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SENSITIVITY ANALYSIS FOR A MATHEMATICAL MODEL OF

TUMOR-IMMUNE INTERACTIONS

Ahmed M. Makhlouf1, Hesham A. Elkaranshawy2

A mathematical model, in the form of a system of nonlinear ordinary dif-

ferential equations, has been utilized to investigate the interaction between immune cells
and tumor cells. Immune cells included are natural killer cells, circulating lymphocytes,

CD8+T cells, CD4+T cells and cytokines. The dual role of the CD4+T cells in acti-

vating CD8+T cells and in killing the tumor via secretion of cytokines is represented
in the model. Sensitivity analysis is performed, for two sets of human data, to identify

the most effective body parameters in eliminating tumor cell population. Both numerical

sensitivity coefficient method and sensitivity function method are implemented, and the
results are compared. While the first method identifies the most effective parameters at

a specific instant of time, like many published works, the second method recognizes these
parameters over a wide time interval. The required order of the most effective param-

eters is identified, so this sensitivity analysis answers the question: Which parameter

can be changed to get the largest effect on the tumor size? The obtained results provide
a valuable tool to identify the parameters that would be increased or decreased prior to

starting a treatment.
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1. Introduction

Mathematical language is always used to describe the world. No wonder, mathe-
matical modeling can be applied to many systems, physical, chemical, biological, or else 
to explain them, to examine the effect of their different components, and to predict their 
behavior. Mathematical models for tumors are not exceptional, many tumor models had 
been implemented. Many of them focus on the tumor growth due to its internal pressure 
and nutrient concentration [1, 2, 3]. Other mathematical models focus on the interactions 
between immune system cells and tumor cells to investigate the interaction dynamics to 
develop the suitable treatment strategy for each case. Most of these models are in the form 
of systems of ordinary differential equations [4, 5, 6, 7, 8, 9]. Some other models use de-
layed differential equations [10, 11, 12, 13] or fractional differential equations [14, 15]. Also, 
some models depend upon the convolutional neural network [16]. However, most of them 
had considered the role of some immune cells and neglected the role of the others. In our 
previous work [17, 18], a mathematical model representing the interaction between immune 
system cells and tumor cells was developed. The role of a wide range of immune cells had 
been considered.
To guarantee a good response to the treatment and to avoid tumor recurrence after the 
treatment, system parameters must be adjusted. Hence, sensitivity analysis is performed to
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mathematical models to investigate the effect of changing different parameters on the output
of the model [19, 20]. In many research work, sensitivity analysis had been performed by
changing each parameter by a certain small value at a specific instant to obtain a numerical
sensitivity coefficient [7, 21, 22, 23, 24, 25, 26, 27]. This numerical sensitivity coefficient for
each parameter is a measure of the sensitivity of the output to that parameter. Hence, the
most effective parameters are determined in order. However, it is valid at this instant only
and extending its validity to the entire time interval is questionable. Additionally, there is
no criterion for specifying the value of the perturbation. A powerful alternative is to use
the sensitivity function method [23, 25, 26, 28, 29, 30, 31], which is also called “the direct
differential method” [20]. In this method, the sensitivity analysis is performed over a time
interval and sensitivity coefficient curves are plotted in this interval. Due to the wide range
of the sensitivity function, a normalization is implemented for each sensitivity coefficient to
obtain a dimensionless value for it [20, 22, 23, 25, 26, 28, 29]. Keeping in mind that changing
system parameters, using cancer vaccines for example, can drive the system from an unsta-
ble equilibrium state to a stable equilibrium state [8, 17]. Sensitivity analysis establishes
the order of the most effective parameters, so it answers the question: Which parameter is
best to change to get the largest effect on the tumor size?
In this paper, a proposed model of tumor-immune interaction is considered. The immune
system cells counted of are natural killers, circulating lymphocytes, CD8+T cells, CD4+T
cells and cytokines. The traditional role of CD4+T cells in activating CD8+T cells is re-
flected as well as its role in killing the tumor via secretion of cytokines. A sensitivity analysis
is performed to the proposed model to identify the most effective parameters on the tumor
size. Sensitivity analysis is achieved by calculating the numerical sensitivity coefficients
and by the method of normalized sensitivity function. The results of the two methods are
compared, discussed, and the conclusions are extracted.

