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MILD SOLUTIONS FOR NEUTRAL CONFORMABLE FRACTIONAL
ORDER FUNCTIONAL EVOLUTION EQUATIONS USING
MEIR-KEELER TYPE FIXED POINT THEOREM

by Fatma Berrighil, Imene Medjadj? and Erdal Karapmar3-4

Our mission is to demonstrate the existence, uniqueness, attractiveness,
and controllability of mild solutions to neutral conformable fractional-order functional
evolution equations, specifically of order between 1 and 2. These intriguing equations
encompass finite delay, all while adhering to local conditions within a separable Banach
space. By invoking Meir-Keeler’s fized-point Theorem and enhancing it with measures of
noncompactness, we establish the existence of these solutions. To highlight the potency
of our approach, we present a captivating example.
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1. Introduction

This paper establishes criteria for the existence, uniqueness, attractivity, and con-
trollability of mild solutions to conformable fractional-order neutral functional evolution
equations with finite delay. The analysis is conducted within the framework of a separable
Banach space, where the completeness of the space and local conditions are leveraged to
prove the existence of a unique mild solution, forming the cornerstone of our study.

The conformable derivative, introduced by Khalil et al. [29], has advanced fractional
calculus beyond classical definitions [33, 30] and enabled diverse applications (see eg. [9,
11]). Recent work has extended this framework to complex settings: Liang et al. [32] and
Bouaouid et al. [21, 20] studied impulsive differential equations using semigroup theory,
while Bouaouid et al. [12, 8] and Atraoui et al. [13] applied fixed-point theorems to prove
existence and controllability. Further contributions by Baghli et al. [14] and Agarwal et al.
[7] extended this approach to controllability, also, see [1, 16, 17, 18, 19, 4, 5, 6, 26, 31, 34].
Researchers have also utilized measures of noncompactness to address solution existence
challenges across various contexts (see eg. [10, 15, 27]).

Firstly, we study in Section 3 the conformable fractional order functional evolution
equations with local conditions of the form:

DD (4(s) = Y(s, ¥s))] = P(b(s) = Y(s,¥s)) + W(s,9s), ae. sel:=[0,400); (1)
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P(s) =n(s), se&H:=[-b,0], where 0<b< +oo, D (0)=1¢€ D; (2)
Let ¥ and Y: I x C([-b,0], D) — D denote given functions, n: [—b,0] — D represent
a continuous function, P: D(P) C D — D serves as the infinitesimal generator of a strongly
continuous cosine function, represented by a family of bounded linear operators (€(s))ser.
This elegant framework ensures that &(s) = [ €(z)dz, weaving a seamless integration of
the operators over the real line, and D denote a real separable Banach space equipped with
norm | - |, while D¢ represents a fractional conformable derivative of order 0 < ¢ < 1.
Let 1, denote, for all s > 0, the function in C([—b, 0], D) defined as ¢ (0) = (s +0).
Here, 15(+) captures the state history from s — b up to the current time s. Additionally, we
will explore the attractiveness of mild solutions to conformable fractional-order functional
evolution equations subject to local conditions (1)—(2). Moreover, we will delineate adequate
conditions to guarantee the controllability of mild solutions across the semi-infinite interval
I = [0,400) for conformable fractional-order functional evolution equations characterized
by the following conditions

DD (¢ (s) = Y(s,9s))] = B(b(s) = Y(s,¥s)) + ¥(s,1bs) + BU(s); (3)
Y(s)=n(s), se€H, DY) =1v¢eD; (4)
where B, ¥, Y, and 7 are defined as in problem (1) —(2), the control function U(+) is provided
in L?(I,D), representing the Banach space of admissible control functions, and B stands as
a bounded linear operator mapping from D to D.
Ultimately, we furnish an illustrative example demonstrating the abstract theory ex-
pounded in the preceding results.

2. Introductory concepts

In this part, we present symbols, explanations, and fundamental principles drawn
from multivalued analysis.

The notation BC(I,D) represents the Banach space comprising all functions that
are both bounded and continuous from I to D, where the norm is defined as: ||¢|pc =
sup{ l(s)] : 5 € I},

Consider the space BCy defined as {1 : [~b, +00) = D, 1[[ 4 is bounded
and continuous for s > 0}, with the norm: |[¢|pc., = sup{ |¥(s)] : s € [0,T]}, here
T =sup{s > 0: 1|[,q is bounded and continuous}.

