

ON THE PARA-LINE GRAPHS OF CERTAIN NANOSTRUCTURES BASED ON TOPOLOGICAL INDICES

W. GAO^{1*}, M.F. NADEEM², S. ZAFAR³, Z. ZAHID⁴, M.R. FARAHANI⁵

Topological indices are valuable in the study of QSAR/QSPR. There are numerous applications of graph theory in the field of structural chemistry. In this paper, we computed generalized Randić, general Zagreb, general sum-connectivity, ABC, GA, ABC₄ and GAs indices of the Para-line graph of V-Pantacenic nanotube, H-Pantacenic nanotube and V-Pantacenic nanotorus.

Keywords and phrases. Topological indices, Para-line graph, Nanostructures.

1. Introduction and Preliminaries

Topological Indices are arithmetical quantities of a graph that are invariant under graph isomorphism. The significance of topological indices is mainly related to their utilizing in quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR). Para-line graphs are very important in structural chemistry, but still in the last few decades they were considered very little in chemical graph theory. To define Para-line graphs we need the following notations.

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The subdivision graph $S(G)$ is the graph obtained from G by replacing each of its edge by a path of length 2. The line graph $L(G)$ of graph G is the graph whose vertices are the edges of G , two vertices e and f are incident if and only if they have a common end vertex in G . The Para-line graph of G is the line graph of the subdivision graph of G i.e. $L(S(G))$ which will be denoted by G^* . Alternatively, we can construct G^* from G as follows:

¹ School of Information and Technology, Yunnan Normal University, Kunming, China, e-mail: gaowei@ynnu.edu.cn

² Department of Mathematics, Comsat Institute of Information Technology, Lahore, Pakistan, e-mail: mfaisalnadeem@ymail.com

³ Departments of Mathematics, University of Management and Technology (UMT), Lahore, Pakistan, e-mail: sohailahmad04@gmail.com,

⁴ Department of Mathematics, University of Management and Technology (UMT), Lahore, Pakistan, e-mail: zohaib_zahid@hotmail.com

⁵ Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran, e-mail: mr_farahani@mathdep.iust.ac.ir, mrfarahani88@gmail.com

- (1) Replace each vertex $u \in V(G)$ by $K(u)$; the complete graph on d_u vertices;
- (2) There is an edge joining a vertex of $K(u_1)$ and a vertex of $K(u_2)$ in G if and only if there is an edge joining u_1 and u_2 in G ;
- (3) For each vertex v of $K(u)$, degree of v in G is same as degree of u in G .

A molecular graph is a set of points representing the atoms in the molecule and collection of lines representing the covalent bonds. For example, consider the hydrocarbon C_6H_6 , its molecular structure and molecular graph is shown in Fig. 1 (a) and (b). However, there are other ways to attach a graph with molecules, for instance in terms of a minimal set of localized orbitals each taken as a vertex, with edges described the stronger connections between pairs of orbitals. In fact, such a graph was understood in several early quantum chemical mechanisms. The vertices of Para-line graphs of molecular graph correspond to its atomic hybrid orbital, and their edge corresponds to stronger interactions between pairs of such orbital. Para-line graph of molecular graph of hydrocarbon C_6H_6 is shown in Fig. 1 (c).

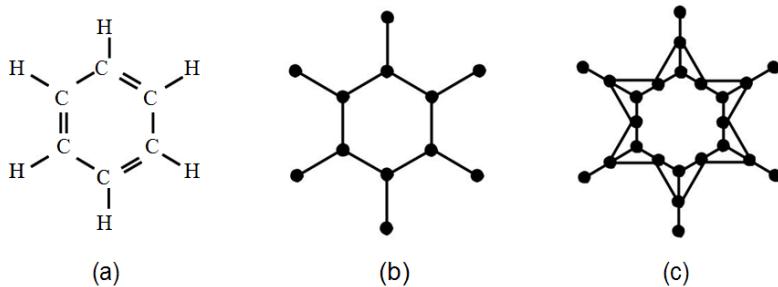


Fig. 1. (a) C_6H_6 (b) Graph of C_6H_6 (c) Para-line graph of C_6H_6

For more details on the para-line graphs and its connection with chemistry, we refer to the article [39].