2. Mathematical Model

The following mathematical model is implemented to illustrate the interaction be-
tween the tumor and immune cells [17]:

dT

dt
= aT (1 − bT ) − cNT −DT − c1T

a1 + T
I (1)

dN

dt
= eC − fN +

gT 2

h+ T 2
N − pNT (2)

dL

dt
= −mL+

jD2T 2

k +D2T 2
L− qLT + (r1N + r2C)T − uNL2 +

piI

gi + I
L (3)

dY

dt
=

β1T

α1 + T
I − µ1Y − δ2TY (4)

dC

dt
= α− βC (5)

dI

dt
= −µiI +

β2T

α2 + T
Y (6)

where, T (t) is the tumor cells population, N(t) is the natural killer cells population, L(t)
is the CD8+T cells population, Y (t) is the CD4+T cells population, C(t) is the circulating
lymphocytes cell population not including natural killer cells and active CD8+T and CD4+T
cells and I(t) is the concentration of the cytokine. D is the fractional kill rate, which is
defined as follows:

D = d
(L/T )

l

s+ (L/T )
l

(7)



Sensitivity Analysis for a Mathematical Model of Tumor-Immune Interactions 319

The definitions and the values of all the parameters included on the model for two
patients are included in [17]. Also, a detailed description of each term in the model is
included in [17]. Equation (6) shows that CD4+T cells activates the cytokine which in term
activates CD8+T cells as can be noticed in equation (3) and both cytokine and CD8+T cells
assist in killing tumors as presented in equations (1) and (7).

3. Sensitivity Analysis

The numerical sensitivity coefficient is given by:

S =
(∆y/∆λ)

(y/λ)
(8)

where S is the numerical sensitivity coefficient for the system output y with respect to the
parameter λ. The main disadvantage of this method is that it is not accurate in many cases,
also, the sensitivity coefficients in this method is calculated at a certain time instant. This
time instant not necessarily representing the sensitivity at other time instances.
As an alternative method to calculate the sensitivity coefficients, the sensitivity function
method is considered. A general form of the system of differential equations is given by:

dyi (λ, t)

dt
= fi (y1, y2, . . . , yn, λ, t) , yi (0) = yi0, i = 1, 2, . . . , n (9)

where yi is the model outputs y1,y2,. . . ,yn. The sensitivity coefficients are the first
order derivative of the model outputs with respect to the model parameter λ:

Si =
dyi
dλ

(10)

hence
dSi
dt

=
d

dt

(
∂yi
∂λ

)
(11)

consequently

dSi
dt

=
∂

∂t

(
∂yi
∂λ

)
+

n∑
r=1

∂

∂yr

(
∂yi
∂t

)
∂yr
∂λ

which can be written as

dSi
dt

=
∂

∂λ

(
∂yi
∂t

)
+

n∑
r=1

∂

∂yr

(
∂yi
∂t

)
Sr (12)

Since the evaluation is taken at the nominal value of the parameter, then

∂yi
∂t

= fi

Accordingly, equation (12) can be written as

dSi
dt

=
∂fi
∂λ

+
n∑
r=1

∂fi
∂yr

Sr (13)

Equation (13) can be rewritten in the matrix form:
dS1

dt

dS2

dt
...

dSn

dt

 =


∂f1
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∂f2
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...

∂fn
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+



∂f1
∂y1

∂f1
∂y2

. . . ∂f1
∂yn

∂f2
∂y1

∂f2
∂y2

. . . ∂f2
∂yn

...
...

. . .
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∂fn
∂y1

∂fn
∂y2

. . . ∂fn
∂yn




S1

S2

...
Sn

 (14)
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Equation (14) can be generalized to any number of parameters m as follows:

dS

dt
= fλ + J S (15)

where S =


S11 S12 . . . S1m

S21 S22 . . . S2m

...
...

. . .
...

