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FEED-FORWARD CONTROL OF A PRE-CRACKED
CANTILEVER BEAM

Sudhir KAUL!

This paper develops two feed-forward control algorithms in order to mitigate
crack propagation in a cantilever beam with a pre-existing crack. The main
objective of the control algorithms is to minimize or reduce transverse deflection at
the crack location so as to contain the damage resulting from the pre-existing crack
and, thereby, reduce the rate of crack propagation. A point-load sinusoidal
excitation, from a known disturbance, is used as the input load acting on the beam.
Two control algorithms are used — the first control algorithm computes a control
force to eliminate transverse displacement at the crack location resulting from the
excitation force, and the second control algorithm minimizes the mean square
transverse displacement over a section of the beam that contains the crack. Both the
control algorithms are non-causal and assume that the excitation input is completely
known a priori. Simulation results for a cantilever beam are presented and
discussed in detail. It is observed that the rate of crack propagation can be
significantly reduced by implementing the proposed feed-forward control
algorithms, increasing the useful life of the damaged beam. Also, it is found that the
transverse displacement over a significant length of the beam can be substantially
reduced when the beam response is dominated by a specific mode.
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1. Introduction

Active control of structures is an established area of research that
encompasses aspects of structural dynamics, theory of vibrations and active
control, and has been thoroughly studied over the last four decades. Housner et al.
[1] presented an extensive survey of existing literature in structural control, listing
theoretical and experimental advances made in multiple aspects of the subject
matter with a summary of possible future research areas of structural control.
Alkhatib and Golnaraghi [2] presented an updated review on the status of research
in active structural control with a brief listing of associated issues. Meirovitch [3]
and Soong [4] presented a theoretical framework of the subject, compiled
extensive bibliographies and listed issues associated with structural control such
as spillover, time delay, modeling errors and controller and sensor locations.

! Senior Lecturer, University of Pretoria, South Africa, E-mail: sudhir.kaul@up.ac.za



28 Sudhir Kaul

Feed-forward control has been found to be preferable in some applications for
disturbance rejection [2, 5, 6], where the disturbance is limited to a single
frequency or a limited number of multiple frequencies. The feed-forward
algorithms implemented in this paper assume a known excitation (or disturbance)
frequency and use the a priori information to mitigate damage in a pre-cracked
beam, which can be relevant to disturbance rejection applications [5].

The dynamics of cracked structures has been studied theoretically and
experimentally by researchers in order to understand the influence of crack growth
on dynamic properties of damaged structures. The core motivation of this research
has been to develop an understanding of the dynamics of cracked structures in
order to predict or detect structural damage by monitoring dynamic properties,
like natural frequencies, damping ratios and mode shapes of the cracked structure
or by analyzing frequency response of the damaged structure. Dimarogonas [7]
presented a comprehensive literature review in the study of cracked structures.
Analytical, numerical and experimental results available till mid-1990s were
summarized and the areas of study that still need further investigation were listed.
Salawu [8] reviewed the methods that have been used by researchers to assess
structural damage by tracking the natural frequency of a cracked structure. Some
limitations of using natural frequency as the only diagnostic parameter for
detecting structural damage were also listed. Shih and Wu [9] studied the
relationship between crack propagation of a straight, edge-crack in a rectangular
plate and the transverse vibration input. It was concluded that the vibrating
frequency has a significant influence on the rate of crack growth. Chasalevris and
Papadopoulos [10] used the wavelet transform in order to identify cracks on a
beam with two transverse cracks. The identification technique yielded crack
depth, crack location as well as crack orientation. Lee and Shin [11] proposed a
damage identification method by using a frequency response function-based
technique. The technique was demonstrated on beam structures with positive
results. Lee [12] proposed an alternative method for identification of cracks in a
simply supported beam by using the boundary element method instead of the
more commonly used method of using a rotational spring to model the crack.
Chondros et al. [13] used the continuous cracked beam theory to model single-
edge and double-edge cracks in beams. The model showed strong correlation with
experimental results.

