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ON THE PARA-LINE GRAPHS OF CERTAIN
NANOSTRUCTURES BASED ON TOPOLOGICAL INDICES

W. GAO™, M.F. NADEEM?, S. ZAFAR?, Z. ZAHID* M.R. FARAHANI®

Topological indices are valuable in the study of QSAR/QSPR. There are
numerous applications of graph theory in the field of structural chemistry. In this
paper, we computed generalized Randi¢, general Zagreb, general sum-connectivity,
ABC, GA, ABCs and GAs indices of the Para-line graph of V-Pantacenic nanotube,
H-Pantacenic nanotube and V-Pantacenic nanotorus.
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1. Introduction and Preliminaries

Topological Indices are arithmetical quantities of a graph that are invariant
under graph isomorphism. The significance of topological indices is mainly
related to their utilizing in quantitative structure-property relationship (QSPR) and
quantitative structure-activity relationship (QSAR). Para-line graphs are very
important in structural chemistry, but still in the last few decades they were
considered very little in chemical graph theory. To define Para-line graphs we
need the following notations.

Let G be a simple graph with vertex set V(G) and edge set E(G). The
subdivision graph S(G) is the graph obtained from G by replacing each of its edge
by a path of length 2. The line graph L(G) of graph G is the graph whose vertices
are the edges of G, two vertices e and f are incident if and only if they have a
common end vertex in G. The Para-line graph of G is the line graph of the
subdivision graph of G i.e. L(S(G)) which will be denoted by G*. Alternatively,
we can construct G* from G as follows:
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(1) Replace each vertex ueV(G) by K(u); the complete graph on dy vertices;
(2) There is an edge joining a vertex of K(u1) and a vertex of K(uz) in G if
and only if there is an edge joining us and uz in G;

3 For each vertex v of K(u), degree of v in G is same as degree of u in G.

A molecular graph is a set of points representing the atoms in the molecule
and collection of lines representing the covalent bonds. For example, consider the
hydrocarbon Ce¢He, its molecular structure and molecular graph is shown in Fig. 1
(@) and (b). However, there are other ways to attach a graph with molecules, for
instance in terms of a minimal set of localized orbitals each taken as a vertex, with
edges described the stronger connections between pairs of orbitals. In fact, such a
graph was understood in several early quantum chemical mechanisms. The
vertices of Para-line graphs of molecular graph correspond to its atomic hybrid
orbital, and their edge corresponds to stronger interactions between pairs of such
orbital. Para-line graph of molecular graph of hydrocarbon CeHs is shown in Fig.

1(c).

(@) (b) (c)
Fig. 1. (a) CeHs (b) Graph of CeHs (c) Para-line graph of CsHs

For more details on the para-line graphs and its connection with chemistry, we
refer to the article [39].

In [38], Farahani et al. discussed the topological indices of the line graph of H-
Pantacenic nanotube. In this article, we study topological indices of the para-line
graphs of H-Pantacenic nanotube as well as V-Pantacenic nanotube and V-
Pantacenic nanotorus. The 2-D lattice graphs of V-Pantacenic nanotube, H-
Pantacenic nanotube and V-Pantacenic nanotorus are shown in Fig. 2, 4 and 6
respectively.

For u € V (G), Ny denotes the set of its neighbors in G, the degree of vertex u is

d=INy| and S, =) d,. In structural chemistry and biology, molecular

structure descriptors are utilized for modeling information of molecules, which
are known as topological indices. Many topological indices are introduced to

explain the physical and chemical properties of molecules. Topological indices
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are generally divided into three kinds: degree-based indices [16, 17, 22, 29, 30,
35], distance-based indices [1, 2, 8, 12, 14, 28, 34], and spectrum-based indices
[4, 13, 15, 18]. There are also some topological indices based on both degrees and
distances (see [5, 7, 11, 32, 33]).

The general Randi¢ connectivity index of G is defined as [3]

R,G)= > (dd)" 1)

uv ek (G)
where is o a real number. Then R ,,,(G) is known as Randi¢ connectivity index

of G. Li and Zhao introduced the first general Zagreb index in [19]:

M.G)= > @)" )
uev (G)
In 2010, general sum-connectivity index y«(G) has been introduced in [36]:
2.G)= 2, @, +d,)" ©)
uv ek (G)

The atom-bond connectivity (ABC) index, introduced by Estrada et al. in [6]. The
ABC index of graph G is defined as
ABC (G)= Z du+d—v_2 (4)
uv ek (G) dudv
D. Vukicevic and B. Furtula introduced the Geometric arithmetic (GA) index in
[27]. The GA index for graph G is defined by

