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ADAPTIVE TEMPERATURE CONTROL ALGORITHM FOR 

THE EXTRUDER BASED ON RBFNN AND NUSSBAUM-TYPE 

FUNCTION 

Bo XU1*, Luyao YUAN2, Lingyu YIN3 

As the core equipment in rubber production, the temperature control accuracy 

of the rubber extruder affects the final product quality. However, the temperature 

change of the material in the rubber extruder is complex and nonlinear, and the 

modelling of the temperature change process is difficult. It is difficult to accurately 

track and control the temperature using the traditional proportional integral 

differential algorithm (PID). This paper investigates a temperature trajectory 

tracking algorithm for rubber extruder systems. An algorithm based on RBF neural 

network (RBFNN) is proposed for the extruder to track the temperature curve. The 

RBFNN is used to fit the model of the plant automatically, and the Nussbaum-type 

function is used to solve the problem of the unknown direction of the control variable. 

Finally, the stability of the algorithm is demonstrated by the Lyapunov stability 

analysis. The proposed algorithm has strong robustness compared to conventional 

algorithms and does not need modelling and parameter adjustment. The effectiveness 

and superiority of the proposed control algorithm are proven by the simulation 

results. If the algorithm is successfully applied to actual injection molding machine 

systems, it will greatly shorten the adjustment time of printing machine parameters, 

reduce the difficulty of adjustment, and increase the robustness of the equipment. 

Keywords: Extruder; Nussbaum-type function; Back-stepping; RBFNN; 

Adaptive control 

1. Introduction 

In the field of rubber and plastic product manufacturing, extruders are key 

pieces of equipment, playing a central role in the extrusion and shaping process. 

The temperature of the extruder is one of the core process parameters. Fluctuations 

in temperature can cause changes in the melt viscosity of the granulate, which in 

turn affects the extrusion flow rate and die pressure.[1] Precise temperature control 

is an essential part of precision extrusion molding. If the temperature parameters 

are not well-regulated, it can lead to large steady-state errors and overshoots, 

resulting in temperatures that are too high or too low. [2] This can affect the 
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material's shrinkage rate, thermal degradation, and the melting and plasticization 

effect. A typical heating tube is divided into three different temperature zones: the 

feed zone, transition zone, and melting zone (see Fig. 1). Extruders have a large 

thermal inertia coefficient, and traditional PID control methods result in large 

overshoots, wide temperature fluctuations, slow adjustment speeds, long 

adjustment times, and poor parameter robustness. They are easily affected by 

environmental factors, with the same PID parameters performing differently in 

winter and summer. Therefore, the parameter adjustment for injection molding 

machines requires a high level of technical expertise from operators. Finding a 

temperature control algorithm for injection molding machines that can achieve 

automatic parameter adjustment and has strong robustness is key to solve the above 

issues [3,4]:  

 
 

Fig.1 Structural drawing of feeding heating pipe 

2. Problem statement 

To address the above issues, numerous scholars have conducted research in 
this field. The earliest efforts include the digital PID introduced by Dormeier [5] 
combined with a multi-mode control algorithm. Segmented PID reduces the 
difficulty of PID parameter adjustment by segmenting the controlled object. 
Designing multiple sets of PID parameters to meet the control requirements of rapid 
heating at the initial stage and small overshoot after approaching stability. Different 
PID parameters are used for control according to different stages of control 
requirements. Representative efforts include designing various multi-modal 
strategies to control pipeline temperatures. Although this solution is more targeted 
and enhances control performance, making it easier to adjust each set of PID 
parameters, it increases the number of PID parameters, thereby increasing the 
workload for PID parameter tuning. Moreover, the switching of parameters may 
lead to instability in the injection molding machine system. [6] 

In the late 1970s, adaptive control algorithms combining artificial 
intelligence technology became a research hotspot. Control algorithms such as 
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fuzzy control, neural networks, and iterative learning are applied to the local 
approximation of controlled systems to achieve precise model control. 
Representative work includes Chen et al. [7] developing a fuzzy adaptive control 
strategy system with multiple linear models for extruders, improving control 
accuracy. Yao et al. [8] used optimal time control to solve the problem of initial 
temperature rise in machine pipelines. Predictive control and feedforward iterative 
learning control [9] were used to achieve temperature control during the transition 
phase of injection molding machine pipelines. The article [10] designed a fuzzy 
controller to eliminate the coupling between melting temperature and pressure 
during the extrusion process. Wei proposed a variable structure temperature control 
strategy for injection molding machines based on iterative learning, improving the 
dynamic control accuracy of the injection molding machine and reducing the 
difficulty of parameter adjustment. [11] Meanwhile, they also tried the cerebellar 
model articulation controller (CMAC) neural network method to achieve control of 
the injection molding machine. [12] Aiming at the coupling and nonlinear problems 
of the temperature control system of the injection molding machine barrel, Hu et al. 
combined the advantages of fuzzy algorithm and neural network algorithm to 
design a fuzzy neural network decoupling compensator, improving the accuracy 
and stability of the temperature control of the injection molding machine barrel. 
[13] Among these intelligent algorithms, temperature control algorithms based on 
neural networks are the most widely used and relatively effective.[14] Artificial 
neural networks are an information processing model that simulates the structure 
and function of human brain neurons. It has strong nonlinearity and adaptability. 
[15] In the field of control, it is often used for nonlinear modeling and function 
approximation. The application of neural networks greatly simplifies the difficulty 
of parameter adjustment in traditional control algorithms and improves control 
performance at the same time. Representative work is Zhu et al. [16] combining 
traditional PID controllers with radial basis function (RBF) neural networks to 
control melt temperature and achieve PID parameter adjustment. Li et al. [17] 
established a neural network basic structure and model for temperature control of 
injection molding machine barrels based on the SPIDNN (single-output attribute 
integration derivative neural network) algorithm, improving control accuracy. Most 
of the above methods are based on traditional PID algorithm control methods, 
which roughly adjust PID parameters first, and then use neural network methods 
for local compensation. The biggest disadvantage of these methods is that they still 
need to establish a system based on PID parameters, which cannot avoid manual 
PID parameter adjustment.  

