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FORMULAS FOR BINOMIAL SUMS INCLUDING POWERS OF
FIBONACCI AND LUCAS NUMBERS

Emrah KILIC!, Tlker AKKUS?2, Nese OMUR, Yiicel Tiirker ULUTAS?

Recently Prodinger [2] proved general expansion formulas for sums of pow-
ers of Fibonacci and Lucas numbers. In this paper, we will prove general expansion
formulas for binomial sums of powers of Fibonacci and Lucas numbers.

Keywords: Fibonacci and Lucas numbers, binomial sums, powers.
MSC2010: 11B39, 05A19.

1. Introduction

The Fibonacci numbers F),, and Lucas numbers L,, are defined by the following
recursions: for n > 0,

Foi1=Fy+ Fr1 and Lyyy = Ly + L1,

where Fy =0, F} =1 and Lg = 2, L; = 1, respectively.
If the roots of the characteristic equation 22> — 2 — 1 = 0 are a and 3, then the
Binet formulas for them are
a — Bn
o —

F, = and L, = o™ + 8"

Wiemann and Cooper [4] mentioned about some conjectures of Melham for the sum:
n
2m+1
D> Fi
k=1

Ozeki [1] considered Melham’s sum and then he gave an explicit expansion for Mel-
ham’s sum as a polynomial in Fo,1.

In general, Prodinger [2] derived the general formula for the sum:
n
> B
k=0
where €, € {0,1}, as well as the evaluations of the corresponding sums for Lucas
numbers.
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In [5], the authors gave formulas for the alternating analogues of sums of
Melham for Fibonacci and Lucas numbers of the forms

n
2m+ 2m+
(-)* F ohys  and Z L2km+557
k=1
where €, € {0,1}.
In this paper, we consider certain binomial sums given by

2m 2m
I (e D DI (9 e

k=0 k=0

- n 2m—+ 2m—+
Z (k) (-1 Flop sy and Z < > L ko)t
k=0

where t is an positive integer and ¢,6 € {0,1}.
Throughout this paper, we use the indicator function [S] defined by 1 if the
statement S is true or 0 otherwise.

We recall some facts for the readers convenience in [3]: For any real numbers
m and n,

t/2—1

(m +n) = Z; (:) (mn)" (m' ™2 +nf=2) + ( t};) (mn)"? [t is even] (1)
and
t/271 ‘ . o o
ot = X (1) ) (-0 2 42
+< tjz) (mn)"/2 (—1)/? [t is even]. @)

From [6], we have the following result:

Lemma 1.1. Let r and s be arbitrary integers. Then

i)

n 5O DRERL g ifnis odd
T s odd
Z <n> Fryosi = 52 FP oy if n is even, if s is odd, (3)
izo \! LYFenir if s is even.
i)
n 5(n+1)/2Fngn+r if n is odd
g s odd
(n) Lry2si = 5" 2 F Loy if n is even, if s s odd, (4)
=0 L?Lgpir if s is even.

5n/2F an—i—r an 8 even, . .
n .
<> (—1)$ Fr+2si — _5(n—l)/2FgLsn+r ifn is odd, ZfS 18 even, (5)
Z (=1)" LY Fanyr if 5 is odd.

3

=0

.
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n ' 5"/2F8 Lgpir if n is even, if s is even

< > (—1)1 Lyyosi = _5(n+1)/2Fngn+r if nis odd, ’ (6)
i=0 (—1)" L" Lgpsr if s is odd.
2. Some Binomial Sums for Fibonacci Numbers

Here we consider binomial and alternating binomial sums of powers of Fi-
bonacci numbers.

Theorem 2.1. i) Fort >0,

n m—1
1 i (2m\ ., 1 (2m mon
Z <k>F2kt = tm > (=1 ( ; ) 2(mi)tL2(mi)tn+5m<m> (=n™2n.

k=0
i1) For odd t > 0,

n
2 1
e
k=0
5oz Z (_1) (2m+1)F(T§m 2i+1)t F(2m—2i+1)tn if n is even,

(n—2m—1) M
2

Z()(_l) (2m+1)F(gm 2i+1)t (2m72i+1)tn an 18 0dd7

and for even t > 0,

n m
1 2m —l— 1
2 1
E <kj> F2’ZZ'+ = 7m E ( > ?Qm 2i4+1)t F(Qm—2i+1)tn
k=0

Proof. i) From the Binet formulas of {F,} and {L,}, and by (2), we write

B " /n a2kt_62kt 2m
- () (=)

k=0

()em)
A (B e () £ )

which, by (4) in Lemma 1.1 and since > ;_ () = 2", equivalent to

Zn: (k) Eyit = 5im <m21 (-1 (2:n> Ly iyt La(m—ijtn + <27,:L> -y 2”) ,

k=0 1=0
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as claimed.
i7) Consider