Definition 2.1. (Khalil et al. [29]) The conformable fractional derivative of order 0 < ¢ <1
for a function v (+) is defined as

Dvw(s) — tlg% ¢(5 + tslgc) — '(/)(8),

De(0) = lim D (1),

Definition 2.2. (see eg. [10, 15, 27]) Let Fp the bounded subsets of D so the map A :
Fp — [0,+00) denotes the Kuratowski measure of noncompactness which is given by

s> 0;

k
AF) =inf{a>0:FC U F; and diam(F;) < a}, here F € Fp.
j+1
Definition 2.3. Let’s say we have a nonempty subset ¥ within the Banach space D, and
consider any arbitrary measure of noncompactness 2 defined on D. We define 9 : F — D
as a Meir-Keeler condensing operator if it meets the following criteria: 9t is both continuous
and bounded, and for any given 8 > 0, there exists p > 0 such that if § < A(R) < 8+ p,
then A(M(R)) < S holds true for every bounded subset R of F.
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Lemma 2.1. (see [25]) Consider D as a Banach space, and let F be a subset of C(I,D)
that is both bounded and equicontinuous. Then, the function A(F(s)) remains continuous
over the interval I, and A;(F) equals the mazimum value of A(F(s)) for s in I.

Theorem 2.1. (Meir-Keeler’s Theorem [8]) Let F be a nonempty, bounded, closed, and
conver subset of a Banach space D. If M : F — F is a continuous Meir-Keeler condensing
operator, then M guarantees at least one fized point, and the collection of all such fized
points within F forms a compact set.

Definition 2.4. (see [23]) We characterize solutions of Equations (1) — (2) as locally at-
tractive if there exists a closed ball B(1*, o) within the space BC, where * € BC, such that

for any solutions 1 and ¢ of Equations (1) — (2) within B(y*, ), the following convergence
occurs: limg_, o0 (¥(s) — 9 (s)) = 0.

3. Existence results

In this section, we reveal our main findings regarding the existence of solutions to
problems (1) — (2). Before presenting and verifying this result, we introduce the notion of
its mild solution.

Definition 3.1. We define the mild solution ¢ € C([—b,+00), D) of the problem (1) — (2)
as follows

n(s)s if s € H;
(s) =1 () M0) - Y(0,9(0))] + & (£ )9 + Y(s, )
+ o tc‘lg(#) W(t, ) dt, if s € I;

We must introduce the following hypotheses, which will be utilized subsequently:
(i) The function ¥ : I x C(H, D) — D is carathéodory function and there exist a contin-
uous function O : I — I such that
(W (s, u)| < O(s)|ul,

AW (s, F)) < O(s)A(F),
and O* :=sup,¢; [; t°71O(t)dt < oo, for all s € I, u € C(H, D), bounded
set F C C([-b,4+0),D)and 0 < ¢ <1

(ii) The cosine operator €(s)4eg is uniformly continuous and there exist constants M%, MS
both greater than zero, such that

C C
sup [€( )] < ME and sup &% )| < M2,
sel C sel C

(#i7) The function Y : I x C([—b,0], D) — D is carathéodory function and there exist Y* > 0
such that

[9(s, w)] <" [ull,
AM(s, ) <Y AT),
{s = Y(s,u), u € F} is equicontinuous on each compact interval of I,

forall s € I, u € C(H,D), bounded set F C C([—b, +00), D).

Theorem 3.1. Given assumptions (i) — (iii), if MSO* +Y* < 1, then problem (1) — (2)
admits at least one mild solution over BC'.
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Proof. We initiate the transformation of problem (1)—(2) into a fixed-point problem.
Let’s examine the operator 9 : BC(|—b, +0), D) — BC([-b,+00), D), which is delineated
as follows:

n(s), if s € [-b,0];

M) =4 €(£) 0) ~ YO, 0(0)] + & ()9 + Y(s, )
+f03 tc—16<sczt0) \Il<t7wt) dt7 lf S € I7
The operator 9t maps BC' into BC. Specifically, for ¢ € BC and for any s € I we have:

m()(5)] < () lln(0) + 900, mO)] + 16 ()Mol + 9,0

Scfl 8¢ —1t°
+ [t () v

< ME[nll (1 +Y) + M 9] + (MO +9*) ]| e
which imply 9t € BC.
< * S
Furthermore, suppose [ > M, W((;;@H@gf;@) W”, and let B; denote the closed ball in
BC centered at the origin with radius /. consider ) € B; and s € I, we get
() ()] < ME [[nll(L +Y*) +ME (9] + (MEO* +Y*)1

Thus, |M(Y)||sc <.

