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ADAPTIVE TEMPERATURE CONTROL ALGORITHM FOR
THE EXTRUDER BASED ON RBFNN AND NUSSBAUM-TYPE
FUNCTION

Bo XU, Luyao YUAN?, Lingyu YIN?

As the core equipment in rubber production, the temperature control accuracy
of the rubber extruder affects the final product quality. However, the temperature
change of the material in the rubber extruder is complex and nonlinear, and the
modelling of the temperature change process is difficult. It is difficult to accurately
track and control the temperature using the traditional proportional integral
differential algorithm (PID). This paper investigates a temperature trajectory
tracking algorithm for rubber extruder systems. An algorithm based on RBF neural
network (RBFNN) is proposed for the extruder to track the temperature curve. The
RBFNN is used to fit the model of the plant automatically, and the Nussbaum-type
function is used to solve the problem of the unknown direction of the control variable.
Finally, the stability of the algorithm is demonstrated by the Lyapunov stability
analysis. The proposed algorithm has strong robustness compared to conventional
algorithms and does not need modelling and parameter adjustment. The effectiveness
and superiority of the proposed control algorithm are proven by the simulation
results. If the algorithm is successfully applied to actual injection molding machine
systems, it will greatly shorten the adjustment time of printing machine parameters,
reduce the difficulty of adjustment, and increase the robustness of the equipment.

Keywords: Extruder; Nussbaum-type function; Back-stepping; RBFNN;
Adaptive control

1. Introduction

In the field of rubber and plastic product manufacturing, extruders are key
pieces of equipment, playing a central role in the extrusion and shaping process.
The temperature of the extruder is one of the core process parameters. Fluctuations
in temperature can cause changes in the melt viscosity of the granulate, which in
turn affects the extrusion flow rate and die pressure.[1] Precise temperature control
is an essential part of precision extrusion molding. If the temperature parameters
are not well-regulated, it can lead to large steady-state errors and overshoots,
resulting in temperatures that are too high or too low. [2] This can affect the
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material's shrinkage rate, thermal degradation, and the melting and plasticization
effect. A typical heating tube is divided into three different temperature zones: the
feed zone, transition zone, and melting zone (see Fig. 1). Extruders have a large
thermal inertia coefficient, and traditional PID control methods result in large
overshoots, wide temperature fluctuations, slow adjustment speeds, long
adjustment times, and poor parameter robustness. They are easily affected by
environmental factors, with the same PID parameters performing differently in
winter and summer. Therefore, the parameter adjustment for injection molding
machines requires a high level of technical expertise from operators. Finding a
temperature control algorithm for injection molding machines that can achieve
automatic parameter adjustment and has strong robustness is key to solve the above
issues [3,4]:

{ Meetering  Transition Feeding |
Zone Zone Zone

ﬂ\ KN

-~ Injection molding machine heating
tube temperature zone

Fig.1 Structural drawing of feeding heating pipe
2. Problem statement

To address the above issues, numerous scholars have conducted research in
this field. The earliest efforts include the digital PID introduced by Dormeier [5]
combined with a multi-mode control algorithm. Segmented PID reduces the
difficulty of PID parameter adjustment by segmenting the controlled object.
Designing multiple sets of PID parameters to meet the control requirements of rapid
heating at the initial stage and small overshoot after approaching stability. Different
PID parameters are used for control according to different stages of control
requirements. Representative efforts include designing various multi-modal
strategies to control pipeline temperatures. Although this solution is more targeted
and enhances control performance, making it easier to adjust each set of PID
parameters, it increases the number of PID parameters, thereby increasing the
workload for PID parameter tuning. Moreover, the switching of parameters may
lead to instability in the injection molding machine system. [6]