2,/d.d,
GAG)= Y Y+t ®)
weE G) d, +d,
The fourth member of the class of ABC index was introduced by M. Ghorbani et

al. in [9] as:
S +S -2
ABC,G)= > /T (6)
uv eE (G) u“v

The 5th GA index was introduced by Graovac et al. in [10] as

GAG)= Y S %

wWeE@G) Oy T,

2. Topological indices of Para-line graphs

The study of the topological indices of Para-line graphs is a popular topic
in the inter-disciplinary of chemistry and graph theory (see [37, 38]). In 2011,
Ranjini et al. calculated the explicit expressions for the Shultz index of the
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subdivision graph of the tadpole, wheel, helm and ladder graphs [25]. They also
studied the Zagreb indices of the Para-line graph of the tadpole, wheel and ladder
in [24]. In 2015, Su and Xu calculate the general sum-connectivity index and co-
index of the Para-line graph of the tadpole, wheel and ladder graphs in [26]. In
[20], Nadeem et al. computed ABC4 and GAs index of the Para-line graphs of the
tadpole, wheel and ladder graphs. They also studied generalized Randié, general
Zagreb, general sum-connectivity, ABC, GA, ABC4 and GAs indices of the Para-
line graph of 2D lattice, nanotube and nanotorus TUC4Cs[p,q] in [21].

In this paper, we computed generalized Randi¢, general Zagreb, general
sum-connectivity, ABC, GA, ABCs and GAs indices of the para-line graphs of V-
Pantacenic nanotube, H-Pantacenic nanotube and V-Pantacenic nanotorus.

In order to calculate the number of edges of the line graph, the following
lemma is important for us and can be deduced by the definition of the line graph.

Lemma 1. Let G be a graph. Then
d 2
[ELG) I > —=—IEG)

uev (G) 2
where L(G) is the line graph of G.

2.1. Topological indices of the Para-line graph of V-Pantacenic nanotube.

The 2-D graph lattice of V-Pantacenic nanotube is shown in Fig. 2 and it is
denoted by F [p,q]. There are 22pq vertices and 33pg-5p edges in F [p,q].

Theorem 2. Let G* be the Para-line graph of F [p,q]. Then
M _(G")=5p2°"* +3""(22pq —10p).

Proof. The graph G* is shown in Fig. 3. In G* there are total 66pg-10p vertices
among which 20p vertices are of degree 2 and 66pg-30p vertices are of degree 3.
Hence, we get M« (G*) by using formula 2.

Theorem 3. Let G* be the Para-line graph of F [p,q]. Then
R, (G")=10p.4“ +20p.6“ +(99pq —55p)9°,
7,(G7)=10p.4“ +20p.5“ +(99pq —55p)6“,

ABC (G*)=(15\/_—%jp +66pq,

GA(G")=99pq +(8J6—45)p.
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Proof. The subdivision graph S(F[p,q]) contains 66pg-10p edges and 55pg-5p
vertices among which 33pg+5p vertices are of degree 2 and remaining 22pq-10p
vertices are of degree 3. Hence by Lemma 1, the total number of edges of G* are
99pQg-25p. The edge set E(G*) divides into three edge partitions based on degrees
of the end vertices, i.e. E(G*)=E1(G*)UE2(G*) UE3(G*). The edge partition
E1(G*) contains 10p edges uv, where dy=dv=2, the edge partition E2(G*) contains
20p edges uv, where dy=2 and dv=3, and the edge partition E3(G) contains 99pg-
55p edges uv, where dy=dy=3. From formulas 1, 3, 4 and 5, we obtain the required
results.

Fig. 2. 2-D graph lattice of VV-Pantacenic nanotube
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Fig. 3. Para-line graph of 2-D lattice of VV-Pantacenic nanotube
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Theorem 4. Let G* be the Para-line graph of F [p,q]. Then

ABC4(G*)=(4\/§+\/110+\/1_4+2«/3_—%jp+44pq,

GAG") =[—69+%\/1_0+%\/§jp +99pq .
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Proof. If we consider an edge partition based on degree sum of neighbors of end
vertices then the edge set E(G*) can be divided into five edge partitions Ei(G*),
i=4,5,...81.e. E(G")=U_E,(G"). The edge partition E4(G*) contains 10p edges
uv, where Sy=S,=5, the edge partition Es(G*) contains 20p edges uv, where Sy=5
and Sy=8, the edge partition E¢(G*) contains 8p edges uv, where S,;=S,=8, the
edge partition E7(G*) contains 24p edges uv, where S,=8 and Sy=9 and the edge
partition Eg(G*) contains 99pq-87p edges uv, where Sy=S,=9. From formulas 6
and 7, we obtain the required results.