To address the above issues, this paper proposes a neural network automatic 
parameter adjustment method based on a large-scale neural network. The main 
feature of this method is that it does not require basic modeling or PID parameter 
adjustment. The system realizes the control of the controlled object through 
automatic fitting by the neural network algorithm, which greatly reduces the 
dependence on the control system parameters. Compared with traditional neural 
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network modeling methods, this algorithm also introduces the Nussbaum function, 
cleverly avoiding the problem of singular points in neural network fitting when the 
parameters to be fitted are in the denominator, and non-convergence of the fitting 
results. [18,19] Combined with adaptive control, it further improves the anti-
interference ability of the system. 

3. Research and research methods 

3.1 research methods 

To address the complexities and poor robustness in adjusting system 
parameters for injection molding machines, a controller design was proposed. The 
method includes the following: 

Firstly, establishing a mathematical model of the injection molding 
machine's heating pipe system, abstracting the injection molding machine as a 
typical second-order system. Then, an adaptive neural network is used to 
approximate the model of the injection molding machine, while a Nussbaum-type 
approach is employed to approximate the coefficient of the control variable u. The 
introduction of the Nussbaum-type resolves issues where singular points exist in 
the denominator of the control input coefficient. Due to the fact that actual injection 
molding machine systems are not open for research, a semi-physical model test 
bench is constructed for convenience in obtaining data from the model of the 
controlled object. Finally, through experiments, the functionality of the controller 
is verified. 

3.2 Preliminaries 

3.2.1 Problem formulation 
Assuming that a single temperature zone is a second-order system, the state 

space equations are shown by Eq. (1): 

{

𝑥̇1 = 𝑥2

𝑥̇2 = 𝑓 (𝑥) + 𝜑(𝑥)𝑢 + 𝑑(𝑡)
𝑦 = 𝑥1

,  (1) 

 

where 𝑥 = [𝑥1, 𝑥2]𝑇 ∈ 𝑅𝑛, 𝑥 denotes a column vector. 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅, 𝑢 

and R denote the input and output.  𝑓 (𝑥) and 𝜑 (𝑥) denote unknown smoothing 

functions that satisfy the local Lipschitz condition, the initial value of 𝜑 (𝑥) is not 
equal to zero and 𝜑 (𝑥) is bounded. 𝑑 (𝑡)denotes the external disturbance induced 
by other temperature zones and bounded by a known constant, |𝑑 (𝑡) | ≤ 𝐷. The 
goal is to force the output y to follow an ideal trajectory. 

3.2.2 RBFNN approximation 
The Radial Basis Function Neural Network (RBFNN) serves as a powerful 

tool in approximating the elusive continuous system function. The formulation of 
the RBFNN is articulated as follows: 

𝑓(𝜃|𝑊) = 𝑊𝑇𝑆(𝜃),  (2) 
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where 𝜃 ∈ 𝑅𝑚, 𝜃 denotes the input vector, 𝑓(𝜃|𝑊) represents the 
estimation of the structural function 𝑓 (𝑥) in the transfer function, n > 1 denotes the 

RBFNN node quantity, W ∈ Rn denotes the weight vector, and S(𝜃) = [s1(𝜃), 

s2(𝜃)... sn(𝜃)]T denotes the basis function vector. Herein, the Gaussian function is 
selected as the basis function vector: 

𝑆𝑖(𝜃) = 𝑒𝑥𝑝 [
−(𝜃 − 𝜇𝑖)

𝑇(𝜃 − 𝜇𝑖)

2𝜂𝑖
2 ] ,  (3) 

Where𝜇𝑖 = [𝜇1, 𝜇2, … … , , 𝜇𝑛]𝑇, 𝜇𝑖 represents the width of the Gaussian 
function associated with the respective receptive field. RBFNN can approximate 
any continuous function on a compact set 𝛺𝑥 ⊂ 𝑅𝑞with an arbitrary precision of 

𝑓 (𝜃|𝑊)  = 𝑊∗𝑇𝑆 (𝜃)  + 𝜀 and∀𝜃 ∈ 𝛺𝜃 where 𝑊∗ denotes the ideal constant 
weight, and ε denotes the approximation error. 