In the late 1970s, adaptive control algorithms combining artificial
intelligence technology became a research hotspot. Control algorithms such as
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fuzzy control, neural networks, and iterative learning are applied to the local
approximation of controlled systems to achieve precise model control.
Representative work includes Chen et al. [7] developing a fuzzy adaptive control
strategy system with multiple linear models for extruders, improving control
accuracy. Yao et al. [8] used optimal time control to solve the problem of initial
temperature rise in machine pipelines. Predictive control and feedforward iterative
learning control [9] were used to achieve temperature control during the transition
phase of injection molding machine pipelines. The article [10] designed a fuzzy
controller to eliminate the coupling between melting temperature and pressure
during the extrusion process. Wei proposed a variable structure temperature control
strategy for injection molding machines based on iterative learning, improving the
dynamic control accuracy of the injection molding machine and reducing the
difficulty of parameter adjustment. [11] Meanwhile, they also tried the cerebellar
model articulation controller (CMAC) neural network method to achieve control of
the injection molding machine. [12] Aiming at the coupling and nonlinear problems
of the temperature control system of the injection molding machine barrel, Hu et al.
combined the advantages of fuzzy algorithm and neural network algorithm to
design a fuzzy neural network decoupling compensator, improving the accuracy
and stability of the temperature control of the injection molding machine barrel.
[13] Among these intelligent algorithms, temperature control algorithms based on
neural networks are the most widely used and relatively effective.[14] Artificial
neural networks are an information processing model that simulates the structure
and function of human brain neurons. It has strong nonlinearity and adaptability.
[15] In the field of control, it is often used for nonlinear modeling and function
approximation. The application of neural networks greatly simplifies the difficulty
of parameter adjustment in traditional control algorithms and improves control
performance at the same time. Representative work is Zhu et al. [16] combining
traditional PID controllers with radial basis function (RBF) neural networks to
control melt temperature and achieve PID parameter adjustment. Li et al. [17]
established a neural network basic structure and model for temperature control of
injection molding machine barrels based on the SPIDNN (single-output attribute
integration derivative neural network) algorithm, improving control accuracy. Most
of the above methods are based on traditional PID algorithm control methods,
which roughly adjust PID parameters first, and then use neural network methods
for local compensation. The biggest disadvantage of these methods is that they still
need to establish a system based on PID parameters, which cannot avoid manual
PID parameter adjustment.

To address the above issues, this paper proposes a neural network automatic
parameter adjustment method based on a large-scale neural network. The main
feature of this method is that it does not require basic modeling or PID parameter
adjustment. The system realizes the control of the controlled object through
automatic fitting by the neural network algorithm, which greatly reduces the
dependence on the control system parameters. Compared with traditional neural
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network modeling methods, this algorithm also introduces the Nussbaum function,
cleverly avoiding the problem of singular points in neural network fitting when the
parameters to be fitted are in the denominator, and non-convergence of the fitting
results. [18,19] Combined with adaptive control, it further improves the anti-
interference ability of the system.

3. Research and research methods
3.1 research methods

To address the complexities and poor robustness in adjusting system
parameters for injection molding machines, a controller design was proposed. The
method includes the following:

Firstly, establishing a mathematical model of the injection molding
machine's heating pipe system, abstracting the injection molding machine as a
typical second-order system. Then, an adaptive neural network is used to
approximate the model of the injection molding machine, while a Nussbaum-type
approach is employed to approximate the coefficient of the control variable u. The
introduction of the Nussbaum-type resolves issues where singular points exist in
the denominator of the control input coefficient. Due to the fact that actual injection
molding machine systems are not open for research, a semi-physical model test
bench is constructed for convenience in obtaining data from the model of the
controlled object. Finally, through experiments, the functionality of the controller
is verified.

3.2 Preliminaries

3.2.1 Problem formulation
Assuming that a single temperature zone is a second-order system, the state
space equations are shown by Eq. (1):

X1 = Xy
X =f0)+eu+d(), (1)
Yy =X

where x = [x1,x,]T € R™, x denotes a column vector. u € Rand y € R, u
and R denote the input and output. f (x) and ¢ (x) denote unknown smoothing
functions that satisfy the local Lipschitz condition, the initial value of ¢ (x) is not
equal to zero and ¢ (x) is bounded. d (t)denotes the external disturbance induced
by other temperature zones and bounded by a known constant, |d (t) | < D. The
goal is to force the output y to follow an ideal trajectory.

3.2.2 RBFNN approximation
The Radial Basis Function Neural Network (RBFNN) serves as a powerful
tool in approximating the elusive continuous system function. The formulation of
the RBFNN is articulated as follows:
few) =wrs(, )
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where @ € R™, 6 denotes the input vector, f(8|W) represents the
estimation of the structural function f (x) in the transfer function, n > 1 denotes the
RBFNN node quantity, W & Rn denotes the weight vector, and S(6) = [s1(60),
s2(0)... sn(0)]T denotes the basis function vector. Herein, the Gaussian function is
selected as the basis function vector:
—(0 —u)"(0 — )

2n;? ' ®

Wherey; = [, Ua) e - o Un]T, i represents the width of the Gaussian
function associated with the respective receptive field. RBFNN can approximate
any continuous function on a compact set 2, ¢ R,with an arbitrary precision of
fOw) =w*7Ts (8) +¢ andvl € 2y where W* denotes the ideal constant
weight, and € denotes the approximation error.