This paper proposes the use of feed-forward control algorithms in order to
mitigate crack propagation, thereby demonstrating active structural control of a
damaged structure by using a cantilever beam as a specimen. The methodology
presented in this work combines aspects of fracture mechanics, structural
dynamics and active control, which integrates the advances made in three distinct
but interrelated areas of research. Though the model and the control algorithms
discussed in this paper have been developed specifically for a cantilever beam, a
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similar approach may be adopted for any other structure with known dynamics
and an already identified damage.

This paper has been divided into four sections. Section 2 develops the
model of the cantilever beam with a transverse crack. Section 3 discusses the
development of control algorithms in order to limit or eliminate transverse
deflection at the crack location. Section 4 presents the simulation results and
Section 5 draws overall conclusions.

2. Modeling

This section presents the governing equation of motion (EOM) for the
cantilever beam with a single transverse crack. The forced response of the cracked
beam is developed in terms of the first three natural modes of the beam.

Using the Euler-Bernoulli model of a beam, the governing EOM for a
beam with a constant area of cross-section, 4, and a time varying force acting on
the beam can be expressed as follows:

2 4

pA%y(x, t)+El[al +a, (1+Cosar) %y(x,t) =1 (x.1) (1)
In Eq. (1), E is the modulus of elasticity of the beam material, p is the density of
the beam material and 7 is the area moment of inertia of the cross-section. y(x,?) is
the transverse displacement of the beam and f; (x, ) is the time varying force per
unit length acting as the excitation load on the beam. Further, a; and a, are
constants used to model the transverse crack as completely open or an opening
and closing crack, called as a breathing crack in the literature [14], with the
breathing frequency being equal to the excitation frequency, w. This paper
assumes an open crack with a; = 1 and a, = 0. The homogeneous or free vibration
solution is determined by ignoring the forcing function. The homogeneous form

of Eg. (1) can be written as follows:
2 4

0 0
yy(x,t)+czyy(x,t):0 (2)
In Eqg. (2), cz:_Ei_ The homogeneous solution can be obtained by using
2

separation of variables and substituting y(x,)=X (x)7(¢) in Eq. (2). This yields

two ordinary differential equations (ODE) which can be solved for X(x) and 7(¢)
separately. The two equations can be expressed as:
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4
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In Eq. (3), B is a constant and is defined as follows:
2 2
s 0 pAo
- 4
d ¢ EI )

In Eq. (4), w is a constant that couples the two differential equations in Eq. (3).
The solution of the ODE in Eq. (3) can be expressed as:

X(x)=CCosﬂx+DSin,Bx+ECoshﬁx+FSinhﬂx )
T(t)= ACoswt + BSinwt

In Eq. (5), C, D, E, F are constants that can be determined from the substitution of
the boundary conditions and 4, B are constants that can be determined from the
substitution of the initial conditions.

The most commonly used model for a cracked beam consists of a torsional
spring at the crack location that represents the crack [15, 16, 17], with the stiffness
of the spring depending on the geometry of the crack and the overall beam
parameters. The computation of the spring stiffness is based on the use of
Castigliano’s theorem and is shown in Appendix A for an open single-sided edge-
crack in a cantilever beam, as shown in Fig. 1. This formulation allows for the
solution in Eq. (5) to be re-written as:

X, (x)=X(x)=c¢ Cosfx+c,Sinfx+c,Coshfx+c,Sinhfix for 0<x<l[
X, (x)=X(x)=c;Cos fx+cs Sinfix+c, Coshfx +c, Sinhfx  for 1, <x<I(6)
T(t)= ACoswt + BSinwt

Fig. 1. Pre-cracked Cantilever Beam

In Eq. (6), c1, ..., cg are constants determined by incorporation of boundary
conditions as well as compatibility conditions associated with the torsional spring
modeled at the crack location. The compatibility conditions ensure that the
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displacement, the bending moment and the shear force are identical on the two
sides of the crack. Additionally, the angular displacement between the two
segments of the beam is coupled with the flexibility of the torsional spring used to
represent the crack. The boundary conditions and the compatibility conditions are
as follows:

8y(x,t)
0,¢)= =0
y(0)=— gy
82y(x,t) _83y(x,t)| 0
o’ [_ o’ [_ @
= 7
X, (L)=X, (L

)
XI(0)= 251
XI(L)= X3(0)
X3 (0)- (1) =01 ()

In Eq. (7), [ is the length of the beam, /; indicates the location of the crack, as well
as the modeled spring, and @ is the non-dimensional compliance of the torsional
spring used to model the crack, as derived in the Appendix A. The first two
conditions in Eq. (7) are the boundary conditions associated with the two ends of
the cantilever beam and the next four conditions represent the compatibility
conditions between the two ends of the beam with the crack in between.

Substitution of all the boundary conditions and compatibility conditions in
the solution from Eq. (6) yields the governing frequency equation of the cantilever
beam with a single transverse crack as:

det(A)=0 (8)
Eqg. (8) is the frequency equation and yields multiple solutions, g , for n = 1, 2,
.., yielding the corresponding natural frequencies, wn, using Eq. (4). Eqg. (8)
represents the determinant of 4, which is a function of crack location, /;, and
compliance of the torsional spring, &, which in turn is a function of the crack size,

a, a_nd is defined as follows:

0 0 7Cﬂ”l 7Sﬁ,,’ Chﬂ,,l Shﬁ”,
0 0 S/}”l —Cﬂ”l Shﬂ”l Chﬂ”l
. Cﬁ”ll —Chﬂ”,1 Sﬁ”,1 Shﬂ, —Cﬂ”,1 —Sﬂ”l1 _Chﬂ”ll —Shﬂ”,1
7Cﬁ",1 —Chﬁ”l1 7Sﬁ”11 Shﬁ”l1 Cﬁ”l1 Sﬁ”l1 7Ch/3”l1 7511/3”11
Sﬂ”l1 Shﬂ”]1 —Cﬂ”l1 _Chﬂnll —Sﬂ”l1 Cﬂ”l1 _Shﬂ,Jl —Ch,,}”l1
L Sﬂ”,1 JrShﬂ”,1 —Cﬂ”,1 +Ch/}”11 7SI,J,”,1 Jré’l,B’HC/}”l1 C/}”,1 +01ﬂ”5ﬁ”[1 Shﬁ”,1 701,HV,Ch/}”11 Chﬂ”l1 —Hlﬂ”Shﬂull_

(9)
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In Eq. (9), S, C, Sh and Ch are used to represent the sine, cosine, sine-hyperbolic
and cosine-hyperbolic functions respectively with their arguments written as

subscripts.

Substituting the solution of Eq. (8) and the conditions from Eq. (7) in Eq.
(6) yields ¢3 = -c1 and ¢4 = -c2, and arbitrarily substituting ¢; = 1, yields the

remaining constants in the form of a matrix solution as:

:F’l(ﬁnl,ll,é?)

0

_‘Sﬂnll -

Chﬂnll - Cﬂnll
Chﬂnﬁ + Cﬁnll
Shﬁnll - Sﬂnll

Shy, |

(10)

In Eq. (10), subscript ‘»” has been added to the constants since the constants vary

with the corresponding value of g

, as determined from Eq. (8). The right hand

side of Eq. (10) is a function of g/, the dimensionless compliance of the
torsional spring used to model the crack and the crack location with the function,

F, defined as follows:
0

Spa ~Shg
F(p1,4,0)= =Sy, ~Shy,

~Cp = Chgy

Sp,
- Cﬂn h
Coi

“Spu

| =Cpu *Chgy —Spu OB Cpy

~Cp,

~Spu
Sph

Cpu

Shg,i

- Chﬂn h

~Chyy

~Shg

Chﬂ”l

—Shg,

=Shg

~Chgy,

Cpn +O1B,Sp Shyy —0LB,Chyy Chyy —01B,Shy, |

(11)