Sn1 Sn2 . . . Snm
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. . .
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. . . ∂fn
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 and J =



∂f1
∂y1

∂f1
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∂f2
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.

Such that:

Sij =
∂yi
∂λj

, i = 1, 2, . . . , n , j = 1, 2, . . . ,m (16)

The system of differential equations defined by (15) can be solved using a suitable numerical
method with the initial conditions Sij (0) = 0. After that, the solution will be normalized
to bound the range of the sensitivity functions using the following formula:

(Sij)n =
Sij
yi/λj

(17)

4. Results and Discussion

The proposed model has 31 parameters, a, a1, b, c, c1, d, e, f , g, gi, h, j, k, l, m, p,
pi, q, r1, r2, s, u, α, α1, α2, β, β1, β2, µ1, µi and δ2. There are 6 model outputs T , N , L,
Y , C and I. Since the tumor cell population T is the main output of the model, the focus of
this research work is on the effect of each parameter on T only. Therefore, the initial condi-
tions used for N , L, Y , C and I in all cases are fixed to the following values: N(0) = 103,
L(0) = 10, Y (0) = 106, C(0) = 6 × 108, and I(0) = 0. Four cases are considered. To
calculate the numerical sensitivity coefficients each parameter is increased and decreased by
5% of its nominal value given in [17], and the change in tumor size ∆T is calculated using
the system of differential equations (1-6). Equation (8) is used to calculate the numerical
sensitivity coefficients which are given in Table 1. The normalized sensitivity functions given
in equation (17) are computed and plotted for each case in Figures 1-4. For more clearness,
the averages of the normalized sensitivity functions are calculated and presented in Table 2.

In the first case, sensitivity analysis is performed for the data of the first patient
included in [17]. The initial conditions used for the tumor cell population is T (0) = 105. The
normalized sensitivity functions are plotted in Figure 1. The obtained sensitivity coefficients,
at t = 7 days, are shown in Table 1, which shows that the most effective parameters are d,
β2, µi and c1, respectively. This sequence coincides with the sequence obtained from the
sensitivity function method shown in Figure 1 at this instant of time. However, as shown in
the figure, the order of effective parameters changes with time. So, the sensitivity function
method introduces a more general and powerful way to track the sensitivity of the model of
each parameter along any time interval. Table 2 shows that the order of the most effective
parameters is β2, µi, d and c1.

In the second case, sensitivity analysis is performed for the data of the first patient
included in [17]. Simulation is performed to a larger tumor of initial size T (0) = 107. The
normalized sensitivity functions are plotted in Figure 2. Numerical sensitivity analysis is
performed by measuring the change in tumor size ∆T at t = 20 days. The sensitivity
coefficients are shown in Table 1, which implies that most effective parameters are b, a,
l and β2, respectively. At t = 20, the instantaneous values of the normalized sensitivity
functions, as shown in Figure 2, shows that the most effective parameters are b, a, l and β2
also. However, as shown in the figure, the order of the effective parameters is changed with
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Table 1. Numerical sensitivity coefficients.