Assumption 1: There is an unchanged weight 𝑊∗ that satisfies |𝜀| ≤ 𝜀∗, 

𝜀∗ > 0, for all. 
Parameter 𝑊∗ is chosen according to the controlled object's features to 

acquire the minimal value. 
Assumption 2: The weight vector 𝑊 and the activation function 𝑆 are upper 

bounds, ||𝑊|| ≤ 𝑊𝑀 and ||𝑆|| ≤ 𝑆𝑀.Parameters 𝑊𝑀 and 𝑆𝑀 are unknown positive 
constants. 

3.2.3 Nussbaum-type function gain 
In 1983, Rogers Nussbaum proposed Nussbaum-type functional gain to 

solve the problem of unknown high-frequency acquire symbol of virtual controller 
[20]. This virtual controller is used to solve the calming problem of dynamically 
designing parameters to solve the system in the parameter adaptive feedback control 
system. The difficulty is how to find the reciprocal of the control rate u ’s 
coefficient. If the neural network method is still used for identification, the 𝜑(𝑥) 
symbol (As shown in Equation 1) will change from negative to positive, which will 
appear to be 0, causing the system control to diverge. After adopting the Nussbaum-
type function method [21], the role of the Nussbaum-type function in the calm 
control system is to switch symbols and change the amplitude, driving the system 
state to constantly "swing", so that the state can swing up and down when the system 
state is close to 0, the system state and Nussbaum-type function derivative will 
correspond to 0. This turns a problem of discerning division into a problem of 
multiplication. This eliminates the need to know whether the control direction of 
the system is positive or negative. Divergence is avoided. 

The Nussbaum-type function has been widely applied to industrial control, 
military industry, and many other fields.  

In this paper, the Nussbaum-type function solves the problem of the 
unknown direction of control variable coefficients.  

𝑊∗ ≜ arg min
𝑤∈𝑅𝑙

{sup
𝑧∈𝛺𝑧

|𝑓(𝑤) − 𝑊𝑇𝑠(𝜃)|} .  (4) 
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The following definitions and lemmas are provided here: 
Definition 1: The Nussbaum-type function has the following properties: 

The Nussbaum-type function is selected as follows: 
𝑁(χ) = χ2𝑐𝑜𝑠(χ).  (7) 

Lemma 1: 𝑉 (𝑡) and 𝜒 (𝑡) are defined at the interval 𝑡 ∈ [ 0, 𝑡𝑓], where 

𝑉 (𝑡) ≥ 0 if the following inequality holds:  

𝑉(𝑡) ≤ 𝑐0 + 𝑒−𝑐1𝑡 ∫ (𝑔(𝜏)
𝑡

0

𝑁(𝜒) + 1)𝜒̇𝑒−𝑐1𝜏𝑑𝜏. (8) 

For smooth functions 𝑉(𝑡) ≥ 0, g(τ) is defined at [0, tf], χ(t) is a smooth 
Nussbaum-type function, c0 is an appropriate constant, 𝑐1 > 0, 𝑉(𝑡), 𝜒(𝑡), and 

∫ (𝑔(𝜏)
𝑡

0
𝑁(𝜒) + 1) must be bounded on the interval t ∈ [0, 𝑡𝑓]. A Nussbaum-type 

function will be used to estimate the control direction in future work. 

Lemma 2:（Barbalat Lemma ）For function ε(τ): R+ → R, if 𝜀(𝜏) is 

consistently continuous and lim
t→∞

∫ ε(τ)
t

0
dτ exists and is bounded, then: lim

t→∞
𝜀(𝜏) =

0 

3.3 Controller design and stability analysis 

3.3.1 Controller design 

An adaptive temperature controller of the extruder based on RBFNN and 
Nussbaum-type function is designed in this section. The basic control block 
diagram is shown in Fig. 2. 

 

 
 

Fig.2 The structure diagram of the control system 

 

Where in the subject is an extruder barrel of unknown structure, and the 
model of the subject is described in Equation 1. Since the system structure 
parameter  𝑓 (𝑥), the control variable coefficient 𝜑(𝑥), and the perturbation 𝑑(𝑡) 
of the system are unknown, the control rate 𝑢 of the system cannot be designed. To 

lim
𝑠→∞

𝑠𝑢𝑝
1

𝑠
∫ 𝑁(χ)𝑑χ = +∞

𝑠

0

,  (5) 

𝑊∗ ≜ arg min
𝑤∈𝑅𝑙

{sup
𝑧∈𝛺𝑧

|𝑓(𝑤) − 𝑊𝑇𝑠(𝜃)|} .  (6) 
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solve the problem, adaptive neural networks are used to identify the structural 
parameters 𝑓 (𝑥) of the system. The Nussbaum-type function method is adopted to 
identify the 1/ 𝜑(𝑥). Finally, the adaptive neural network is used to compensate for 
the disturbance variable  𝑑(𝑡), and the method is simple and has strong engineering 
application value. 

The design process is divided into three steps. First, the back-stepping 
method is used to design the controller. Second, the Nussbaum-type function is 
introduced to design the controller. Lastly, the RBFNN is introduced to calculate 
the adaptive system rate. 