The solutions from Egs. (8) and (10) yield the mode shapes of the cantilever beam

with a single edge-crack as:

x|

¢y, (Sinf,x—Sinh B x)+(Cos f,x—CoshB,x) for 0<x<l

¢, Cos B x+cg, Sinf8 x+c,, Coshf,x+cy,Sinh,x for [ <x<I

(12)

The complete solution for the homogeneous system in Eq. (2) can be now

expressed as follows:

expressed as:

y(xt)= z v, (x.1)

In Eq. (13), y, (x,¢) is the solution corresponding to 8, forn=1,2,3, ..., and is

v, (%)= X, (x)T, (1)

(13)

(14)
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The solution of the forced vibration problem in Eq. (1) is expressed using modal
superposition as follows:

Z X qn (15)

n=1
In Eq. (15), X,(x) is the n™ mode shape defined in Eq. (12) and g, is the
generalized modal coordinate that needs to be determined. Substituting Eq. (15) in
Eq. (1), multiplying both sides by X, (x) and integrating both sides from 0 to /
yields uncoupled ODE because of the orthogonality property of the mode shapes.
The uncoupled equations are in terms of the generalized modal coordinate and can
be expressed as:

d’ ) 1
—q,(t)+w q, (t)=——0, (t 16
dtz qn( ) n qn ( ) pA]/n Qn ( ) ( )
In Eq. (16), y, = JX,, )dx and Q, (¢ IX (x,¢)dx . Including damping
in the above formulatlon, the uncoupled equatlons can be re-written as:
d’ d 1
—q ()+20 & —q (t)+0’q (1)=——0O (¢ 17
dt2 qn( ) ngndtqn( ) nqn( ) ij/n Qn( ) ( )

Eqg. (17) is analogous to Eq. (16) and &, is the damping ratio corresponding to the
™ equation. All other variables in Eq. (17) are identical to the variables in Eq.
(16).

The number of modes that need to be controlled has to be established in
order to implement the control algorithms. This paper builds the control
algorithms for controlling only the first three modes of the beam. This, however,
does not limit or constrain the development of the control algorithm in any way.

For sinusoidal excitation acting along the length of the beam at x;,
modeled as a point load, the input load can be expressed as:

fi(x,t) = fySinewt 5 (x—x,) (18)
In Eq. (18), fo is the amplitude of the sinusoidal point load per unit length of the
beam, w is the excitation frequency and ¢ (.) is the impulse function used for
expressing the point load. Substituting Eq. (18) in Q,(¢) yields:
0, (t) = f,Sinot X, (xs) (19)
Substituting Q,(¢) from Eq. (19) in Eq. (17), yields the uncoupled equations in
terms of the generalized modal coordinates as:

. : Jo o
§,(t)+2w,&,q,(t)+ @’ q, (1) =—"—Sinwt X, (x, (20)
(20064, (0) 070, (0) =—L—sinor 2. ()

The steady-state solution of Eq. (20) can be simplified to the following form:
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Jo [ oo .
t)=—="—X (x. )| e Sinw, v Sinw(t—7)dr 21

qn( ) ,OA}/,,a)d,,, n( v)_(‘). d.,n ( ) ( )
In Eq. (21), w,, is the damped frequency. Using Egs. (15) and (21), and using
only the first three modes, the overall steady-state displacement of the cracked
beam due to the sinusoidal, point load excitation input can be expressed as
follows:

f6 te*"i‘”ﬂ' . )
y(x,1)= Xl(x)Xl(xs)J. Sinw, v Sino(t—1)dr

pAy; 0 Wua
ff (x) X, ( )j e (t-7) (22)
+ X, (x) X, (x, Sinw, ,v Sino(t—-7)dr 22
pPAY, i o 0 @iz “

G357

fo e . .
+ oAy, X,y (x) X, (xs)‘([ o Sinw, ;v Sinw(t—7)dr
In Eq. (22), Xi(x) and X;(x,) can be substituted from Eq. (12).