Assumption 1: There is an unchanged weight W* that satisfies |e| < &*,

5i(6) = exp

W* £ arg min {suplf(w) - WTS(9)|}. 4)
weRrl { zeq,
"> 0, forall.
Parameter W™ is chosen according to the controlled object's features to

acquire the minimal value.

Assumption 2: The weight vector W and the activation function S are upper
bounds, ||W]| < Wy and ||S|| < S).Parameters W,, and S,, are unknown positive
constants.

3.2.3 Nussbaum-type function gain

In 1983, Rogers Nussbaum proposed Nussbaum-type functional gain to
solve the problem of unknown high-frequency acquire symbol of virtual controller
[20]. This virtual controller is used to solve the calming problem of dynamically
designing parameters to solve the system in the parameter adaptive feedback control
system. The difficulty is how to find the reciprocal of the control rate u ’s
coefficient. If the neural network method is still used for identification, the ¢(x)
symbol (As shown in Equation 1) will change from negative to positive, which will
appear to be 0, causing the system control to diverge. After adopting the Nussbaum-
type function method [21], the role of the Nussbaum-type function in the calm
control system is to switch symbols and change the amplitude, driving the system
state to constantly "swing", so that the state can swing up and down when the system
state is close to O, the system state and Nussbaum-type function derivative will
correspond to 0. This turns a problem of discerning division into a problem of
multiplication. This eliminates the need to know whether the control direction of
the system is positive or negative. Divergence is avoided.

The Nussbaum-type function has been widely applied to industrial control,
military industry, and many other fields.

In this paper, the Nussbaum-type function solves the problem of the
unknown direction of control variable coefficients.
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The following definitions and lemmas are provided here:
Definition 1: The Nussbaum-type function has the following properties:

lim sup%f NQ)dy =+, ®)
* 2 arg min {sup lf(w) — WTs(G)l} . (6)
weR! ZEN,
The Nussbaum-type function is selected as follows:
N = x*cos (). @)

Lemma 1: V (t) and x (t) are defined at the interval t € [ 0, tf], where
V (t) = 0 if the following inequality holds:
t
V(t) <co+ e‘cltf (g(D)N(p) + Dye 1'dr. (8)
0
For smooth functions V(t) = 0, g(t) is defined at [0, t¢], x(t) is a smooth
Nussbaum-type function, c, is an appropriate constant, ¢c; > 0, V(¢t), x(t), and
fot(g(r) N(x) + 1) must be bounded on the interval t € [0, t]. A Nussbaum-type
function will be used to estimate the control direction in future work.
Lemma 2: (Barbalat Lemma ) For function e(t):R* - R, if £(7) is
consistently continuous and tlim fots(r) dt exists and is bounded, then:!im e(r) =
0

3.3 Controller design and stability analysis

3.3.1 Controller design

An adaptive temperature controller of the extruder based on RBFNN and
Nussbaum-type function is designed in this section. The basic control block
diagram is shown in Fig. 2.

Adaptive rate

Adaptive control

72

)

Xd u d(t
Nussbaum I—’| Plant l——>®<—()
- ﬁ
RBFNN | | Adaptive rate I
/ Yy dy/dt

Fig.2 The structure diagram of the control system

Where in the subject is an extruder barrel of unknown structure, and the
model of the subject is described in Equation 1. Since the system structure
parameter f (x), the control variable coefficient ¢(x), and the perturbation d(t)
of the system are unknown, the control rate u of the system cannot be designed. To
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solve the problem, adaptive neural networks are used to identify the structural
parameters f (x) of the system. The Nussbaum-type function method is adopted to
identify the 1/ ¢ (x). Finally, the adaptive neural network is used to compensate for
the disturbance variable d(t), and the method is simple and has strong engineering
application value.

The design process is divided into three steps. First, the back-stepping
method is used to design the controller. Second, the Nussbaum-type function is
introduced to design the controller. Lastly, the RBFNN is introduced to calculate
the adaptive system rate.