Step 1: Design the controller using the backstepping method. 
parameter 𝑥𝑑 is defined as the tracking trajectory of the target and 𝑧𝑖 is the 

tracking error. Then: 
parameter xd is defined as the tracking trajectory of the target and zi is the 

tracking error. Then: 

Define the system state error: 

Design a controller targeting the error and construct a Lyapunov 
equation as follows: 

Then: 

𝑉̇1 = 𝑧1 ∗ 𝑧̇1.  (12) 

From equation (9), we obtain: 

Based on the controlled object model given by equation (1), where (𝑥̇1 =
𝑥2), equation (12) can be rewritten as: 

Designing the controller𝑥2𝑑to follow𝑥2(𝑡)， in order to ensure system 

stability, we have: 

Combining equation (15) with equation (10) and substituting into equation 

(14), we get： 

Construct the second Lyapunov equation: 

Then: 

𝑧1 = 𝑥1 − 𝑥1𝑑. (9) 

𝑧2 = 𝑥2 − 𝑥2𝑑. (10) 

𝑉1 =
1

2
𝑧1

2.  (11) 

𝑧̇1 = 𝑥̇1−𝑥̇1𝑑 .  (13) 

𝑉̇1 = 𝑧1(𝑥2 − 𝑥̇1𝑑).  (14) 

𝑥2𝑑 = −𝑘𝑧1 + 𝑥̇1𝑑 .  (15) 

𝑉̇1 = 𝑧1(−𝑘𝑧1 + 𝑥̇1𝑑 − 𝑥̇1𝑑 + 𝑧2) = −𝑘1𝑧1
2 + 𝑧1𝑧2.  (16) 

𝑉2 = 𝑉1 +
1

2
𝑧2

2.  (17) 

𝑉̇2 = 𝑉̇1 + 𝑧2𝑧̇2 = −𝑘1𝑧1
2 + 𝑧1𝑧2 + 𝑧2𝑧̇2 = −𝑘1𝑧1

2 + 𝑧2(𝑧1 + 𝑧̇2).  (18) 
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From equation (10), we obtain: 

By substituting the controlled object model given by equation (1) into 
equations (18) and (19), the control rate can be obtained, that is: 

Based on equation (20), the control law can be designed as shown in 
equation (21). 

However, in practical control, there are three evident issues. Firstly, to 
achieve model-free temperature control of the injection molding machine, the 
model of the injection molding machine is unknown. Secondly, the disturbances 
during the production process are bounded, but the disturbance model is also 
unknown. Lastly, the coefficient function of the controller is unknown and is in the 
denominator. If a simple neural network fitting approach is used, the entire control 
system will diverge and become uncontrollable when passing through zero. This 
paper adopts the following methods to solve the above problems: 

For the unknown issues, an adaptive neural network method is employed 
for fitting. The system model and disturbance model are automatically 
approximated through the neural network. For the problem of unknown magnitude 
and direction of the control rate coefficient function, a Nussbuam-type function is 
used for fitting. Finally, this forms the overall control rate function. The specific 
implementation steps are as follows: 

Step 2: To achieve automatic identification of the model, neural 
network control is introduced. 

The RBFFNN is used to fit the unknown items in the controlled object. The 
ideal output of the bit fitting error network is shown by Eq. (22): 

𝑓(𝑥) = 𝑊∗𝑇𝑠(𝑥) + 𝜀𝑓 .  (22) 

Parameter vector 𝜇𝑖 of 𝑠 (𝑥) is selected, as shown in equation (3). Parameter 

𝑊∗ is the ideal network weight, 𝑊̂ is the estimated weight of the network, 𝜀𝑓 is the 

network approximation error (bounded), and 𝑟 = [𝑧1, 𝑧̇1] is the network input. The 
actual network output is shown in Eq. (23):  

𝑓(𝑥) = 𝑊̂𝑇𝑠(𝑥),  (23) 

where W̃ is the difference between the estimated weight value Ŵ and the 
ideal weight value W∗: 

𝑊̃ = 𝑊̂ − 𝑊∗.  (24) 

After fitting with neural networks, we choose the Lyapunov function again, 
and formula (22) is rewritten as: 

𝑉2 = 𝑉1 +
1

2
𝑧2

2 +
1

2𝑟1

𝑊̃𝑇𝑊̃ +
1

2𝑟2

𝐷̃𝑇𝐷̃,  (25) 

𝑧̇2 = 𝑥̇2 − 𝑥̇2𝑑

. (19) 

𝑉̇2 = −𝑘1𝑧1
2 + 𝑧2(𝑧1 + 𝑓 (𝑥) + 𝜑(𝑥)𝑢 + 𝑑(𝑡) − 𝑥̇2𝑑) (20) 

𝑢 =
1

𝜑(𝑥)
(−𝑓(𝑥) + 𝑥̇2𝑑 − 𝑑(𝑡))

. (21) 
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𝐷̃ = 𝑑(𝑡) − 𝐷̂ + 𝜀𝑑  (26) 

As mentioned above, |𝑑(𝑡)| ≤ 𝐷 represents the bounded disturbance, which 
comes from the adjacent temperature zone. Parameter 𝐷 represents the upper bound 

of the disturbance, 𝐷̂ represents an estimate of the disturbance, 𝐷̃ represents the 
difference between the existing system and the estimated value, εd represents the 

estimation error, 𝜀𝑑 is a bounded-function, and ||𝜀𝑑|| ≤ 𝜀𝐷. Parameter 𝑉̇2 is shown 
in Eq. (27). 

𝑉̇2 = 𝑉̇1 + 𝑧2𝑧̇2 +
1

𝑟1

𝑊̃𝑇𝑊̇̂ +
1

𝑟2

𝐷̃𝑇𝐷̇̂  (27) 

Combining equation (1), equation (27) can be transformed into equation 
(27). 