In [38], Farahani et al. discussed the topological indices of the line graph of H-Pantacenic nanotube. In this article, we study topological indices of the para-line graphs of H-Pantacenic nanotube as well as V-Pantacenic nanotube and V-Pantacenic nanotorus. The 2-D lattice graphs of V-Pantacenic nanotube, H-Pantacenic nanotube and V-Pantacenic nanotorus are shown in Fig. 2, 4 and 6 respectively.

For $u \in V(G)$, N_u denotes the set of its neighbors in G , the degree of vertex u is $d_u = |N_u|$ and $S_u = \sum_{v \in N_u} d_v$. In structural chemistry and biology, molecular structure descriptors are utilized for modeling information of molecules, which are known as topological indices. Many topological indices are introduced to explain the physical and chemical properties of molecules. Topological indices

are generally divided into three kinds: degree-based indices [16, 17, 22, 29, 30, 35], distance-based indices [1, 2, 8, 12, 14, 28, 34], and spectrum-based indices [4, 13, 15, 18]. There are also some topological indices based on both degrees and distances (see [5, 7, 11, 32, 33]).

The general Randić connectivity index of G is defined as [3]

$$R_\alpha(G) = \sum_{uv \in E(G)} (d_u d_v)^\alpha. \quad (1)$$

where α is a real number. Then $R_{-1/2}(G)$ is known as Randić connectivity index of G . Li and Zhao introduced the first general Zagreb index in [19]:

$$M_\alpha(G) = \sum_{u \in V(G)} (d_u)^\alpha. \quad (2)$$

In 2010, general sum-connectivity index $\chi_\alpha(G)$ has been introduced in [36]:

$$\chi_\alpha(G) = \sum_{uv \in E(G)} (d_u + d_v)^\alpha. \quad (3)$$

The atom-bond connectivity (ABC) index, introduced by Estrada et al. in [6]. The ABC index of graph G is defined as

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}. \quad (4)$$

D. Vukicevic and B. Furtula introduced the Geometric arithmetic (GA) index in [27]. The GA index for graph G is defined by

$$GA(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{d_u + d_v}. \quad (5)$$

The fourth member of the class of ABC index was introduced by M. Ghorbani et al. in [9] as:

$$ABC_4(G) = \sum_{uv \in E(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}. \quad (6)$$

The 5th GA index was introduced by Graovac et al. in [10] as

$$GA_5(G) = \sum_{uv \in E(G)} \frac{2\sqrt{S_u S_v}}{S_u + S_v}. \quad (7)$$

2. Topological indices of Para-line graphs

The study of the topological indices of Para-line graphs is a popular topic in the inter-disciplinary of chemistry and graph theory (see [37, 38]). In 2011, Ranjini et al. calculated the explicit expressions for the Shultz index of the

subdivision graph of the tadpole, wheel, helm and ladder graphs [25]. They also studied the Zagreb indices of the Para-line graph of the tadpole, wheel and ladder in [24]. In 2015, Su and Xu calculate the general sum-connectivity index and co-index of the Para-line graph of the tadpole, wheel and ladder graphs in [26]. In [20], Nadeem et al. computed ABC_4 and GA_5 index of the Para-line graphs of the tadpole, wheel and ladder graphs. They also studied generalized Randić, general Zagreb, general sum-connectivity, ABC, GA, ABC_4 and GA_5 indices of the Para-line graph of 2D lattice, nanotube and nanotorus $TUC_4C_8[p,q]$ in [21].

In this paper, we computed generalized Randić, general Zagreb, general sum-connectivity, ABC, GA, ABC_4 and GA_5 indices of the para-line graphs of V-Pantacenic nanotube, H-Pantacenic nanotube and V-Pantacenic nanotorus.

In order to calculate the number of edges of the line graph, the following lemma is important for us and can be deduced by the definition of the line graph.

Lemma 1. Let G be a graph. Then

$$|E(L(G))| = \sum_{u \in V(G)} \frac{d_u^2}{2} - |E(G)|$$

where $L(G)$ is the line graph of G .

2.1. Topological indices of the Para-line graph of V-Pantacenic nanotube.

The 2-D graph lattice of V-Pantacenic nanotube is shown in Fig. 2 and it is denoted by $F[p,q]$. There are $22pq$ vertices and $33pq-5p$ edges in $F[p,q]$.