Step 1: Design the controller using the backstepping method.

parameter x, is defined as the tracking trajectory of the target and z; is the
tracking error. Then:

parameter x4 is defined as the tracking trajectory of the target and z; is the
tracking error. Then:

Z1 = X1 — X1q4- )
Define the system state error:
Zy = Xy — Xaq- (10)

Design a controller targeting the error and construct a Lyapunov
equation as follows:

V, ==z2. (11)
Then:
Vi =2z x 2. (12)
From equation (9), we obtain:
Zy = Xy—X1q- (13)
Based on the controlled object model given by equation (1), where (x; =
X,), equation (12) can be rewritten as:
Vi = 2, (x; — %14). (14)
Designing the controllerx,,to followx,(t), in order to ensure system
stability, we have:
X2a = —kz1 + X14. (15)
Combining equation (15) with equation (10) and substituting into equation
(14), we get:
Vi =z,(kz + X1q — %14 + 23) = —k 2% + 2,2,. (16)
Construct the second Lyapunov equation:

1 2
Vv, =1, +§Zz. (17)

Then:

VZ = Vl + 2222 = —k1Z12 + 21Z2 + ZzZz = —k1Z12 + ZZ(Zl + 22). (18)
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From equation (10), we obtain:
Zy = Xy = Xaq
(19)
By substituting the controlled object model given by equation (1) into
equations (18) and (19), the control rate can be obtained, that is:

V, = —kyz2 + z5(z, + f () + o ()u + d(t) — %34) (20)
Based on equation (20), the control law can be designed as shown in
equation (21).

1

u =5 Gf(0) + 25 —d(D)
1)

However, in practical control, there are three evident issues. Firstly, to
achieve model-free temperature control of the injection molding machine, the
model of the injection molding machine is unknown. Secondly, the disturbances
during the production process are bounded, but the disturbance model is also
unknown. Lastly, the coefficient function of the controller is unknown and is in the
denominator. If a simple neural network fitting approach is used, the entire control
system will diverge and become uncontrollable when passing through zero. This
paper adopts the following methods to solve the above problems:

For the unknown issues, an adaptive neural network method is employed
for fitting. The system model and disturbance model are automatically
approximated through the neural network. For the problem of unknown magnitude
and direction of the control rate coefficient function, a Nussbuam-type function is
used for fitting. Finally, this forms the overall control rate function. The specific
implementation steps are as follows:

Step 2: To achieve automatic identification of the model, neural
network control is introduced.

The RBFFNN is used to fit the unknown items in the controlled object. The
ideal output of the bit fitting error network is shown by Eq. (22):

fx) =W Ts(x) + & (22)

Parameter vector u; of s (x) is selected, as shown in equation (3). Parameter
W* is the ideal network weight, W is the estimated weight of the network, g isthe
network approximation error (bounded), and r = [z;, Z;] is the network input. The
actual network output is shown in Eq. (23):

fx) = WTs(x), (23)

where W is the difference between the estimated weight value W and the
ideal weight value W~*:
W=w-w- (24)
After fitting with neural networks, we choose the Lyapunov function again,
and formula (22) is rewritten as:

AR~ I, O, 25
2= Ty Ty 2r, 0 (25)



Adaptive temperature control algorithm for the extruder based on RBFNN and Nussbaum-(...) 103

D=d(t)—D+¢, (26)
As mentioned above, |d(t)| < D represents the bounded disturbance, which
comes from the adjacent temperature zone. Parameter D represents the upper bound
of the disturbance, D represents an estimate of the disturbance, D represents the
difference between the existing system and the estimated value, &4 represents the
estimation error, £, is a bounded-function, and ||e4|| < &p. Parameter V, is shown
in Eq. (27).
- 1 1
Vo, =V, + 2,2, + r_leW + EDTD (27)
Combining equation (1), equation (27) can be transformed into equation
(27).

. . 1 1
Vo =Vi +2,(f () + e()u + d(t) — %4) + r_WTW + r_DTD (28)
1 2

Step 3: The nussbaum function is used to eliminate the function in the
denominator of the control law.