5 (o)

k=0
" /n a2kt_52kt 2m+1
- >0 (=5)
_ 1 (n) o= [2m+ 1 2(2m+1—20)t 2(2m41—2i)tk
B <a—ﬁ>2m+1z<k>z< i )H)( ( - g
k=0 =0
1 & i (2m+ 1\ <= (n
= WZ(‘U( ; ) <k>F2(2m+1—2i)kt>
=0 k=0

which, by taking s = (2m+1—2i)t and » = 0 in (3) in Lemma 1.1, gives the
claimed results. O

Following the proof way of Theorem 2.1, we have the following result without
proof:

Theorem 2.2. i) Fort >0,
> <k:> I

k=0
1 = n 1 2m n
=0

ii)For odd t > 0

2m+1
Z (k‘) F(2k;+1)

k=0

=0 i

n—2m S 2m + n 3 )
5(n—2m)/2 > < )F(2m+1 %)t Flomt1-20)t(nt1) if n is even,
—9m— 2m+1\ _, . )
5(n—2m—1)/2 Z ( . >F(2m 2 1)L (2m—2i+1)t(n+1) if n is odd,
i=0
and, for even t > 0,

- 1 < (2m +1 .
2m+1 1rn
Z (k) F(ijr_l - 5m Z ( ) (_1) L(2m+172i)tF(2m+l—2i)t(n+1)-
k=0
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Theorem 2.3. i) Fort >0,

;(Z)( D Fot iy

(n—2m) m—1 i 2m T
R SVl (4 L T

2
_ ‘1‘5% < 7:;) (—1)m(t+1) [n = 0] if n is even,

(n=2m+1) M1 i 2m\ . -
- ’ Z:O (_1) ey < i )F(Zmzi)tF(Qm—%)t(n-q-l) if n is odd.

i1) For odd t > 0,

- n 2m—+1 n - 2m + 1
Z <k> ( 1) F(Qk:j-_l)t = Z < > 2m+1_gi)tF(2m+172i)t(n+1)7
k=0 1=0

and, for even t > 0,

> (3) vt e,

k=0

(n—2m) M 2m +1 ) ’
b2 Z;(_l) < i )F(gm—i-l 21)tF(2m+1—2i)t(n+1) if nis even,
1=

(n 27n 1)

F(ngrl 2i)t Lemt1—2i)i(ns1) i n is odd.

2m+1
)

i()(

Proof. i) For t > 0, by (2), consider

£ ()
5 <”““ ey
o ()

a(2m—20)t(2k+1) | g(2m— Qz)t 2k+1))

X

(
+<21:> (—1)™ o 2m Z ( > (1)@
L5 () S (2) 0
g () ey (Z) (-1,

k=0
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which, by taking s = r = (2m — 2i)¢ in (6) in Lemma 1.1 and >_;_, (}) (-1)F =
[n = 0], gives the claimed result.
i1) For t > 0, by (2), consider

> (3) vt R,

k=0

&/ o [ a1t _ gkt 2m+1
- Z<k>(_”( a8 )

k=0

_ _Bl)Qerlan::O <Z> (_1)19;:; (Qmi—k 1> (—1)it

(a

% (a(2m+1—2i)t(2k+1) _ /8(2m+1—2i)t(2k+1)>

1 2m + 1 ; " /n
= Em Z ( ) —1)"+ Z (k) (-1 Floms1-2i)t2k+1)
=0

k=0
which, by taking s = r = (2m+1—2i)¢ in (5) in Lemma 1.1, gives the claimed
result. O

Following the proof way of Theorem 2.3, we have the following result:
Theorem 2.4. i)Fort > 0,
- n
k
>0 () e
k=0

iy Lam—ipen

) .
+ 5 <2m> (—1)™ [n = 0] ¥ s even,

n—2m m—1 . 2
_plpy Zo (_1)’( 7,”) Fy it Famiym i n is odd,

i1) For odd t > 0,

& k . 1 & 2m + 1
> (1) <k>F22kt+1 == *mZ Lom—2it1)eFlam—2itm,
i=0

k=0
and for even t > 0,

,io(_l)k (3) rame

(n—2m) M

2 i(2m+1 n ) :
oo Z{) (_1) ( 7 )F(Qm—2i+1)tF(2m2’i+1)tn if n is even

(n=2m-1) M 2m +1 ) .
SRS (—1)’ < ; )F@m sirnytlem—2itym if nis odd
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3. Binomial Sums and Binomial Alternating Sums for Lucas Num-
bers

Now we consider binomial and alternating binomial sums of powers of Lucas
numbers.