Theorem 2. Let G^* be the Para-line graph of $F[p,q]$. Then

$$M_\alpha(G^*) = 5p2^{\alpha+2} + 3^{\alpha+1}(22pq - 10p).$$

Proof. The graph G^* is shown in Fig. 3. In G^* there are total $66pq-10p$ vertices among which $20p$ vertices are of degree 2 and $66pq-30p$ vertices are of degree 3. Hence, we get $M_\alpha(G^*)$ by using formula 2.

Theorem 3. Let G^* be the Para-line graph of $F[p,q]$. Then

$$R_\alpha(G^*) = 10p.4^\alpha + 20p.6^\alpha + (99pq - 55p)9^\alpha,$$

$$\chi_\alpha(G^*) = 10p.4^\alpha + 20p.5^\alpha + (99pq - 55p)6^\alpha,$$

$$ABC(G^*) = \left(15\sqrt{2} - \frac{110}{3}\right)p + 66pq,$$

$$GA(G^*) = 99pq + (8\sqrt{6} - 45)p.$$

Proof. The subdivision graph $S(F[p,q])$ contains $66pq-10p$ edges and $55pq-5p$ vertices among which $33pq+5p$ vertices are of degree 2 and remaining $22pq-10p$ vertices are of degree 3. Hence by Lemma 1, the total number of edges of G^* are $99pq-25p$. The edge set $E(G^*)$ divides into three edge partitions based on degrees of the end vertices, i.e. $E(G^*)=E_1(G^*)\cup E_2(G^*)\cup E_3(G^*)$. The edge partition $E_1(G^*)$ contains $10p$ edges uv , where $d_u=d_v=2$, the edge partition $E_2(G^*)$ contains $20p$ edges uv , where $d_u=2$ and $d_v=3$, and the edge partition $E_3(G^*)$ contains $99pq-55p$ edges uv , where $d_u=d_v=3$. From formulas 1, 3, 4 and 5, we obtain the required results.

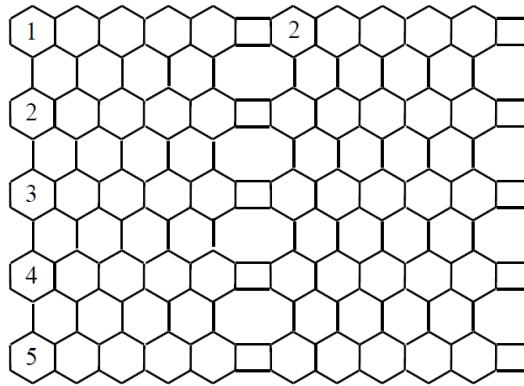


Fig. 2. 2-D graph lattice of V-Pantacenic nanotube

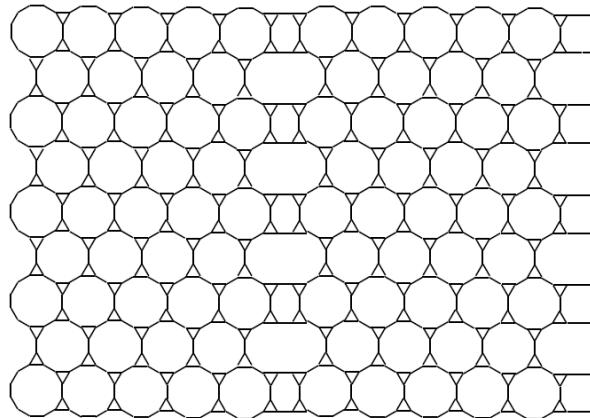


Fig. 3. Para-line graph of 2-D lattice of V-Pantacenic nanotube

Theorem 4. Let G^* be the Para-line graph of $F[p,q]$. Then

$$ABC_4(G^*) = \left(4\sqrt{2} + \sqrt{110} + \sqrt{14} + 2\sqrt{30} - \frac{116}{3} \right) p + 44pq,$$

$$GA_5(G^*) = \left(-69 + \frac{80}{13}\sqrt{10} + \frac{288}{17}\sqrt{2} \right) p + 99pq.$$

Proof. If we consider an edge partition based on degree sum of neighbors of end vertices then the edge set $E(G^*)$ can be divided into five edge partitions $E_i(G^*)$, $i=4,5,\dots,8$ i.e. $E(G^*) = \bigcup_{i=4}^8 E_i(G^*)$. The edge partition $E_4(G^*)$ contains $10p$ edges uv , where $S_u=S_v=5$, the edge partition $E_5(G^*)$ contains $20p$ edges uv , where $S_u=5$ and $S_v=8$, the edge partition $E_6(G^*)$ contains $8p$ edges uv , where $S_u=S_v=8$, the edge partition $E_7(G^*)$ contains $24p$ edges uv , where $S_u=8$ and $S_v=9$ and the edge partition $E_8(G^*)$ contains $99pq-87p$ edges uv , where $S_u=S_v=9$. From formulas 6 and 7, we obtain the required results.