The Nussbaum-type function, shown in Eg. (29), is used to design the
controller. The Nussbhaum-type function is commonly used to solve the problem of
the unknown direction of the controller’s coefficients.

u=NQXu
X = Uz,

where N () = x%cos(x).
Substitute (29) into equation (28) for ( z,(x)u ) to simplify and obtain
equation (30).
A 1 1 .
Vo, =Vi + o(@NQOX + z,(f(0) + d(t) — %q) + EWTW + EDTD (30)
Perform a mathematical operation here, which involves adding or
subtracting an .
Vo =V + (@(@NQ) + DX — X + 22(f(6) + d(t) — %20)
+erTI/T/ + ;D‘T’b‘
Substitute (x = uz,) into equation (31):
Vo, =Vi+ (@@NQ) + Dx + 2 (f (x) + d(t) — k20 — ) (32)
Eq. (32) can be obtained by further simplification:
V, =V, + (@(@ONX) + Dx — kpzZ + Zz(f(g) —f® +d@®)-D+ Z1)

@31

1o 1. (33)
+;W W+ ZD D.
By substituting Eq. (16) into Eq. (33), Eq. (34) can be obtained:
V, = —kyz% — kyz3 + ((DN(G) + Dx + Zz(f(e) —f(®) +d®) - ﬁ)
: (34)
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Step 4: The RBFNN is used to fit the controlled object mode f(x)and
the disturbance signal d(t). Egs. (22) and (23) can be combined to obtain Eq.
(35):

) =) = f(x) + & = =WTs(x) + & (35)

The difference between the actual value and the estimated value is shown
in Eq. (36):

D=d(t)—D+e, (36)

Eq. (37) is obtained by simplifying Eg. (31) and combining it with Egs. (35)
and (36):

V, = —k,z? — k,z% + ((p(T)N(x) + i+ 2,(-WTs(0) + & — D + £4)

+- WTW + ! DTD. 57)
Eq. (38) is obtalned by further S|mpI|fy|ng Eqg. (37):
= —kyz} — koz3 + (9(DN QO + Dx
+ W7 ((—225(9) + % W) + DT (—z, + %5)) + 2,6 + 2,64, 38)
The adaptive rate is shown in Egs. (39) and (40):
W = 1,2,5(0) — %W, (39)
D =ryz, — /[2—)[3. (40)

3.3.2 Stability analysis
Parameter V, is obtained by substituting Egs. (40) and (39) into Eqg. (38):

V, = —kqyzi — kyz3 + (9(ON () + Dy — Z_WTW
p n (41)
—Z—DTD + z,6f + 2,84
EQ. (41) can be further simplified: B
2WTW = W] + IW]|? = W™ 2 [[W]]* = [[W*|]?, (42)
The same principle leads to Eq. (43).
2D"D = |ID||* - ||ID*]|? (43)
Let e;=gs+e4 and scale V, to get Eq. (44):
y 2 29 77 2
V, < —kizi{ — kyz5 — ?<| )
P ! (44)
—;(IIDIIZ —ID*[|?) + zpe5 + (P(DN (D). +1) ¥
Scale transformation according to Yang inequality:
2
—kyz% — kyz2 _Zww-Lph+ z2 +
2r Ty 4 (45)

wr D*||?
allw=||* L PR
27’1 2r7

+@@NO + Dx +
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Select klzg,kz—lzg,czmozy,pzm where y is a positive

number. Let § = % + % + %, perform scale transformation on Eq. (45) to
obtain the following:
v, < —yz—l—yZ—Z—ZWTW—ZET5+((p(T)N(x)+ i+, (46)
v, < —sz + (<p(r)N 00 +Dx+6. (47)

Multiply both sides of the equation by e?* and integrate both sides of Eq.
(47) to obtain Eqg. (50):

VZeyt + )/Vzeyt < ((p(T)N(X) + 1)xeyt + 6th (48)
av, yt) ,
< (p(@NQO) + Dxe” + e’ (49)
0<V,(t) V,(0)e" +e ”tJ (@(@NQ + Dy etdw +§ (50)

According to the foIIowmg lemma 1, it can be obtained that
Vo(t),(@ ()N () + Dx.%.21.22, W,D, are bound in a finite time. According to

lemma 2, hm V,(t) = 0, It can be seen from Equation (20),V,(t) = 0;V; = zl,
hence thm 21 (t) = (Ocan be obtained, meaning that the controller can track the set
temperature curve (z; = x4—x4).