Theorem 3.1. i) Fort >0,

<k> L3 = < ; >L3(m—i)tL2(m—i)tn + ( m >2n'
k=0 1=0
i1) For even t > 0,
n m
n Im+1 2m+1
Z <k> LQZ?_ = Z < i L?Qm_22‘+1)tL(2mf2i+1)tm
k=0 1=0

and, for oddt > 0,

mo(2m+1 ) '
n 5"/2 ‘Zo ( i )F(ngiJrl)tL(?m—Qi—&-l)tn if n is even,
N s om41 =
RESE

mo2m+ 1\, . )

Proof. i) For t > 0, by the Binet formula of {L,,} and (1), we write

m—1
( <2m) (a2(2m—2i)tk + 52(2m—2i)tk> + <2m> (aﬁ)thm)
i=0 ! "
m—1 n n
2m n 2m n
= - ( ; ) 2 (k:) Loom—2iytk + (m) Z <k>’

k=0

which, by taking s = (2m — 2i)¢t and r = 0 in (4) in Lemma 1.1, gives the claimed
result.
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i1) For t > 0, by the Binet formula of {L, } and (1), we write
2 (1)
( > 2t | g2kt
_ i ( > <2m+ 1> <a2(2m+1—2i)tk +52(2m+1—2i)tk>
("

k=0
2m —|— 1 n
) (k:) Lo@m+1-2iytk

m
=0
which, by taking s = (2m+1—2i)¢t and » = 0 in (4) in Lemma 1.1, gives the
O

)2m+1

claimed result.

Following the proof way of the previous Theorems, we give the following results

without proof:

Theorem 3.2. i) Fort >0,

n m—1
Z <l<:> L(2k+1)t Z < i ) (—1)t 2(m—i)tL2(m—z’)t(n+1) + (m> (_1)t 2.

k=0 =0
i1) For even t > 0,

- i 2m +1

2m+1
Z( )L(sz Z( > (2m—2i+1)tL@m—2i+1)t(n+1)
k=0

=0
and, for odd t > 0,

2m—+1
> (1),
k=0

n M (2m + 1 n . .
52 Z < ) (—1)’ o —air1y L em—2i+1)t(n+1) if n is even,

(n+1) M (2m+ 1 . . .
0 Z%( i )( ) F(2m 2i+1)t Flom—2ir)t(ns1) i 1 is odd.

Theorem 3.3. i) Fort >0,
" /n

k
> () vt

k=0
n m=1 /9m 2m - .
53 E ( >F(T§m 20t +L@m—2iytn + <m> [n=0] ifn is even,

n m—1 /9
_ 5 > < m) iy Flem—2itn if n is odd.
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i1) For odd t > 0,

" (n m B = 2m+1
Z <kj> ( 1) Lgkt—’_l = Z < ) (2m—+1—24)t L(2m+172i)tna

k=0 1=0
and, for even t > 0,
2m+1
> (1) ot
52 mo(2m —|— 1 _ .
b2 Z ( > (2m+1 2i)t L(2m+1—2z’)tn if n is even,

(n+1) M (I2m + 1 ) .
=52 ) ( ; >F(7§m+1 20yt Flomy1—20m  if n is odd.
i=0

Theorem 3.4. i) Fort >0,

> (1) 0 By

k=0
m—1 /9m i
52 < ; >(—1)t Fm—ai L em—2iytn+1)
12:7?1 if n is even,
B B i [ TR
(nt1)/2 =L (2m t .
-5 % p (-1) F(zm 20yt Fom—2itm+1) i n is odd.
i1) For odd t > 0,
- n 2m—+1 n % 2m+1 irn
Z <k>( ) L(Qki]_ = Z( > 1) L(2m+1—2i)tL(2m+1—2i)t(n+1)7
k=0 =0
and, for event > 0,
- n 2m+1
> () ot
k=0
2m + . .
52 Z ( )F(Zmﬂ 2t L(2m+172i)t(n+1) if n is even,

(1) M (2m + 1 ' _
—5z % < . >F(7§m+1 aiyEemt1-20t(nr) i 1 s odd.
=0
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