].
j

We can deduce that (U}'); is an LF.S. on X*(Yp). Yo being compact in the Banach space

Y, it results that Y is a complete metric space (with respect to the metric given by the
restriction on Y of the norm on Y). Consequently, (proposition 2.2), X*(Yp) is complete.

m
Hence (proposition 2.3) there exists an unique set K, € X*(Yp) such that K, = |J Ul'(K5,)
j=1

l—ar?

(the attractor associated to the L.F.S. (U}');. Similar, (U;); is an LF.S. with its attractor
K = 'U1 U;(K).
j=
The following result was also proved in [7].

Theorem 3.1. We suppose that the above conditions are fulfilled. Then, we have: K, %K.

3.2. Convergences properties for positive Hutchinson measures. Let us denote B
the Borel subsets of Yy and B = { : B — [0,00)|u(Yo) = 1}. Let, also, p1,...,pn € (0,1)

such that > p; = 1. We define (as in the section 2.2) the Markov operator M (u), via
j=1

M(p)(A) = > pju(wfl(A)), for any € B and A € B.
j=1
We will use the following result:

Lemma 3.3. With the above notations, for any continuous function f : Yy — R we have:

/fdM(u) —ji;pj/fowj'du-

(for the proof one can consult [9]). It is also easy to prove that:

Lemma 3.4. For any € > 0, there exists Ng € N such that for any n > Ny,xz € Yy and
je{l,...,m} we have: |U}(z) — Uj(z)| <e.

Consequence. Let Ny given by lemma 3.4. We have:

max sup ||U(z) — U;(2)|| < ¢&,Vn > No.
J  z€Ys

Now let us consider pi,...,pm € (0,1) with > p; =1, Mp, M : B — B, M, (1) =
j=1

> i i ((UF) 1) respectively M (p) = 37 pj-pu ((U;)~") (the Markov operators associated
j=1 j=1
to the LF.S. (UT");, respectively (U;);). We also denote by f,,, respectively y the Hutchinson

measures associated to M,,, respectively M.

Theorem 3.2. With the above notations, we have: Um dg(pn,pn) = 0.

n—oo

Proof. Let ¢ > 0, arbitrarily, fixed. We have:
g (pns 1) = dpg (M (pn), M (1)) < dig (M (), M (1) + g (M (), M () (3.1)
According proposition 2.5 (ii), we have:

dH(Mn(Mn)’Mn(M)) < a'rdH(Nn,N) (32)
From (3.1) and (3.2) we deduce:

(1 —ra)dp (pn, 1) < dp(My(p), M (1)) (3.3)
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For any f: Yy — R, f € Lip;(Yy), we can write (according to lemma 3.3):

‘ [ rant ~ [ sarre ] ;pj

Z sup [f (U} (2)) — f(Uj(2))] < Zpy sup 1T (x) = Uj ()| <

j=1 €Y

Juou;- fon)du‘S

-1 TE

m
< max sup ||U}'(z) — U;(z)]| - ij se¢
J €Yo =

=1
for n big enough, using lemma 3.4 and its consequence. Hence,

sup /fdM /fdM )<e
f€Lip, (Yo)
for n big enough, that is dg (M, (1), M (1)) < e. It means: li_>m dg (pn, 1) =0. O
n oo

3.3. Convergence properties for fractal vector measures. In this section, K will be R
or C, N € N. We will use now the section 2.3 and the notations from section 3.1. We denote
by B the Borel subsets of Yy, cabv(K™) = {u: B — K¥|u is o-additive and |u|(Yy) < oo}.
Let (R )1<]<m C L(KN)

H" : cabv(K™N) — cabv(KN), H"( ZR opo (UM,

that means: H"(u)(A) = Y R;(u(U]")~"(A)), for any Borel subset of K. Similar, let

Jj=1

H(p) = Y Rjopo Uj_l. We consider a > 0, arbitrarily, fixed and B,(KY) = {u €
j=1
cabv(KN)|||u| < a}. Let
P" : caby(K™N) — cabv(KN), P"(u) = H™(p) + p°,
and
P : cabv(K™N) — cabv(KN), P(u) = H(p) + 1°,

where p° € cabv(K"™) is arbitrarily and fixed. We will suppose that there exists A C
Bu(KY), weak-x close such that P"(A) C A and P(A) C A. For example, if |H|, <

m

Zl ||Rj||o> (I4ar) <1(r= maxrj, o = Sup 1T l0) and ||uoll < a [1 - Zl I1R;1lo(1+ ar)] )
i= =

then we can take A = B, (K).
Indeed, for pu € B, (K) we have:

m

1Pl < IH @)+ 1201 < 0l + | D IR llo(1 +7ra) | lln]l <
J=1 <a

<a|1=Y Rjlo(t+ar)| + [ D IRillo(1+ar) | a=a

j=1
= P(u) € B, (K"). Similar, if for any n € N*, |[H"||, < (Z ||Rj||o> (14 ar) we obtain
j=1

P™(u) € B, (KN).
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Let us suppose that all these conditions are fulfilled. Then, according theorem 2.2,
there exists u* € B, (KN) such that P(u*) = p*, and, for any n > 1, there exists p) €

B, (K™) such that P™(u};) =y, (the fractal vector measures associated to P, respectively
pPm).
We will denote by ¢, the ratio of P™.

Theorem 3.3. We suppose that all the above hypotheses are fulfilled. Then li_>m Iz —

wlarx =0 (|| - llak s the Monge-Kantorovich type norm (see lemma 2.2).