4. Simulation experiment verification of extruder temperature zone
control

4.1 Construction of the simulation test bench and model identification

The control system of the extruder is a closed system with a control
algorithm that is impossible to change and embed. Therefore, according to the
characteristics of the extruder’s zonal heating, an abstract simulation experiment
platform is developed to understand the control characteristics of the extruder by
researching and modeling the experiment platform. The model is established to
understand the control characteristics of the extruder.

PLC temperature
control test bench

MeeteringZone
Feeding Zone

Transition Zone

Injection molding machine
Fig.3 The extruder temperature control test bench
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As shown in Fig. 3, the experimental platform is divided into three
temperature zones to simulate the extruder system: the feeding zone, the transition
zone, and the metering zone. The PLC controller independently controls the
temperature of each zone. The temperature zone is heated by the heating rod (the
input voltage of the heating rod is 24 V, and the power is 30 W). The PLC controls
the temperature of the heating rod by controlling the switch of the solid-state
voltage regulator (SSVR). Each zone has three temperature sampling points
(feedback via type K thermocouples). Once the average value is calculated, it is
used to estimate the actual temperature of this temperature zone (Fig. 4). The
specific composition and parameters of the test bench are shown in Table 1.

PLC Heating Plate _ sensors

Heating Rod

Fig.4. The layout of the heating rod and test bench sensor
Table 1
Test bench configuration

No Module model Device capabilities Numbers
1 B&R X20CP1584 CPU 1

B&R X20BC0083 Communication module 1

Digital output

3 B&R X20D04322 and PWM control 1
4 B&R X20AT6402 Temperature feedback 1
5 SSVR PWM control 1
6 Heating rod Heating 3
7 Thermocouple Temperature feedback 9

PLC controls the solid-state voltage regulator to heat the heating plate. The
input power supply is 24 V, and the output temperature curve is recorded, as shown
in Fig. 5. The temperature control system is modeled through the MATLAB system
identification toolbox. The controlled system can be identified as a linear and a
nonlinear system. Because the accuracy of the linear system is higher in the
identification process, the system is identified as a transfer function.

0.05718s + 0.001254
s2+ 0.06595s + 0.000222

G(s) = (51)
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The 24 V input excitation model is adopted and compared with the actual
curve, as shown in Fig. 5. The results show that the model curve can coincide with
the actual curve, and the coincidence rate of the frequency domain reaches 99.07%.
The model's output can simulate the performance of the existing experimental
system in time and frequency domains, providing a model for further algorithm
simulation.

-
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(o]
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Temperature (°C)
[}
o

N
o

—Actual temperature curve
Model temperature curve

0 50 100 150 200
Time (s)

4

Fig.5 Actual temperature and model temperature curves

4.2 Simulation results

Simulation is performed on the established model of the controlled object
to construct an adaptive neural network controller system, which is then validated
through simulation experiments. Initially, the algorithm demonstrates the ability to
automatically track input signals without the need for a system model.
Subsequently, the robustness of the system is assessed by introducing disturbance
signals.

4.2.1 The signal tracking performance test

Parameters obtained from the signal following the test and the input signal
(Eq. 52) are selected to simulate the output of RBFNN based on the Nussbaum-type
function:

{xm(t) =06+t te€]0,83] (52
X (t) =50 t>83 )

The adaptive rate parameters of Eqs. (36) and (37)are 0 = 0,p = 0,k; =
1, k, =1, =—20, and r, = —10, and the initial value of the integrator is - 5.
The neural network parameters in Eq. (3) are u; = [0,—1,-0.5,0,0.5,1]7 .

In addition, a PID controller for the same object was designed for
comparison. Parameters of the PID controller are adjusted as P = 100,1 =
10,and D = 0 to obtain a similar effect with the RBFNN controller. The following
effect obtained from these two controllers is shown in Fig. 6:


https://www.baidu.com/link?url=XvMsbJR1dnSv-DElZxYkGOD4619-B7VlIvFLCFdTRdd7TUl_tb0Wu2MdN-DpOrjUeuWV5F5kucWaukMAr0dM-q&wd=&eqid=be5eaabb000bb13c000000036268edd1
https://www.baidu.com/link?url=XvMsbJR1dnSv-DElZxYkGOD4619-B7VlIvFLCFdTRdd7TUl_tb0Wu2MdN-DpOrjUeuWV5F5kucWaukMAr0dM-q&wd=&eqid=be5eaabb000bb13c000000036268edd1
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Fig.6 Signal-following curves of two controllers without interference