Now we prove that 9 : B; — B satisfies the assumptions of Meir-Keeler’s fixed point
Theorem.

Firstly, we establish that 9 exhibits continuity within B;. Let {¢,} be a sequence
such that v, — ¥ in B;. We have

I (Pn)(5) = M) ()] < [Y(s, (Vs)n) = Y(s,9s)| + Me /0 WL, ()n) — Ut 00 |dt

and by () and (ii3) we get U(t, (¥1)n) = U(t, 1) and Y(t, (V1)n) = Y(t, 1Y) as n — +o0 for
ae. t € I and by the Lebesgue dominated convergence Theorem we conclude that

19 () — M(Y) || Bc — 0, as n — 0.

Thus, 901 is continuous.

Secondly, we observe that 9 (B;) C B, which is evident.
Moving on, we note that 91(B;) demonstrates equicontinuity on every compact inter-
val X’ of I, let 1, o € X' with x5 > z; we have

() (1) — M) )] < 1€(22) — (D 1oy (149l
+16(22) ~ () lneoy Il + 19(oa,6m,) = Y, )
[ e (B2E) - 6B laco) et vl

T3
+M§/ t 1 |W(t, ) |dt

1
As 21 — x9, the uniformly continuity property of the operators €(s) and &(s) indicate that
the right part of the previous enequality converges to zero. This confirms the equicontinuity
of M.
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Additionally, we establish the equiconvergence of 9M(B;). For s € I and ¢ € By, we
find

1M () (s)| < ME|nll(L+Y*) + M9 + (ME / 271 O(2)dr + Y*)l
0
Consequently, () (s)| — I/, as s — +oo. Where I’ < ME||n||(1+Y*) +MS |9 +(MEO* +
Y*)l. Here O* :=sup,; [ 2~ O(z)dz. Therefore,
1M () (s) — M(Y)(+00)| = 0, s = +oc.

Finally, we confirm that the Meir-Keeler type condition is satisfied.
For any given § > 0, there exists p > 0 such that if 8 < 2;(R) < 8 + u, then
Ar(M(R)) < B for any R C B; where A7 (R) = maxer A(R(x)).
We have
AM(R)(s)) < (Y* + M O0*)2A(R).
Since M(R) is bounded and equicontinuous of all R C B;. Then
A (M(R)) = max AM(R)(s)).

Therefore 27 (MM(R)) < (Y* + MEO*)A(R) < B = A (R)

1-Yy*-MmMSo*
Y= +MS O0*

B
S ‘3*+M§‘O* .

Then for any given 8 > 0 and taking pu = ( )6 — € such that € > 0, we obtain

B<U(R) <B+p=A(MR)) < B, foranyRC B

Hence 2 is a Meir-Keeler condensing operator.

Through these steps, we ensure that the conditions required for Meir-Keeler’ s fixed-point
Theorem [8] are satisfied by 9 : B; — B;. Therefore, we may conclude that 9t has a fixed
point ¢ that provides a mild solution to the problem (1) — (2).

3.1. Uniqueness results. Subsequently, we present our main finding concerning the exis-
tence and uniqueness of solutions to problem (1) — (2). Before proceeding with the demon-
stration of this outcome, we establish the following conditions.