This vyields the steady-state solution for a cantilever beam with a
transverse crack located anywhere along the length of the beam that is excited by
a sinusoidal point load. The model developed in this section will be used in the
subsequent section to build control algorithms in order to reduce displacement at
specific points on the beam or over a certain length of the beam in order to

mitigate crack propagation.
3. Control Algorithms

This section presents two feed-forward control algorithms in order to
reduce or minimize transverse displacement of the cracked cantilever beam by
using the model developed in the previous section.

Applying Fourier transform to the steady-state solution in Eq. (22) results
in a transfer function form for the transverse displacement of the beam in the
frequency domain and can be expressed as:

Y(x,0)=H, (x,0)F[ f,Sinot] (23)
In Eq. (23), Y(x,w)=F[y(x,z)], i.. the Fourier transform of the transverse

displacement, and H, (x, ) is defined as follows:

—Xl(xj) o)+ X, (x Xalx) (x) @
H‘(xm)):i Xl(x) 7, Hl( ) Xz() 7, HZ() o
3 P, () gy ()
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It may be noted that the three terms in Eq. (24) correspond to the three modes that
are being used, the number of terms will increase as the number of modes for

computing the steady-state solution is increased. In Eq. (24), H,(®), H,(w) and

H,(w) are defined as:

1
H = 25
! (a)) a)lf _a)z + 2ja)a)n§n ( )
In Eq. (25), n = 1, 2, 3yields H,(w), H,(w) and H,(w), corresponding to the

three modes that are being used to compute the steady-state displacement of the
beam.
Eq. (23) can be re-written in the form of a transfer function as follows:

V(o) oo v LX)
Flo) @)= (07 @) @)

In Eq. (26), F,(w)=F[f,Sinet], ie. the Fourier transform of the input

excitation. Eq. (26) yields the transfer function between the transverse deflection
of the cracked beam and the input excitation due to a sinusoidal point load with a
known excitation frequency.

For an additional point load acting along the length of the beam, due to the
control force of a feed-forward controller, the transverse displacement can be
expressed by superposition as:

Y(x,0)=H (x,0)F (0)+H, (x,0)F (o) 27)
In Eq. (27), F, (@) is the Fourier transform of the time-varying control force and

Hc(x, a)) is the transfer function between the transverse displacement and the

control force, and is defined as follows:
13 X, (x.)
H, (x,0)= —AZ X, (x)——"=H, (o) (28)
yo)

n=1 n

In Eq. (28), x. is the location of the control force, also acting as a point load. X, y,

and H, are the same as previously defined. The control force, F, (@), is defined
as follows:
F.(@)=H(0)F.(o) 29)

In Eq. (29), H(w) is the Fourier transform of the impulse response of the
controller. Eq. (29) is expressed in time domain as follows:

0

£.()= [ h(2)f,(¢-7)dz (30)

—0
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In Eq. (30), A(z) is the impulse response of the controller that needs to be

determined for a control force acting at point x, along the length of the beam. It
may be noted that the controller defined in Eq. (30) is non-causal, meaning that
the future values of the excitation input are assumed to be known. Since the
controller is being developed for a known disturbance acting as a sinusoidal input,
the excitation load is predictable and is assumed to be known a priori.

The main objective for introducing a feed-forward control force in this
paper is to minimize transverse displacement at the crack location, thereby
mitigating crack propagation. Two control algorithms are introduced to meet this
objective. The first algorithm minimizes the displacement at the crack location,
therefore yielding the following condition:

H (L, 0)
Y(x,0) =0=>H(w)=—>"-r2" 31
(x )|x:[1 ( ) Hc (11, a)) ( )
Eq. (31) results from the substitution of Eq. (29) in Eq. (27) for the crack location
x = [, and enforcing the resulting displacement at the crack location to be zero.
This yields the control law and can be used to compute the required control force
as:
_ ) L H,(Lo)F (o)
()=F*F(w)|=F*'H(o)F (o) |=F" ——=2 :