𝑉̇2 = 𝑉̇1 + 𝑧2(𝑓(𝑥) + 𝜑(𝑥)𝑢 + 𝑑(𝑡) − 𝑥̇2𝑑) +
1

𝑟1

𝑊̃𝑇𝑊̇̂ +
1

𝑟2

𝐷̃𝑇𝐷̇̂  (28) 

Step 3: The nussbaum function is used to eliminate the function in the 
denominator of the control law. 

The Nussbaum-type function, shown in Eq. (29), is used to design the 
controller. The Nussbaum-type function is commonly used to solve the problem of 
the unknown direction of the controller’s coefficients. 

{

𝑢 = 𝑁(χ)𝑢̅

𝑢̅ = 𝑘2𝑧2 + 𝑓(𝑥) − 𝑥̇2𝑑 + 𝐷̂ − 𝑧1

χ̇ = 𝑢̅𝑧2

 (29) 

where 𝑁(χ) = χ2𝑐𝑜𝑠(χ).  
Substitute (29) into equation (28) for ( 𝑧2𝜑(𝑥)𝑢 ) to simplify and obtain 

equation (30). 

𝑉̇2 = 𝑉̇1 + 𝜑(𝜏)𝑁(χ)χ̇ + 𝑧2(𝑓(𝜃) + 𝑑(𝑡) − 𝑥̇2𝑑) +
1

𝑟1

𝑊̃𝑇𝑊̇̂ +
1

𝑟2

𝐷̃𝑇𝐷̇̂  (30) 

Perform a mathematical operation here, which involves adding or 
subtracting an χ̇. 

𝑉̇2 = 𝑉̇1 + (𝜑(𝜏)𝑁(χ) + 1)χ̇ − χ̇ + 𝑧2(𝑓(𝜃) + 𝑑(𝑡) − 𝑥̇2𝑑) 

+
1

𝑟1

𝑊̃𝑇𝑊̇̂ +
1

𝑟2

𝐷̃𝑇𝐷̇̂
 (31) 

Substitute (χ̇ = u̅z2) into equation (31): 
𝑉̇2 = 𝑉̇1 + (𝜑(𝜏)𝑁(χ) + 1)χ̇ + 𝑧2(𝑓(𝑥) + 𝑑(𝑡) − 𝑥̇2𝑑 − 𝑢̅) (32) 

Eq. (32) can be obtained by further simplification: 
𝑉̇2 = 𝑉̇1 + (𝜑(𝜏)𝑁(χ) + 1)χ̇ − 𝑘2𝑧2

2  + 𝑧2(𝑓(𝜃) − 𝑓(𝜃) + 𝑑(𝑡) − 𝐷̂ + 𝑧1)

+
1

𝑟1

𝑊̃𝑇𝑊̇̂ +
1

𝑟2

𝐷̃𝑇𝐷̇̂.
 (33) 

By substituting Eq. (16) into Eq. (33), Eq. (34) can be obtained: 
𝑉̇2 = −𝑘1𝑧1

2 − 𝑘2𝑧2
2 + (𝜑(𝜏)𝑁(χ) + 1)χ̇ + 𝑧2(𝑓(𝜃) − 𝑓(𝜃) + 𝑑(𝑡) − 𝐷̂)

+ 
1

𝑟1

𝑊̃𝑇𝑊̇̂ +
1

𝑟2

𝐷̃𝑇𝐷̇̂,
 (34) 

https://www.baidu.com/link?url=XvMsbJR1dnSv-DElZxYkGOD4619-B7VlIvFLCFdTRdd7TUl_tb0Wu2MdN-DpOrjUeuWV5F5kucWaukMAr0dM-q&wd=&eqid=be5eaabb000bb13c000000036268edd1
https://www.baidu.com/link?url=XvMsbJR1dnSv-DElZxYkGOD4619-B7VlIvFLCFdTRdd7TUl_tb0Wu2MdN-DpOrjUeuWV5F5kucWaukMAr0dM-q&wd=&eqid=be5eaabb000bb13c000000036268edd1
https://www.so.com/link?m=baAOvzURbimL2q+q7wxc8Xi1R3nMBmht1Dy6/tLhitmtcR4YCFe5Rg1lGfnRHrh7FbUgaU7Kdi5ui1I0TevgfECAGAKgyxSfWt8RM+hV3nlR4JJBDDzUaOj3co8Ooo4k+943oV9tlTAtm7KqpkmuhTPA1WLee9QYiO0SxDEpQpDs5S+vT8/rLTTI5Oug3QCdefdqsmK9yNYs=
https://www.so.com/link?m=baAOvzURbimL2q+q7wxc8Xi1R3nMBmht1Dy6/tLhitmtcR4YCFe5Rg1lGfnRHrh7FbUgaU7Kdi5ui1I0TevgfECAGAKgyxSfWt8RM+hV3nlR4JJBDDzUaOj3co8Ooo4k+943oV9tlTAtm7KqpkmuhTPA1WLee9QYiO0SxDEpQpDs5S+vT8/rLTTI5Oug3QCdefdqsmK9yNYs=
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Step 4: The RBFNN is used to fit the controlled object mode 𝒇(𝒙)and 
the disturbance signal 𝒅(𝒕). Eqs. (22) and (23) can be combined to obtain Eq. 
(35): 

𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑥) + 𝜀𝑓 = −𝑊̃𝑇𝑠(𝑥) + 𝜀𝑓 .  (35) 

The difference between the actual value and the estimated value is shown 
in Eq. (36): 

𝐷̃ = 𝑑(𝑡) − 𝐷̂ + 𝜀𝑑,  (36) 

Eq. (37) is obtained by simplifying Eq. (31) and combining it with Eqs. (35) 
and (36): 

 
𝑉̇2 = −𝑘1𝑧1

2 − 𝑘2𝑧2
2 + (𝜑(𝜏)𝑁(χ) + 1)χ̇ + 𝑧2(−𝑊̃𝑇𝑠(𝜃) + 𝜀𝑓 − 𝐷̃ + 𝜀𝑑)

+
1

𝑟1

𝑊̃𝑇𝑊̇̂ +
1

𝑟2

𝐷̃𝑇 𝐷̇̂.
 (37) 

Eq. (38) is obtained by further simplifying Eq. (37): 
𝑉̇2 = −𝑘1𝑧1

2 − 𝑘2𝑧2
2 + (𝜑(𝜏)𝑁(χ) + 1)χ̇

+𝑊̃𝑇 ((−𝑧2𝑠(𝜃) +
1

𝑟1

𝑊̂)̇ + 𝐷̃𝑇(−𝑧2 +
1

𝑟2

𝐷̇̂)) + 𝑧2𝜀𝑓 + 𝑧2𝜀𝑑,
 (38) 

The adaptive rate is shown in Eqs. (39) and (40): 

𝑊̇̂ = 𝑟1𝑧2𝑠(𝜃) −
𝜎

2
𝑊̂,  (39) 

𝐷̇̂ = 𝑟2𝑧2 −
𝜌

2
𝐷̂.  (40) 

3.3.2 Stability analysis 

Parameter 𝑉̇2 is obtained by substituting Eqs. (40) and (39) into Eq. (38): 

𝑉̇2 = −𝑘1𝑧1
2 − 𝑘2𝑧2

2 + (𝜑(𝜏)𝑁(𝜒) + 1)𝜒̇ −  
𝜎

2𝑟1

𝑊̃𝑇𝑊̂

−
𝜌

2𝑟2

𝐷̃𝑇𝐷̂ + 𝑧2𝜀𝑓 + 𝑧2𝜀𝑑.
 (41) 

Eq. (41) can be further simplified: 
2𝑊̃𝑇𝑊̂ = ||𝑊̃||2 + ||𝑊̂||2 − ||𝑊∗||2 ≥ ||𝑊̃||2 − ||𝑊∗||2, (42) 

The same principle leads to Eq. (43). 
2𝐷̃𝑇𝐷̂ ≥ ||𝐷̃||2 − ||𝐷∗||2  (43) 

Let εH=εf+εd and scale V̇2 to get Eq. (44): 

𝑉̇2 ≤ −𝑘1𝑧1
2 − 𝑘2𝑧2

2 −
𝜎

2𝑟1

(||𝑊̃||
2

− ||𝑊∗||
2

)

−
𝜌

2𝑟2

(||𝐷̃||2 − ||𝐷∗||2) + 𝑧2𝜀𝐻 + (𝜑(𝜏)𝑁(𝜒). +1)𝜒̇ 
 (44) 

Scale transformation according to Yang inequality: 

𝑉̇2 ≤ −𝑘1𝑧1
2 − 𝑘2𝑧2

2 −
𝜎

2𝑟1

𝑊̃𝑇𝑊̃ −
𝜌

2𝑟2

𝐷̃𝑇𝐷̃ + 𝑧2
2 +

𝜀𝐻
2

4

+(𝜑(𝜏)𝑁(χ) + 1)χ̇ +
𝜎||𝑊∗||2

2𝑟1

+
𝜌||𝐷∗||2

2𝑟2

.

 (45) 
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Select k1 ≥
γ

2
, k2 − 1 ≥

γ

2
, σ ≥ γ, σ ≥ γ, ρ ≥ γ, where 𝛾 is a positive 

number. Let 𝛿 =
||𝑊∗||2

2𝑟1
+

||𝐷∗||2

2r2
+

𝜀H
2

4
, perform scale transformation on Eq. (45) to 

obtain the following: 

𝑉̇2 ≤ −𝛾
𝑧1

2

2
− 𝛾

𝑧2
2

2
−

𝛾

2
𝑊̃𝑇𝑊̃ −

𝛾

2
𝐷̃𝑇𝐷̃ + (𝜑(𝜏)𝑁(χ) + 1)χ̇ + 𝛿,  (46) 

 𝑉̇2 ≤ −𝛾𝑉2 + (𝜑(𝜏)𝑁(χ) + 1)χ̇ + 𝛿.  (47) 

Multiply both sides of the equation by e𝛾t and integrate both sides of Eq. 
(47) to obtain Eq. (50): 

𝑉̇2e𝛾t + 𝛾𝑉2e𝛾t ≤ (𝜑(𝜏)𝑁(χ) + 1)χ̇e𝛾t + 𝛿e𝛾t ,  (48) 