The results (as shown in Fig. 6) indicate that in the initial phase, under the
dual influence of the RBF neural network and the Nussbaum function, the controller
is capable of automatically adjusting and progressively identifying the model of the
controlled object. After 1.5 seconds, the system output converges and tracks the
pre-set temperature curve. Compared with the PID curve, the neural network
parameters are fixed, indicating the range of neural network adjustment. In contrast,
the PID parameters are a set of optimal parameters selected through empirical
tuning. The experimental results demonstrate that after automatic adjustment, the
tracking performance of the neural network is comparable to that of the PID. After
the neural network structure stabilizes, it exhibits higher steady-state accuracy and
better stability when the signal changes. This achieves control effects without the
need for manual modeling and repeated PID parameter adjustments, simplifying the
parameter tuning process.

4.2.2 Robustness test of the control algorithm

A disturbance signal with a value of +5°Cs introduced into the controlled
object. Since most disturbances in the system are slowly changed disturbance
signals, the disturbance signal is filtered by the first-order inertia link with k = 1
and t = 1. The output of the two controllers in the presence of disturbance is shown
in Fig. 7.
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Fig. 7. Signal-following curves of two controllers under random disturbance

Compared with the signal-following curve before and after adding
disturbance, the new RBFNN controller based on the Nussbaum-type function has
a stronger anti-interference ability than the traditional PID controller and a strong
inhibition effect on the slowly changed disturbance signal.
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Fig. 8. Signal-following curves of two controllers under sinusoidal disturbance

The sinusoidal disturbance is another type often encountered by the extruder
machine system. Thus, it is necessary to test these two controllers under sinusoidal
disturbance input. Here, a periodic disturbance signal with an amplitude of 5 °C and
a period of 1 rad/s is added to the system. The output signal of PID and RBFNN
controllers are shown in Fig.8. The results show that the output of the RBFNN
controller quickly tends to stabilize after the adjustment in the initial stage.
However, the PID controller has a limited ability to suppress sinusoidal disturbance.
Therefore, the RBFNN controller is characterized by a stronger anti-interference
ability than the PID controller. The main purpose of the RBFNN controller is more
suitable for industrial applications, where sinusoidal interference is severe.
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5. Findings and results

Through algorithm design and experimental simulation verification, we
have obtained a design method based on a neural network controller. This algorithm
has the following advantages compared to traditional PID algorithms:

1. It possesses the advantage of participating in fixed parameter inputs,
eliminating the need for specialized parameter tuning for specific performance
equipment, thus reducing the difficulty of manual PID parameter adjustment.

2. The system exhibits stronger robustness when subjected to random
disturbances (simulating the impact of room temperature changes on an injection
molding machine) and sinusoidal disturbances (simulating the impact of power grid
noise on the system), demonstrating superior performance.

6. Conclusions

This paper proposes an adaptive temperature control algorithm based on
Radial Basis Function Neural Network (RBFNN) and Nussbaum-type function.
Utilizing the nonlinear fitting characteristics of RBFNN, the algorithm achieves
automatic modeling of the extruder's temperature. The designed controller
addresses the issues of low temperature control precision, difficult parameter
selection, and poor robustness in extruder design. The problem of the unknown
coefficient direction of the controller's 'u' is resolved using a Nussbaum-type
function. Simulation results indicate that compared to traditional PID control
algorithms, the proposed algorithm can accurately follow the input temperature and
possesses strong anti-interference capabilities. If this algorithm could be implanted
into the actual extruder system, it would significantly enhance the ability to resist
temperature disturbances during steady-state operation.

There is still some distance from practical application, mainly because: no
actual system can be an energy-unlimited system, system inputs are constrained,
and the problem of designing controller outputs under nonlinear constraints still
needs further research. Additionally, actual control systems are discrete, and
subsequent work will further study the discretization of continuous systems.
Methods based on event-triggering have already begun experiments and have made
certain progress.

Moreover, this algorithm can also be applied to other nonlinear systems with
large inertia that are subject to disturbances, especially in equipment requiring
precise temperature control, such as sintering furnace temperature control used in
solar cell production and temperature management in wafer-level bonding and
debonding equipment in semiconductor manufacturing. This highlights its
importance in practical engineering applications.
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