First Patient Second Patient

T (0) = 105 T (0) = 107 T (0) = 105 T (0) = 107

Increasing Decreasing Increasing Decreasing Increasing Decreasing Increasing Decreasing
a 3.03169 2.63292 0.122388 0.185525 -0.185383 -0.214762 0.122234 0.185264
a1 2.47467 2.30135 9.71 E-7 9.74 E-7 -8.88 E-3 -1.158 E-2 9.71 E-7 9.72 E-7
b -8.67 E-5 -8.68 E-5 -0.936493 -1.03325 -2.87 E-6 -2.88 E-6 -0.93649 -1.03325
c -9.13 E-7 -8.80 E-7 -9.44 E-10 3.42 E-10 -2.59 E-6 -2.59 E-6 5.36 E-10 -8.78 E-10
c1 -2.88022 -3.55867 -1.29 E-4 -1.29 E-4 -1.869 E-2 -2.206 E-2 -1.28 E-4 -1.28 E-4
d -8.0517 -13.1622 -3.5 E-5 -3.52 E-5 -7.548 E-2 -7.364 E-2 -1.1 E-5 -1.13 E-5
e 2.063 E-4 2.062 E-4 1.01 E-9 -1.81 E-10 -7.26 E-4 -7.25 E-4 1.31 E-8 -8.54 E-10
f -2.47 E-5 -2.48 E-5 -1.25 E-9 1.57 E-10 3.79 E-4 3.948 E-4 3.43 E-9 -8.95 E-10
g 7.50 E-6 7.48 E-6 -7.00 E-10 -1.37 E-10 -4.61 E-6 -4.61 E-6 2.43 E-10 -2.08 E-9
gi 2.665 E-3 2.934 E-3 5.86 E-11 1.94 E-9 1.7 E-5 1.89 E-5 5.61 E-10 -1.14 E-9
h -4.67 E-8 -4.74 E-8 -5.11 E-10 -3.44 E-10 4.38 E-6 4.82 E-6 9.31 E-10 -5.18 E-11
j -1.084 E-2 -1.085 E-2 -1.22 E-8 -1.08 E-8 -7.44 E-8 -7.44 E-8 1.34 E-9 -1.63 E-9
k 1.775 E-3 1.842 E-3 6.37 E-9 6.76 E-9 7.09 E-8 7.84 E-8 2.65 E-10 -4.91 E-10
l 1.42606 1.44702 3.423 E-4 6.761 E-4 0.166259 0.20166 1.07 E-4 2.07 E-4
m 0.131979 0.130768 2.38 E-7 2.40 E-7 0.116547 0.138489 1.51 E-6 1.53 E-6
p -1.551 E-4 -1.597 E-4 1.13 E-8 1.11 E-9 2.96 E-5 2.96 E-5 1.99 E-8 6.50 E-10
pi -2.899 E-3 -2.9 E-3 -1.57 E-9 -1.45 E-9 -1.82 E-5 -1.82 E-5 2.18 E-9 -1.58 E-9
q 6.586 E-2 6.57 E-2 6.75 E-5 7.87 E-5 3.13 E-5 3.13 E-5 1.77 E-5 2.01 E-5
r1 -1.111 E-3 -1.111 E-3 -6.21 E-11 5.03 E-11 -7.66 E-4 -7.66 E-4 2.67 E-9 -5.79 E-10
r2 -0.825142 -0.901681 -7.57 E-5 -7.17 E-5 -0.128672 -0.119826 -2 E-5 -2 E-5
s 0.407421 0.420416 3.36 E-5 3.71 E-5 6.522 E-2 7.334 E-2 1.07 E-5 1.19 E-5
u 1.184 E-3 1.184 E-3 4.41 E-10 1.62 E-9 4.55 E-5 4.55 E-5 -4.25 E-10 -1.46 E-9
α -0.420455 -0.443736 -6.12 E-5 -5.84 E-5 -0.129504 -0.120775 -1.68 E-5 -1.63 E-5
α1 6.806 E-2 6.913 E-2 9.40 E-10 3.78 E-9 0.562034 0.56566 3.95 E-9 2.65 E-9
α2 0.621521 0.630966 1.13 E-8 1.30 E-8 0.42598 0.42864 1.54 E-8 1.15 E-8
β 6.995 E-3 6.992 E-3 3.96 E-6 4.01 E-6 2.908 E-2 2.973 E-2 9.54 E-7 9.61 E-7
β1 -2.02993 -2.31315 -3.21 E-5 -3.15 E-5 -0.951725 -1.08276 -3.2 E-5 -3.14 E-5
β2 -4.57593 -6.36571 -1.62 E-4 -1.58 E-4 -0.968519 -1.10739 -1.62 E-4 -1.58 E-4
µ1 0.59066 0.571686 7.57 E-6 7.61 E-6 1.00448 1.0696 7.55 E-6 7.58 E-6
µi 5.82898 4.66424 1.449 E-4 1.632 E-4 1.0467 1.0126 1.44 E-4 1.62 E-4
δ2 4.023 E-2 4.013 E-2 9.31 E-5 1.008 E-4 7.85 E-4 7.84 E-4 9.2 E-5 1 E-4

Table 2. Averages of the normalized sensitivity functions.