𝑑(𝑉2e𝛾t)

𝑑𝑡
≤ (𝜑(𝜏)𝑁(χ) + 1)χ̇e𝛾t + 𝛿e𝛾t,  (49) 

0 ≤ 𝑉2(𝑡) ≤ 𝑉2(0)e−𝛾t + e−𝛾t ∫ (𝜑(𝜏)𝑁(χ) + 1)χ̇
𝑡

0

e𝛾t𝑑𝜔 +
𝛿

𝛾
.  (50) 

According to the following lemma 1, it can be obtained that 

𝑉2(𝑡),(𝜑(𝑥)𝑁(χ) + 1)χ̇,χ̇,𝑧1,𝑧2, 𝑊̂,𝐷̂, are bound in a finite time. According to 

lemma 2, lim
t→∞

𝑉2(𝑡) = 0, It can be seen from Equation (20),𝑉1(𝑡) = 0; 𝑉1 =
1

2
𝑧1

2, 

hence lim
𝑡→∞

𝑧1 (𝑡) = 0can be obtained, meaning that the controller can track the set 

temperature curve (𝑧1 = 𝑥𝑑−𝑥1). 

4. Simulation experiment verification of extruder temperature zone 

control 

4.1 Construction of the simulation test bench and model identification 

The control system of the extruder is a closed system with a control 

algorithm that is impossible to change and embed. Therefore, according to the 

characteristics of the extruder’s zonal heating, an abstract simulation experiment 

platform is developed to understand the control characteristics of the extruder by 

researching and modeling the experiment platform. The model is established to 

understand the control characteristics of the extruder.  

 
Fig.3 The extruder temperature control test bench 
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As shown in Fig. 3, the experimental platform is divided into three 
temperature zones to simulate the extruder system: the feeding zone, the transition 
zone, and the metering zone. The PLC controller independently controls the 
temperature of each zone. The temperature zone is heated by the heating rod (the 
input voltage of the heating rod is 24 V, and the power is 30 W). The PLC controls 
the temperature of the heating rod by controlling the switch of the solid-state 
voltage regulator (SSVR). Each zone has three temperature sampling points 
(feedback via type K thermocouples). Once the average value is calculated, it is 
used to estimate the actual temperature of this temperature zone (Fig. 4). The 
specific composition and parameters of the test bench are shown in Table 1. 

 

 
Fig.4. The layout of the heating rod and test bench sensor 

 

Table 1 

Test bench configuration 

No Module model Device capabilities Numbers 

1 B&R X20CP1584 CPU 1 

2 B&R X20BC0083 Communication module 1 

3 B&R X20DO4322 
Digital output 

and PWM control 
1 

4 B&R X20AT6402 Temperature feedback 1 

5 SSVR PWM control 1 

6 Heating rod Heating 3 

7 Thermocouple Temperature feedback 9 

 

PLC controls the solid-state voltage regulator to heat the heating plate. The 

input power supply is 24 V, and the output temperature curve is recorded, as shown 

in Fig. 5. The temperature control system is modeled through the MATLAB system 

identification toolbox. The controlled system can be identified as a linear and a 

nonlinear system. Because the accuracy of the linear system is higher in the 

identification process, the system is identified as a transfer function. 

𝐺(𝑠) =
0.05718𝑠 +  0.001254

𝑠2 +  0.06595𝑠 + 0.000222
, (51) 
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The 24 V input excitation model is adopted and compared with the actual 

curve, as shown in Fig. 5. The results show that the model curve can coincide with 

the actual curve, and the coincidence rate of the frequency domain reaches 99.07%. 

The model's output can simulate the performance of the existing experimental 

system in time and frequency domains, providing a model for further algorithm 

simulation. 

 
 

Fig.5 Actual temperature and model temperature curves 

 

4.2 Simulation results 

Simulation is performed on the established model of the controlled object 
to construct an adaptive neural network controller system, which is then validated 
through simulation experiments. Initially, the algorithm demonstrates the ability to 
automatically track input signals without the need for a system model. 
Subsequently, the robustness of the system is assessed by introducing disturbance 
signals. 

4.2.1 The signal tracking performance test 
Parameters obtained from the signal following the test and the input signal 

(Eq. 52) are selected to simulate the output of RBFNN based on the Nussbaum-type 
function: 

{
𝑥𝑖𝑛(𝑡) = 0.6 ∗ 𝑡     𝑡 ∈ [0, 83]

𝑥𝑖𝑛(𝑡) = 50     𝑡 > 83
, (52

) 

The adaptive rate parameters of Eqs. (36) and (37) are 𝜎 = 0, 𝜌 = 0, 𝑘1 =
1, k2 = 1, 𝑟1 = −20, and 𝑟2 = −10, and the initial value of the integrator is - 5. 
The neural network parameters in Eq. (3) are 𝜇𝑖 = [0, −1, −0.5,0,0.5,1]𝑇 . 