(1)’ The function ¥ : I x C(H,D) — D is carathéodory function and there exist a contin-
uous function O : I — I such that

[W(s,u) = W(s,v)| < O(s)[[u—vf,

U= sup/ t1W(t,0)dt < oo
sel Jo

AW (s,F)) < O(s)20(F),
and O* := sup,¢; fos te=rO(t)dt < oo, for all s € I, u,v € C(H, D), bounded
set FC C([-b,4+00),D) and 0 < c <1
(#9t)" The function Y : I x C([—b,0], D) — D is carathéodory function, continuous according
to its first variable and there exist Y* > 0 such that

19(s,u) = 9(s,0)[ <Y [u— o],
A(Y(s, F)) < YA,
{s = Y(s,u), u € F} is equicontinuous on each compact interval of I,
"= sup |1é(8, 0)| < 400,
sel
forall s € I, u € C(H,D), bounded set F C C([—b,+00),D).

Theorem 3.2. Given assumptions (i)' — (ii) and (ii)’, if Y* + MSO* < 1, then problem
(1) — (2) possesses a unique mild solution over BC.
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Proof. By following analogous procedures as those in the proof of Theorem 3.2, we

confirm the presence of a sole mild solution. Particularly noteworthy is the adjustment of
MS[I\U\I(HH )HY M 9]+ M2 w4y’

~(MEO0*+Y7)
Now, we proceed to demonstrate uniqueness. Suppose L/) and 9* are both mild solu-

tions of the problem (1) — (2), then,
() =™ ()] = [Mip(s) — My (s)]
< (s = Y0+ M [ ) W)

< (Y +MZON)[Y —¥*|se

then (1 — (Y* + MS0O0*))||v — ¥*||pc < 0 therefore ¢ = 1*. Hence the uniqueness of the
mild solution.

the radius estimation to [ >

3.2. Attractivity of Mild Solutions. In this section, we explore the local attractiveness
of solutions to problem (1) — (2).

Theorem 3.3. Given assumptions (i) — (ii) and (iii)’, if MEO* + Y* < 1, and let *
be a solution of (1) — (2), and B(y*,a) represent the closed ball in BC such that: o >

MS[H"H(Hyi)j(;i?gf;,gfw}ﬁf\I’*H}/ then the problem (1) — (2) exhibits attractivity.
Proof. For ) € B(y*,0), by (i)’ — (ii) and (i)', we get
(

() (s) — ()] = M) (s) — M(™) (s)|
< [Y(5,07) — Y(s, )| + ME / (L ) — Dt )t

0

<10 =l + M [ el — vl

<Y+ Mfo*)a <0
consequently, MM(B(1*, ) C B(¥*, o) then for each solutions ¥, 1 € B(y*, ) of (1) — (2)
and s € I, we have

[9(s) = ¥(s)| < (9" + MEO™) [l — ¥l Bo
hence

1 = ¥llpe =0

As a result, the problem solutions (1) — (2) are locally attractive.

3.3. Controllability results. This section delineates the controllability outcomes for the
system (3) — (4). Before delving into this, we introduce a specific type of solutions for
problem (3) — (4).

Definition 3.2. We define the mild solution ¢ € C([—b,4+00), D) of the problem (3) — (4)
as follows

n(s), if s € H;

bs) =4 €() [(0) = Y(0,n(O0)] + &( )0+ Y(s, )
+ [ tHG(#) U(t, ) dt, + [ tc*e(%) BU(t)dt, if s € I;

Definition 3.3. The system (3) — (4) is considered controllable if, for every initial function

n € C([-b,0],D) and ) € D, there exists some natural number n € N and a control function
U € L2([0,n],D) such that the resulting mild solution v (-) satisfies the terminal condition

¥(n) = .
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We will adopt the assumptions (i) — (¢4i) from Section 3, along with the introduction
of the following additional assumption, which will be consistently assumed hereafter:

(iv) For all n integer, the linear operator U : L%([0,n], D) — D defined by

YU = /On xc—le(”c - ‘”) BU(z)de,

c

possesses a pseudo-invertible operator %*1, which maps functions from L?([0, n], D)
to the space L2([0,n], D) excluding the kernel of U, and is bounded. Additionally, B
is bounded, satisfying:
Bl <N and |71 < Ny
(v) There exists a continuous function function Xy : [0,n] — R, such that: for any
bounded subset § C D, we have : A(T~1(F)(s)) < Ky (s)A(F), s € [ and K’ :=
sup,e; [y 7 Ko (t)dt < oo for all 0 < ¢ < 1.
Theorem 3.4. Assume that (i)—(v) hold. Ifmax{ﬂv[cj:fifl"TC+(H*+MCO*)[1+M63<D:I1 "TC], (Y*+
MO0 (1 +MN K} < 1, then the problem (3) — (4) is controllable on [—b, +00).