First Patient Second Patient

T (0) = 105 T (0) = 107 T (0) = 105 T (0) = 107

a 1.74721 1.39152 0.590797 1.39023
a1 2.00595 2.80785 E-5 0.394974 2.80293 E-5
b -9.96375 E-5 -0.463767 1.66451 E-6 -0.463827
c -3.38749 E-7 -1.84701 E-9 -2.23775 E-6 -1.57075 E-9
c1 -2.88325 -3.68397 E-3 -0.363492 -3.67771 E-3
d -3.66016 -4.85825 E-4 -6.02073 E-2 -1.14819 E-4
e 1.86791 E-4 -1.81157 E-9 -3.83569 E-4 -1.22424 E-9
f -2.21857 E-5 1.10318 E-11 1.3788 E-4 3.81143 E-12
g 6.69324 E-6 -3.34704 E-12 -1.06694 E-6 -1.15638 E-12
gi 2.71134 E-3 3.12353 E-8 1.21932 E-5 3.83704 E-9
h -3.63254 E-8 6.28229 E-19 8.75083 E-7 2.06901 E-19
j -1.04187 E-2 -2.74481 E-7 -1.22417 E-8 -2.6459 E-9
k 1.79434 E-3 1.44397 E-7 1.22409 E-8 2.52704 E-9
l 1.49524 5.80725 E-3 0.250135 1.31761 E-3
m 0.128329 5.94124 E-6 0.105051 3.56425 E-5
p -1.40033 E-4 9.87548 E-9 9.90897 E-6 3.97582 E-9
pi -2.81429 E-3 -3.16934 E-8 -1.2286 E-5 -3.89307 E-9
q 6.51789 E-2 9.87913 E-4 1.20859 E-5 1.69363 E-4
r1 -1.12093 E-3 -1.10473 E-8 -3.93083 E-4 -2.48185 E-9
r2 -0.862093 -1.01527 E-3 -0.105423 -2.07815 E-4
s 0.413894 4.85783 E-4 5.84669 E-2 1.14817 E-4
u 1.13489 E-3 3.68151 E-9 9.49411 E-6 2.31177 E-10
α -0.428153 -6.96811 E-4 -0.101776 -1.29773 E-4
α1 4.32472 E-2 6.81436 E-8 0.319447 6.80195 E-8
α2 0.357265 3.65075 E-7 0.657277 3.64432 E-7
β 6.89561 E-3 1.93237 E-5 1.24961 E-2 3.09539 E-6
β1 -1.68621 -8.62082 E-4 -1.08484 -8.60548 E-4
β2 -4.57218 -4.54608 E-3 -1.44835 -4.53826 E-3
µ1 0.442406 2.07158 E-4 1.19002 2.0679 E-4
µi 4.35748 4.29802 E-3 1.43112 4.29064 E-3
δ2 3.3188 E-2 2.61786 E-3 8.34325 E-3 2.61335 E-3
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Figure 1. Normalized sensitivity functions for first patient’s data with T (0) = 105.
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Figure 2. Normalized sensitivity functions for first patient’s data with T (0) = 107.

time and parameter a is the most effective parameter most of the time in the considered
time interval. This fact is reflected in Table 2 which specifies the order of the most effective
parameters to be a, b, l and β2.

In the third case, sensitivity analysis is performed for the data of the second patient
included in [17]. The initial conditions used for the tumor cell population is T (0) = 105.
Numerical sensitivity analysis is performed by measuring the change in tumor size ∆T at
t = 40 days, and the obtained sensitivity coefficients are shown in Table 1. The most
effective parameters are µ1, β2, µi and β1, respectively. This sequence coincides with the
sequence obtained from the sensitivity function method shown in Figure 3 at this instant of
time. Because of the variation of the order of most effective parameters with time as shown
in Figure 3, Table 2 specifies the order as β2, µi, µ1 and β1.