In addition, a PID controller for the same object was designed for 
comparison. Parameters of the PID controller are adjusted as P = 100, I =
10, and D = 0 to obtain a similar effect with the RBFNN controller. The following 
effect obtained from these two controllers is shown in Fig. 6:  

 

https://www.baidu.com/link?url=XvMsbJR1dnSv-DElZxYkGOD4619-B7VlIvFLCFdTRdd7TUl_tb0Wu2MdN-DpOrjUeuWV5F5kucWaukMAr0dM-q&wd=&eqid=be5eaabb000bb13c000000036268edd1
https://www.baidu.com/link?url=XvMsbJR1dnSv-DElZxYkGOD4619-B7VlIvFLCFdTRdd7TUl_tb0Wu2MdN-DpOrjUeuWV5F5kucWaukMAr0dM-q&wd=&eqid=be5eaabb000bb13c000000036268edd1
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Fig.6 Signal-following curves of two controllers without interference  

 
The results (as shown in Fig. 6) indicate that in the initial phase, under the 

dual influence of the RBF neural network and the Nussbaum function, the controller 
is capable of automatically adjusting and progressively identifying the model of the 
controlled object. After 1.5 seconds, the system output converges and tracks the 
pre-set temperature curve. Compared with the PID curve, the neural network 
parameters are fixed, indicating the range of neural network adjustment. In contrast, 
the PID parameters are a set of optimal parameters selected through empirical 
tuning. The experimental results demonstrate that after automatic adjustment, the 
tracking performance of the neural network is comparable to that of the PID. After 
the neural network structure stabilizes, it exhibits higher steady-state accuracy and 
better stability when the signal changes. This achieves control effects without the 
need for manual modeling and repeated PID parameter adjustments, simplifying the 
parameter tuning process. 

 
4.2.2 Robustness test of the control algorithm 
 
A disturbance signal with a value of ±5°Cs introduced into the controlled 

object. Since most disturbances in the system are slowly changed disturbance 
signals, the disturbance signal is filtered by the first-order inertia link with k = 1 
and t = 1. The output of the two controllers in the presence of disturbance is shown 
in Fig. 7. 
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Fig. 7. Signal-following curves of two controllers under random disturbance 

 

Compared with the signal-following curve before and after adding 

disturbance, the new RBFNN controller based on the Nussbaum-type function has 

a stronger anti-interference ability than the traditional PID controller and a strong 

inhibition effect on the slowly changed disturbance signal.  

 
 

Fig. 8. Signal-following curves of two controllers under sinusoidal disturbance 

 

The sinusoidal disturbance is another type often encountered by the extruder 
machine system. Thus, it is necessary to test these two controllers under sinusoidal 
disturbance input. Here, a periodic disturbance signal with an amplitude of 5 °C and 
a period of 1 rad/s is added to the system. The output signal of PID and RBFNN 
controllers are shown in Fig.8. The results show that the output of the RBFNN 
controller quickly tends to stabilize after the adjustment in the initial stage. 
However, the PID controller has a limited ability to suppress sinusoidal disturbance. 
Therefore, the RBFNN controller is characterized by a stronger anti-interference 
ability than the PID controller. The main purpose of the RBFNN controller is more 
suitable for industrial applications, where sinusoidal interference is severe. 

 
 
 

https://www.baidu.com/link?url=XvMsbJR1dnSv-DElZxYkGOD4619-B7VlIvFLCFdTRdd7TUl_tb0Wu2MdN-DpOrjUeuWV5F5kucWaukMAr0dM-q&wd=&eqid=be5eaabb000bb13c000000036268edd1
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5. Findings and results 

Through algorithm design and experimental simulation verification, we 
have obtained a design method based on a neural network controller. This algorithm 
has the following advantages compared to traditional PID algorithms: 

1. It possesses the advantage of participating in fixed parameter inputs, 
eliminating the need for specialized parameter tuning for specific performance 
equipment, thus reducing the difficulty of manual PID parameter adjustment. 

2. The system exhibits stronger robustness when subjected to random 
disturbances (simulating the impact of room temperature changes on an injection 
molding machine) and sinusoidal disturbances (simulating the impact of power grid 
noise on the system), demonstrating superior performance. 

6. Conclusions 

This paper proposes an adaptive temperature control algorithm based on 
Radial Basis Function Neural Network (RBFNN) and Nussbaum-type function. 
Utilizing the nonlinear fitting characteristics of RBFNN, the algorithm achieves 
automatic modeling of the extruder's temperature. The designed controller 
addresses the issues of low temperature control precision, difficult parameter 
selection, and poor robustness in extruder design. The problem of the unknown 
coefficient direction of the controller's 'u' is resolved using a Nussbaum-type 
function. Simulation results indicate that compared to traditional PID control 
algorithms, the proposed algorithm can accurately follow the input temperature and 
possesses strong anti-interference capabilities. If this algorithm could be implanted 
into the actual extruder system, it would significantly enhance the ability to resist 
temperature disturbances during steady-state operation.  

There is still some distance from practical application, mainly because: no 
actual system can be an energy-unlimited system, system inputs are constrained, 
and the problem of designing controller outputs under nonlinear constraints still 
needs further research. Additionally, actual control systems are discrete, and 
subsequent work will further study the discretization of continuous systems. 
Methods based on event-triggering have already begun experiments and have made 
certain progress. 

Moreover, this algorithm can also be applied to other nonlinear systems with 
large inertia that are subject to disturbances, especially in equipment requiring 
precise temperature control, such as sintering furnace temperature control used in 
solar cell production and temperature management in wafer-level bonding and 
debonding equipment in semiconductor manufacturing. This highlights its 
importance in practical engineering applications. 
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