2.2. Topological indices of the Para-line graph of H-Pantacenic nanotube.

The 2-D graph lattice of H-Pantacenic nanotube is shown in Fig. 4 and it is denoted by $K[p,q]$. There are $22pq$ vertices and $33pq-2q$ edges in $K[p,q]$.

Theorem 5. Let G^* be the Para-line graph of $K[p,q]$. Then

$$M_\alpha(G^*) = q \cdot 2^{\alpha+3} + 3^{\alpha+1} (22pq - 4q).$$

Proof. The graph G^* is shown in Fig. 5. In G^* there are total $66pq-4q$ vertices among which $8q$ vertices are of degree 2 and $66pq-12q$ vertices are of degree 3. Hence, we get $M_\alpha(G^*)$ by using formula 2.

Theorem 6. Let G^* be the Para-line graph of $K[p,q]$. Then

$$R_\alpha(G^*) = 6q \cdot 4^\alpha + 4q \cdot 6^\alpha + (99pq - 20q)9^\alpha,$$

$$\chi_\alpha(G^*) = 6q \cdot 4^\alpha + 4q \cdot 5^\alpha + (99pq - 20q)6^\alpha,$$

$$ABC(G^*) = 5q\sqrt{2} + 66pq - \frac{40}{3}q,$$

$$GA(G^*) = \frac{8}{5}q\sqrt{6} + 99pq - 14q.$$

Proof. The subdivision graph $S(K[p,q])$ contains $66pq-4q$ edges and $55pq-2q$ vertices among which vertices are of degree 2 and remaining vertices are of degree 3. Hence by Lemma 1 the total number of edges of G^* are $99pq-10q$. The edge set $E(G^*)$ divides into three edge partitions based on degrees of the end vertices, i.e. $E(G^*) = E_1(G^*) \cup E_2(G^*) \cup E_3(G^*)$. The edge partition $E_1(G^*)$ contains $6q$ edges uv , where $d_u=d_v=2$, the edge partition $E_2(G^*)$ contains $4q$ edges uv , where $d_u=2$ and $d_v=3$, and the edge partition $E_3(G^*)$ contains $99pq-20q$ edges uv , where $d_u=d_v=3$. From formulas 1, 3, 4 and 5, we obtain the required results.

Theorem 7. Let G^* be the Para-line graph of $K[p,q]$. Then

$$ABC_4(G^*) = 44pq + \left(\frac{2}{5}\sqrt{35} + \frac{1}{5}\sqrt{110} + \frac{1}{3}\sqrt{30} + \frac{1}{2}\sqrt{6} - \frac{32}{3} \right)q,$$

$$GA_5(G^*) = 99pq + \left(\frac{16}{9}\sqrt{5} + \frac{16}{13}\sqrt{10} + \frac{48}{17}\sqrt{2} - 22 \right)q.$$

Proof. If we consider an edge partition based on degree sum of neighbors of end vertices

then the edge set $E(G^*)$ can be divided into five edge partitions $E_i(G^*)$; $i=4,5,\dots,8$ i.e. $E(G^*) = \bigcup_{i=4}^8 E_i(G^*)$. The edge partition $E_4(G^*)$ contains $2q$ edges uv , where $S_u=S_v=4$, the edge partition $E_5(G^*)$ contains $4q$ edges uv , where $S_u=4$ and $S_v=5$, the edge partition $E_6(G^*)$ contains $4q$ edges uv , where $S_u=5$ and $S_v=8$, the edge partition $E_7(G^*)$ contains $4q$ edges uv , where $S_u=8$ and $S_v=9$ and the edge partition $E_8(G^*)$ contains $99pq-24q$ edges uv , where $S_u=S_v=9$. From formulas 6 and 7, we obtain the required results.