Proof.
lm, = 0" e = 1P (1) = P(u) e < NP™(p) = P () I+
P (1) = P () vk < anllpn, — w7 e+ [1P™ (07) = P(") sk (3.4)

m
We have, obviously: ¢, < ||[H"|, < (Z ||Rjo> (14 ar)<1.
j=1
Hence ¢ def sup ¢, < 1. According (3.4), we can write:
n

s — i < gllpl — w¥llmx + |1P™ (@) — P(*) | =

= (1=l — " lmx < [P (") — P(u")]- (3.5)
Let now ¢ > 0 arbitrarily fixed and f € BL; (KN). We can write:

Z(/R;OfOU;Ldu*—/R;OfOUjd,u*)’:
j=1

lemma 2.2

S FdH (p*)— [ fdH (u*)

m

Z/R* foUj' — folUj)du|<

< Z/ R} o (foUj = folUylldlu™| < Z/HR;Hon oUj — foUj|dlp| <
j=1

/R* foU}' — folUj)du|<

m
<D IRl /||U" (@) dlp](2) < max sup 1Uf (x) = Uj (@) - [n"[(Yo) <,
j=1 weto
for n big enough, according the consequence of lemma 3.4 and using the fact that || R}, <
j=1
1.
Hence, sup |[ fdH™(p*)— [ fdH(p*)|<e¢;
FEBL1(KN)
= [[H"(p") = H(p") | mx < e = [[P"(n") = P(u")|lmx < ¢
&y = (1—¢q)||lu; — ¢k < e, for n large enough.
We deduce that u; M wr. O

Example 4.1. We consider X = Y = L2([0,1]) & L2 For any j € N,j > 1 let
K, :]0,1] x [0,1] = R, continuous, such that max K, (x,y) = m (for example, we can take

(I,y

‘”’jff ). We define for any f € L?, w;(f)(z) = [ K;j(z,y)sin|f(y)|d\(y), X being
[0,1]

Kj(l‘, y) =

the Lebesgue measure.
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i) We prove that w;(f) € L? : Va € [0, 1], we have:

2
fo5(7) \/K s snlf@|w)| < | [ 1K@l i)
~———
[0,1] <|f()l 0,1]
2
) dA(y
< [ o
0,1]
< | [ 2w ] [ 1rwka 1713
TG+ 1? U+D2 ’
0,1] 0.1]
(we denoted by ||-||2 the norm on L?([0, 1])); Hence, we can write: [ |w;(f)(z)[2dA(z) <

[0,1]

[O{] Gz I IBdAN(=) = o=l £113-

)

We can deduce that w;(f) € L? and |Jw;(f)|| < j%”f”g
ii) We prove that the functions w; are contractions: for any f, g € L? we have:

2
(@ - )@ < | [ Ky(wpllsinl i) - sinlg)lldrw) | <
0,1]
1 . . 2 i
< /] W) [/] (sin )] = sinlg(w)])* dA(y) =

4 / sin2 @I =19l 2 [If@)+ Ig(y)lld)\(y) <

(12 2 2
[0,1]
2 1 2 _
Sy e / 1)~ o) dAw) < =5z / 1F() — g(y)PdA(y) =
[0,1] [0,1]
=ﬁ||f—gn§; it results that: / wi (1) (@) — w;(F) (@) PdA () <
[0,1]
1 1 1
< / Gl — 913 = Gl — a1 = ()~ @) < =1 gl

[0,1]

1

Hence, for m € N*, fixed, we have the contractions (w;)i<j<m of fixed ratio r; < I

Example 4.2. For any n € N,n > 1, we define:
- . Ty 2
T,(1)(w) = [ nsin 2 fy)drw), v € L2
(0,1]

Obviously, T, is a linear operator.
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i) We prove that T,(f) € L*:

2
2
.z
L@ < | [ olsn 2wl | < | [ 17wl
Wy o
< [ rwPaw = 115
[0,1]
we deduce that [ |T5,(f)(z)[*dA\(z) < ||f||3 and this inequality shows that T,, € £(L?)
[0,1]

and ||T]l, < 1.
We consider now T(f)(z) = [ zyf(y)d\(y). One can easily prove that T € L(L?)

(0,1]

(in the same way as for T,,). We shall prove that
(T, = T)(f)|l2 — 0 for any f € L? with ||f|2 < 1. We have (for z € (0, 1]):
2

To(F)(a) — T() @) < / FWlaAw) | <

0,1]

. XY
nsin — — xy
n

< / ) {wy (Sh;ﬁ - 1>rd/\(y); (3.6)

[0,1] "

let f,:[0,1] = R, fu(y) = f2(y) - 2%y - (b”;y% _ 1)2 Yy € (0,1], £,(0) =

n

= 0. Obviously, the functions f,, are A-measurable and |f,| < f?, for any y € (0, 1],
fn(y) — 0. Using the Lebesgue theorem of dominate convergence, we obtain that

lim [ f.(y)d\(y) = | 0dA(y) =0 and, from (3.6),
"7%%0,1] (0,1)

li_>m [[T(f) = T(f)](z)|= 0,Va € [0,1] (for z = 0 the equality is obvious).
But, for f € L? such that | f|l2 < 1, we have:
2

(T = T)(f) () < /If(y)IQd/\(y) =Iflz <1,
0,1]

(T, —=T)(f)(z) — 0,z € [0, 1] and using again the dominate convergence theorem we
deduce:

/ (Tulf) — T()) (@) PaA(x) — / 0dA(z) = 0,
[0,1] [0,1]
that means : ||(T}, — T)(f)|l2 — 0,Vf € L%, with ||f]]2 < 1.

Remark 3.2. Using 4.1 and 4.2 together, we can write:

T (wi(f))(z) = /nsin% /Kj(y,z)sin|f(z)|d/\(z) d\(y);

[0,1] 0,1]

To(w;(f))(x) = /wy /Kj(y,Z)Sin\f(Z)ldA(Z) dA(y).

[0,1] 0,1]
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