2.2. Topological indices of the Para-line graph of H-Pantacenic nanotube.

The 2-D graph lattice of H-Pantacenic nanotube is shown in Fig. 4 and it is
denoted by K[p,q]. There are 22pq vertices and 33pg-2q edges in K[p,q].

Theorem 5. Let G* be the Para-line graph of K[p,q]. Then
M _(G")=q.2"° +3""(22pq - 4q).

Proof. The graph G* is shown in Fig. 5. In G* there are total 66pg-4q vertices
among which 8q vertices are of degree 2 and 66pg-12q vertices are of degree 3.
Hence, we get M«(G*) by using formula 2.

Theorem 6. Let G* be the Para-line graph of K[p;q]. Then
R, (G")=6q.4" +4q.6” +(99pg — 20q)9“,
7.,(G")=6q.4% +4q9.5“ +(99pg —20q)6“,

ABC(G*)=5qﬁ+66pq—4—3°q,

GA(G*):gq\/€+99pq ~14q.

Proof. The subdivision graph S(K[p,q]) contains 66pg-4q edges and 55pg-2q
vertices among which vertices are of degree 2 and remaining vertices are of
degree 3. Hence by Lemma 1 the total number of edges of G* are 99pg-10qg. The
edge set E(G*) divides into three edge partitions based on degrees of the end
vertices, i.e. E(G")=E,(G)UE,(G")UE,(G"). The edge partition E(G*)
contains 6q edges uv, where dy=d\=2, the edge partition E>(G*) contains 4q edges
uv, where d,=2 and dy=3, and the edge partition E3(G*) contains 99pg-20q edges
uv, where dy=dy=3. From formulas 1, 3, 4 and 5, we obtain the required results.
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Theorem 7. Let G* be the Para-line graph of K[p,q]. Then
ABC,(G") =44pq +(§\/£+é\/110 +%\/3_0+%[_%Jq,

GA,(G")=99pq +(%J§+g\/1_0+§\/§—22jq :

Proof. If we consider an edge partition based on degree sum of neighbors of end
vertices

then the edge set E(G*) can be divided into five edge partitions Ei(G*); i=4,5,...,8
i.e.EG")=U"_E,(G"). The edge partition E4(G*) contains 2q edges uv, where
Su=Sv=4, the edge partition Es(G*) contains 4q edges uv, where Sy=4 and Sy=5,
the edge partition Es(G*) contains 4q edges uv, where S;=5 and S,=8, the edge
partition E7(G*) contains 4q edges uv, where S;=8 and Sy=9 and the edge partition
Es(G*) contains 99pg-24q edges uv, where Sy=Sy=9. From formulas 6 and 7, we
obtain the required results.

JSSSSES800¢
O
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Fig. 4. 2-D graph lattice of H-Pantacenic nanotube
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Fig. 5. Para-line graph 2-D lattice of H-Pantacenic nanotube
2.3. Topological indices of the Para-line graph of V-Pantacenic nanotorus.

The 2-D graph lattice of V-Pantacenic nanotorus is shown in Fig. 6 and it is
denoted by L[p,q]. There are 22pq vertices and 33pq edges in L[p,q].

Theorem 8. Let G* be the Para-line graph of L[p,q]. Then M (G") = 22pq.3°*.

Proof. The graph G* is shown in Fig. 7. In G there are total 66pq vertices and all
of them are of degree 3. Hence, we get Ma(G*) by using formula 2.

Theorem 9. Let G* be the Para-line graph of L[p,q]. Then
R, (G")=99pq.9%,

7.,(G7)=99pqg.6",

ABC (G") =66pq,

GA(G")=99pq .

Proof. The subdivision graph S(L[p,q]) contains 66pg edges and 55pq vertices
among which 33pq vertices are of degree 2 and remaining 22pq vertices are of
degree 3. Hence by Lemma 1 the total number of edges of G is 99pg. All the
edges uv in G have dy=dv=3. From formulas 1, 3, 4 and 5, we obtain the required
results.
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Theorem 10. Let G* be the Para-line graph of L[p,q]. Then
«~ 33
ABC,(G)="+6pa,
GA(G")=66pq
Proof. If we consider an edge partition based on degree sum of neighbors of end

vertices then all 99pq edges uv in G have Sy=S,=9. From formulas 6 and 7, we
obtain the required results.

Fig. 6. 2-D graph lattice of V-Pantacenic nanotorus
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Fig. 7. Para-line graph of 2-D lattice of V-Pantacenic nanotorus
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3. Conclusion

To study chemical graphs in the framework of para-line operator is a new

direction in the field of structural chemistry. In this paper, we paid attention to the
para-line graph of nanostructures and study their topological indices which are
practically helpful to identify their underlying topologies.
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