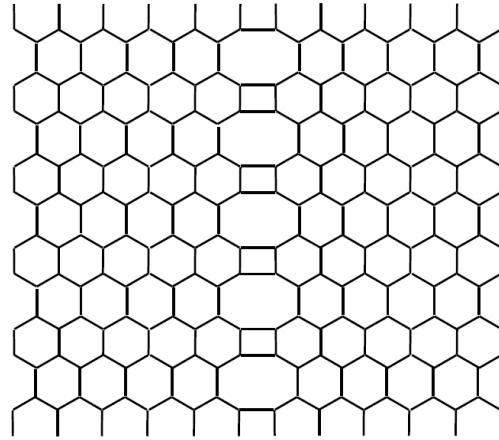


Fig. 4. 2-D graph lattice of H-Pantacenic nanotube

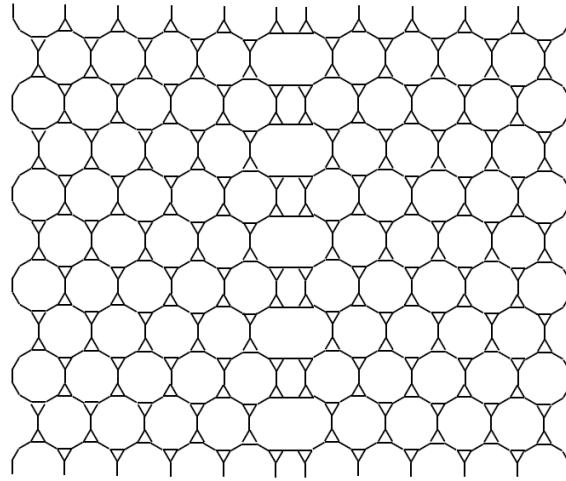


Fig. 5. Para-line graph 2-D lattice of H-Pantacenic nanotube

2.3. Topological indices of the Para-line graph of V-Pantacenic nanotorus.

The 2-D graph lattice of V-Pantacenic nanotorus is shown in Fig. 6 and it is denoted by $L[p,q]$. There are $22pq$ vertices and $33pq$ edges in $L[p,q]$.

Theorem 8. Let G^* be the Para-line graph of $L[p,q]$. Then $M_\alpha(G^*) = 22pq \cdot 3^{\alpha+1}$.

Proof. The graph G^* is shown in Fig. 7. In G there are total $66pq$ vertices and all of them are of degree 3. Hence, we get $M_\alpha(G^*)$ by using formula 2.

Theorem 9. Let G^* be the Para-line graph of $L[p,q]$. Then

$$R_\alpha(G^*) = 99pq \cdot 9^\alpha,$$

$$\chi_\alpha(G^*) = 99pq \cdot 6^\alpha,$$

$$ABC(G^*) = 66pq,$$

$$GA(G^*) = 99pq.$$

Proof. The subdivision graph $S(L[p,q])$ contains $66pq$ edges and $55pq$ vertices among which $33pq$ vertices are of degree 2 and remaining $22pq$ vertices are of degree 3. Hence by Lemma 1 the total number of edges of G is $99pq$. All the edges uv in G have $d_u=d_v=3$. From formulas 1, 3, 4 and 5, we obtain the required results.

Theorem 10. Let G^* be the Para-line graph of $L[p,q]$. Then

$$ABC_4(G^*) = \frac{33}{2} \sqrt{6}pq,$$

$$GA_5(G^*) = 66pq$$

Proof. If we consider an edge partition based on degree sum of neighbors of end vertices then all $99pq$ edges uv in G have $S_u=S_v=9$. From formulas 6 and 7, we obtain the required results.