Proof.Convert problem (3)—(4) into a fixed-point problem. We examine the operator
M : BCoo ([, +0),D) = BCysx(|—b, +0), D), defined as:

7](5)7 ifse [_ba 0]7
Mm()(s) = § (L) 00) = Y(0,7(0)) + & (£ )0+ Y(s, )

TS (S5 ) Wt ) db+ 51T S (S5 ) BUMar, if s e T
Using assumption (iv), for arbitrary function v(-), we define the control

nC

() =[5 e("2) 1(0) = 90.000)] - & ("5 )0~ b
" c—1 nt —t¢
—/O t 6( )\Ix(mbt) dt} (s)

C

Noting that, we have
Uy (5)] < N [|1Z| +ME (L +Y) lll + ME I+ (MEO* + ) wIIch]
The operator 9 maps BCs into BCy,. Specifically, the mapping 91(¢) is continuous on
[—b,n] for any ¢ € BCy we have:
SC SC
(s < 1E(Z)nO)] + ¥, 0] + 16 (= ) 12] + 195, )|
S o Sc_tc S o Sc_tc
+ [ ete (TR vl et ie () Bl ol
0 0

C c

& nc o~~~ nc
< O+ )l + M P+ MENT ™) + [ .. [MENT ™
+ (MEO™ +Y)(1+ MINN, )]

Which imply 9t € BC.

ME(1+Y* ME |9 (1+M S NN 25
Furthermore, suppose | > (Mg (1Y) [Inll+M [19]) A+Mg 1)

, and let B; denote the
1- M§NN1’%+(M§o*+9*)(1+M§NN1"§)}
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closed ball in BC', centered at the origin with radius [. Let ¢ € B; and s € I, we get
M)(s)] < HMENNL T+ (MEO* + Y*)(1+ MENN, =)
+ (M + Yl + ML+ MCGNM?).

Thus, |M(4)] e, <1
We now aim to demonstrate that 9 : B; — B; fulfills the prerequisites of Meir-
Keeler’s fixed-point Theorem.

Firstly, we establish that 9t exhibits continuity within B;. Let {1} be a sequence
such that ¥, — v in B;. We have

[9(wr) (5) — M) ()] < [Y(s, (s)r) = Y(s, %) + M / (L, (Pe)i) — W(E ) dt

0
+ MGN/ £ Wy, (1) — Uy () |d2
0
< 9(s, (Vs)r) — Y(s,9s)]

#08 (L MERT ) [ e (o) — it )
0

+ MENN {6 = ]+ [Y(m, (¥n)e) = Y, 50)

Using (i) and (4i2), we have W(s, (¢s)r) — Y(s,vs) and Y(s, (¥s)r) = Y(s,¢s) as k —
+oo for almost every s € [0,n]. Then, by the Lebesgue dominated convergence Theorem:
19 () — M(Y)|| e, — 0, as n — oco. Thus, M is continuous.

Secondly, we observe that 9(B;) C By, which is evident.

Moving on, we note that 9(B;) demonstrates equicontinuity on every compact inter-
val X' =[0,n] , let z1, 2 € X’ with z9 > 21 we have

() (1) — M) )] < 1€(22) — (D 1wy (149l
£16(22) — & (%) sy 191+ 91, ) — Y )
[T (E) - (T lagwy 1wt volat

e / £ [, o)t

1

N x§ —t° B x§ —t€
[ e (B ) - (B s I3l

~ T2
+M§N/ Uy (2) || dt
T1

As 21 — x4, the uniformly continuity property of €(s) and &(s) indicate that the right part
of the previous inequality converges to zero. This confirms the equicontinuity of 9.