In the fourth case, sensitivity analysis is performed for the data of the second patient
included in [17]. Simulation is performed to a larger tumor of initial size T (0) = 107.
Numerical sensitivity analysis is performed by measuring the change in tumor size ∆T at
t = 20 days. Sensitivity coefficients are shown in Table 1. The most effective parameters are
b, a, β2 and l, respectively. Same sequence is obtained from the sensitivity function method
shown in Figure 4 at this instant of time. However, the order of the effective parameters is
changed with time as shown in Figure 4 and parameter a is the most effective parameter
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Figure 3. Normalized sensitivity functions for second patient’s data with T (0) = 105.
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Figure 4. Normalized sensitivity functions for second patient’s data with T (0) = 107.

most of the time in the considered time interval. Therefore, Table 2 shows that the order of
the most effective parameters is a, b, β2 and µi.

The results obtained in this section prove that the most effective parameters change
with the change of the initial tumor size and with the change of the patient’s data. The two
sensitivity methods used give the same results at any specific instant of time, however, if a
wide interval of time is considered, their results do not coincide.

5. Representative Cases

In section 4, it can be noticed that the order for the most effective parameters obtained
by the numerical sensitivity coefficient method does not coincide with the order obtained by
the sensitivity function method. In this section we would like to specify the more reliable
method. Therefore, the second and the fourth cases in section 4 are revisited.

First, the simulation is performed for the second case three times. In the first run,
the values of all parameters are the nominal values. In the second run, the values of all
parameters are the nominal values except the value of a which decreases by 90% of its
nominal value. In the third run, the values of all parameters are the nominal values except
the value of b which increases by 90% of its nominal value. Results shown in Figure 5a
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illustrate that changing a are much more effective that changing b. This outcome agrees
with the prediction of the sensitivity function method.

Second, the simulation is performed for the fourth case three times. In the first run,
the values of all parameters are the nominal values. In the second run, the values of all
parameters are the nominal values except the value of a which decreases by 99% of its
nominal value. In the third run, the values of all parameters are the nominal values except
the value of b which increases by 99% of its nominal value. Results shown in Figure 5b
illustrate that changing a are much more effective that changing b. This outcome agrees
with the prediction of the sensitivity function method.

Hence, it can be concluded that the sensitivity function method is more reliable than
the numerical sensitivity coefficient method. Results of the last method could be incorrect
in some cases.
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Figure 5. Verification of Results: (A) Results of first patient’s data for 3 cases:
with nominal values of all parameters, decreasing a by 90% and increasing b by 90%.

(B) Results of second patient’s data for 3 cases: with nominal values of all parameters,

decreasing a by 99% and increasing b by 99%.

6. Conclusions

In this paper, sensitivity analysis has been performed for a mathematical model rep-
resenting the tumor-immune interactions to identify the most effective parameters on tumor
size. Sensitivity coefficient curves for all parameters are plotted over a time interval and
a normalized coefficient has been computed for each parameter to specify the order of the
most effective parameters. Results have proved that both the list and the order of the most
effective parameters change with the change of initial tumor size and patient’s data. If this
analysis would be performed prior to the treatment, these parameters can be specified and
adjusted, using cancer vaccines for example, to get the largest effect on the tumor size from
the subsequent treatment.
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the Mathematical Model of Tumor-Immune Interactions, in 2020 42nd Annual International Conference

of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020.

[19] O. A. Gutierrez and U. H. Danielson, Sensitivity analysis and error structure of progress curves,

Analytical Biochemistry, 358(2006), No. 1, 1-10.

[20] Z. Zi, Sensitivity analysis approaches applied to systems biology models, IET Systems Biology, 5(2011),

No. 6, 336-346.

[21] X. Hu and S. R. J. Jang, Dynamics of Tumor-CD4+-Cytokine-Host Cells Interactions with Treatments,

Applied Mathematics and Computation, 321(2018), 700-720.

[22] H. C. Frey and S. R. Patil, Identification and Review of Sensitivity Analysis Methods, Risk Analysis,

22(2002), No. 3, 553-578.



326 Ahmed M. Makhlouf, Hesham A. Elkaranshawy
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