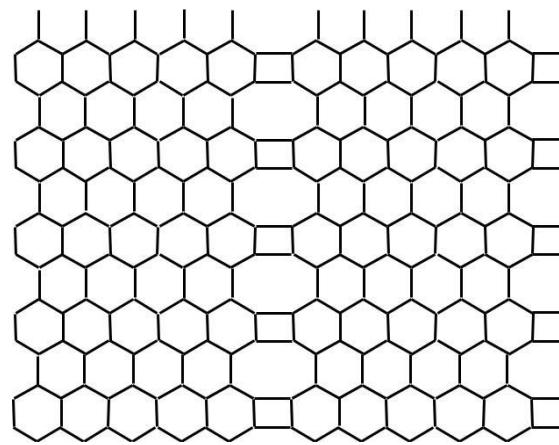


Fig. 6. 2-D graph lattice of V-Pantacenic nanotorus



Fig. 7. Para-line graph of 2-D lattice of V-Pantacenic nanotorus

3. Conclusion

To study chemical graphs in the framework of para-line operator is a new direction in the field of structural chemistry. In this paper, we paid attention to the para-line graph of nanostructures and study their topological indices which are practically helpful to identify their underlying topologies.

R E F E R E N C E S

- [1] *T. Al-Fozan, P. Manuel, I. Rajasingh, R. Rajan*: Computing Szeged index of certain nano-sheets using partition technique, *MATCH Commun. Math. Comput. Chem.* 72 (2014) 339-353.
- [2] *M. Azari, A. Iranmanesh*: Harary index of some nano-structures, *MATCH Commun. Math. Comput. Chem.* 71 (2014) 373-382.
- [3] *B. Bollobas, P. Erdos*: Graphs of extremal weights, *Ars Combin.* 50 (1998) 225-233.
- [4] *K. Das, S. Sorgun*: On Randić energy of graphs, *MATCH Commun. Math. Comput. Chem.* 72 (2014) 227-238.
- [5] *M. Dehmer, F. Emmert-Streib, M. Grabner*: A computational approach to construct a multivariate complete graph invariant, *Inform. Sci.* 260 (2014) 200-208.
- [6] *E. Estrada, L. Torres, L. Rodriguez, I. Gutman*: An atom-bond connectivity index: Modeling the enthalpy of formation of alkanes. *Indian J. Chem.*, 37A, 1998, 849-855.
- [7] *L. Feng, W. Liu, A. Ilic, G. Yu*: The degree distance of unicyclic graphs with given matching number, *Graphs Comb.* 29 (2013) 449-462.
- [8] *L. Feng, W. Liu, G. Yu, S. Li*: The hyper-Wiener index of graphs with given bipartition, *Utilitas Math.* 95 (2014) 23-32.
- [9] *M. Ghorbani, M.A. Hosseini*: Computing ABC₄ index of nanostar Dendrimers, *Optoelec-tron. Adv. Mater. Rapid Commun.* 4(9), (2010), 1419-1422.
- [10] *A. Graovac, M. Ghorbani, M.A. Hosseini*: Computing fifth geometric-arithmetic index for nanostar Dendrimers, *J. Math. Nanosci* 1, 33-42.
- [11] *I. Gutman*: Selected properties of the Schultz molecular topological index, *J. Chem. Inf. Comput. Sci.* 34 (1994) 1087-1089.
- [12] *S. Hosseini, M. Ahmadi, I. Gutman*: Kragujevac trees with minimal atom-bond connectivity index, *MATCH Commun. Math. Comput. Chem.* 71 (2014) 5-20.
- [13] *A. Khosravanirad*: A lower bound for Laplacian Estrada index of a graph, *MATCH Commun. Math. Comput. Chem.* 70 (2013) 175-180.
- [14] *M. Knor, B. Luar, R. krekovski, I. Gutman*: On Wiener index of common neighborhood graphs, *MATCH Commun. Math. Comput. Chem.* 72 (2014) 321-332.
- [15] *X. Li, Y. Li, Y. Shi, I. Gutman*: Note on the HOMO-LUMO index of graphs, *MATCH Commun. Math. Comput. Chem.* 70 (2013) 85-96.
- [16] *X. Li, Y. Shi*: A survey on the Randić index, *MATCH Commun. Math. Comput. Chem.*
- [17] *X. Li, Y. Shi, L. Wang*: An updated survey on the Randić index, in: B.F. I. Gutman (Ed.), *Recent Results in the Theory of Randić Index*, University of Kragujevac and Faculty of Science Kragujevac, 2008, pp. 9-47.