Additionally, we establish the equiconvergence of 9(B;). For s € X’ and ¢ € By, we
find

* S ~x nt S NN ne
)] < O+ 57l + D D) (1 +MERK )+ 1[MSR,

+ (M8 / 2°71O(z)dz + Y*) (1 + Mf:r?ml”g)}.
0
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Consequently, [9M())(s)| — I'; as s — +oo. Where I' < (ME(1 + Y*)||n|| + ME||9])(1 +
M?iﬂ:ﬁ”{)—l—l [M?ﬂﬂln—:—i—(Mf O*dz+Y*) (1+MENN; "TL)} Here O* := sup,¢; [ 27 10(z)dx.
Therefore,
M (1) (5) — M () (400)| = 0, s = +00.
Finally, we confirm that the Meir-Keeler type condition is satisfied.
For any given 8 > 0, there exists p > 0 such that if 8 < 2;(R) < S+ p, then A;(M(R)) < 8
for any R C B; where 2;(R) = maxger A(R(s)). We have

AUz (s)) < Kay(s)(Y* +MZO*)A (R),
which imply

A(M(R)(s)) < Y*Ar(R) +ME / | trO ()AL (R)dt

0

+ M?."N/ 1K ()(Y + ME O™, (R)dt
0

< (L MEN K (Y +MT07)Ar(R)
Since M(R) is bounded and equicontinuous of all R C B;. Then
Ar(M(R)) = max AM(R)(s))-

Therefore 2A;(M(R)) < (1+MEN K')(Y*+MS0*)2;(R) < 8 = A (R) < B

= (HMEN K) (Y +ME0*) "
L (LMEN W>(W+MSO*))B — ¢ such that ¢ > 0
b

(1+MSN K)(Y*+MS 0*)

Then for any given 8 > 0 and taking u = (
we obtain

B<UA(R) <B+p=A(MR)) <B, forany RC B
Hence 90 is a Meir-Keeler condensing operator.
Through these steps, we ensure that the conditions required for Meir-Keeler’ s fixed-point
Theorem [8] are satisfied by 9t : B; — B;. Therefore, we may conclude that 9t has a fixed
point v that provides the controllability of the problem (3) — (4).

4. Examples

Example 4.1. To showcase the practical application of our results, let € denote a nonempty
bounded open set in R?. We explore the following conformable fractional differential equa-
tion:

DS% [D§1/)(5»fﬂ) - 9(871/)(3 - bv .’E))] = D?c[¢(sa SU) - y(sv¢(s - bv :L'))] + ‘I’(S»Q/J(S - b’ :L'))v

x €E&, s€0,+00); (5)
Y(s,z) =0, s€0,+0), x € OE; (6)
¥(s,z) =n(s,z); Ds% [¥(0,2)] =9, s€[-b,0], x €&. (7)
Here, b > 0 and we have
W(s, (s — b,2)) = o sin (s — b,a),

exp —s

Y(s, (s —b,x)) = tanh (s — b, x),
taking D = L?(€) and defining B as follows: Py = D*1p, o € D(P) and
D((B) = {'l/} € :}C(D)v w(x)|m€8€ = 0}

It is well know the operator*P generates a cosine family ((€(s))ser, (6(s))ser). Additionally,
it follows that

I€(s)|| <1 and [|6(s)|| <1, for all s €0, +00).
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Thus, to apply our Theorems on existence and attractivity, we require Y* + O* < 1.
The function ¥ (s, (s —b,x)) = ZE==sin)(s — b, ) is carathéodory and

7

|\P(S7¢1(8 - b’ x)) - W(S’¢2(S - bv 33))|

exp

ZE2 41 (5 — b, @) — a(s — b, )|

thus O(s) = “2==. Moreover, we have

(2
? < 0.19302, ¥y = 0.

= sup{/ -3 exp dm, s€[0,400)} =

Also, Y(s,¥(s — b, x)) = FE==tanh)(s — b, x) is carathéodory and

[9(s: 91 (s = b,2)) = Y(s,¢a(s = b, 2))| < %le(s —b,x) = Pa(s = b,z)|

thus Y* = % Moreover, we have

Y(s,0) = ? tanh(0) = 0 =Y.

* S (%)
Thus Y* + O* M <i 5+ 0.693 < 1.
)-

Then, by [15, 24], the problem (1

(3) is an abstract formulation of the problem (5)-(7), and

conditions (i) — (i91) are satisfied. Theorem 3.3 implies that the problem (5)-(7) has a unique
mild solution on BC, which is attractive by Theorem 3.4.
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