- [18] *X. Li, Y. Shi, M. Wei, J. Li*: On a conjecture about tricyclic graphs with maximal energy, *MATCH Commun. Math. Comput. Chem.* 72 (1) (2014) 183-214.
- [19] *X. Li, H. Zhao*: Trees with the first three smallest and largest generalized topological indices, *MATCH Commun. Math. Comput. Chem.* 50 (2004) 57-62.
- [20] *M.F. Nadeem, S. Zafar, Z. Zahid*: Certain topological indices of the line graph of subdivision graphs, *Appl. Math. Comput.* 271, 2015, 790-794. <http://dx.doi.org/10.1016/j.amc.2015.09.061>
- [21] *M.F. Nadeem, S. Zafar, Z. Zahid*: On Topological properties of the line graph of subdivision graphs of certain nanostructures, *Appl. Math. Comput.* 273, 2016, 125-130.
- [22] *J. Rada, R. Cruz*, Vertex-degree-based topological indices over graphs, *MATCH Commun. Math. Comput. Chem.* 72 (2014) 603-616.
- [23] *M. Randić*: On characterization of molecular branching. *J. Am. Chem. Soc.* 97 (1974) 6609-6615.
- [24] *P.S. Ranjini, V. Lokesha, I.N. Cangal*: On the Zagreb indices of the line graphs of the subdivision graphs, *Appl. Math. Comput.* 218 (2011) 699-702.
- [25] *P.S. Ranjini, V. Lokesha, M.A. Rajan*: On the Shultz index of the subdivision graphs, *Adv. Stud. Contemp. Math.* 21 (3) (2011) 279-290.
- [26] *G. Su, L. Xu*: Topological indices of the line graph of subdivision graphs and their Schur-bounds, *Appl. Math. Comput.* 253 (2015) 395-401.
- [27] *D. Vukicevic, B. Furtula*: Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, *J. Math. Chem.* 46 (2009) 1369-1376.
- [28] *C. Wang, S. Wang, B. Wei*: Cacti with Extremal PI Index, *Trans. on Comb.*, 5 (2016) 1-8.
- [29] *S. Wang, B. Wei*: Multiplicative Zagreb indices of Cacti, *Discrete Math., Algorithms and Applications*, DOI: 10.1142/S1793830916500403.
- [30] *S. Wang, B. Wei*: Multiplicative Zagreb indices of k-trees, *Discrete Appl. Math.*, 180 (2015), 168-175.
- [31] *H. J. Wiener*: Structural Determination of Para n Boiling Points, *J. Amer. Chem. Soc.* 69, 17-20, 1947.
- [32] *S. Wang, M.R. Farahani, M.R. Rajesh Kanna, M.K. Jamil, R.P. Kumar*: The Wiener Index and the Hosoya Polynomial of the Jahangir Graphs, *Applied and Computational Mathematics*, accepted.
- [33] *S. Wang, M.R. Farahani, A.Q. Baig, W. Sajjad*: The sadhana polynomial and the sadhana index of polycyclic aromatic hydrocarbons PAH_k, *Journal of Chemical and Pharmaceutical Research*, accepted.
- [34] *K. Xu, M. Liu, K. Das, I. Gutman, B. Furtula*: A survey on graphs extremal with respect to distance-based topological indices, *MATCH Commun. Math. Comput. Chem.* 71 (2014) 461-508.
- [35] *G. Yu, L. Feng*: On connective eccentricity index of graphs, *MATCH Commun. Math. Comput. Chem.* 69 (2013) 611-628.
- [36] *B. Zhou, N. Trinajstić*: On general sum-connectivity index, *J. Math. Chem.* 47 (2010) 210-218.
- [37] *A.Q. Baig, M. Imran, H. Ali*: On topological indices of poly oxide, poly silicate, DOX, and DSL networks, *Can. J. Chem.* 2015, 93(7) 730-739.

- [38] *M. Baca, J. Horvathova, M. Mokrisova, A.S. Fenovcikova, A. Suhayiova*: On topological indices of a carbon nanotube network, *Can. J. Chem.*, 2015, 93(10) 1157-1160.
- [39] *M.R. Farahani, M.F. Nadeem, S. Zafar, Z. Zahid, M.N. Husin*: Study of the topological indices of the line graphs of H-pantacenic nanotubes, *New Front. Chem.* 26(1), (2017), 31-38.
- [40] *D.J. Klein, E. Yi*: A comparison on metric dimension of graphs, line graphs, and line graphs of the subdivision graphs, *European journal of pure and applied mathematics* 5(3), 2012, 302-316.