In Eq. (32), F* is the inverse Fourier transform and £, is the control force per unit
length of the beam that satisfies the control requirement expressed in Eq. (31).
The second control algorithm is based on minimizing the transverse
displacement over a certain length of the beam that contains the crack. The control
objective is defined as the minimization of the mean square value of transverse
displacement of the beam over a specific length of the beam. Solving for the

control objective yields the following form of H () [6]:

} (32)

—]g H (x,0)H, (x,o)dx
H(w)=—= - (33)
HH{,(x,w)| dx

1

In Eq. (33), H, is the complex conjugate of H_, defined in Eq. (28) and x; and x;

are the lower bound and the upper bound of the beam length over which the
transverse displacement is being minimized. The corresponding control force
resulting from the outcome in Eq. (33) is as follows:
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1 ()= [ (0)]=F" [ (0) ()]

—J.HS (x,0)H (x, )dx

:IEH]' 1 - F(a))

I|Hc(x,w)|2 dx

The control forces derived in Egs. (32) and (34), therefore, yield the

results for the governing algorithms in order to eliminate transverse displacement

at the crack location or minimize transverse displacement over a length of the

beam that includes the crack, when the beam is excited by a known point load

sinusoidal disturbance input. The subsequent section will use the control

algorithms developed in this section for a simulation in order to demonstrate the

effectiveness of the control algorithms in reducing transverse displacements as

well as reducing the rate of crack propagation of the damaged beam, and
increasing its useful life.

(34)

4. Results

This section discusses the simulation results obtained by using the
formulation presented in Sections 2 and 3. The simulation is used to demonstrate
the differences between the controlled and un-controlled response and the
effectiveness of the proposed feed-forward control algorithms.

The dimensions of the cantilever beam used for simulation are as follows:
600 mm () x 30 mm (b) x 15 mm (h). The beam is made of 7075-T651
Aluminum, a density of 2700 kg/m’ and a modulus of elasticity of 70 GPa are
used as the material properties of the beam. The first three frequencies of the
above specified un-cracked cantilever beam are computed to be 34.3, 214.8 and
601.4 Hz. The corresponding damping ratios for all three modes are assumed to be
0.02, primarily due to material damping. A crack is introduced to be at /; = 200
mm from the origin of the coordinate system with a crack depth, a, of 1.5 mm. The
excitation source is located at the edge of the beam, at x; = 600 mm in order to
maximize the bending moment acting on the crack. The excitation source is
placed such that it does not coincide with any of the nodes for the first three
natural modes of the cantilever beam which are located at 302 mm, 470 mm and
520 mm from the origin.

Fig. 2(a) shows the simulated magnitude response of the uncontrolled
beam, when excited by a sinusoidal load with an amplitude of 1 N/m and an
excitation frequency that is identical to the first natural frequency of the beam.
The controlled response is simulated by placing the controller at x. = 400 mm and
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the control algorithm that minimizes deflection at the crack location is used for
the controlled response shown in Fig. 2(b).
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As can be seen from the comparison of Figs. 2(a) and 2(b), the magnitude
response reduces by orders of magnitude with even more significant reduction
around the crack location (x = /; = 0.2). Figs. 3(a) and 3(b) show another two
simulation results to compare the uncontrolled and controlled response when the
excitation frequency is between first and second natural frequency, and when the
excitation frequency coincides with the second natural frequency respectively.
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It can be concluded from the simulated responses in Figs. 2 and 3 that the
magnitude responses over the entire length of the beam are substantially reduced
when the excitation frequency coincides with a natural frequency of the beam.
However, the displacement amplitude does not change appreciably over the entire
length when the excitation frequency does not coincide with a natural frequency,
as seen in Fig. 3(a). This can be attributed to the fact that only one control actuator
is being used, resulting in poor performance when excitation is governed by more
than one natural mode of the beam. The best controlled response is achieved when
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the beam response is dominated by one mode only. The three plots can be further
used to conclude that the crack propagation will be significantly mitigated if the
excitation frequency is such that the beam response is dominated by a single
mode, and it may further be concluded that the rate of crack propagation may not
change significantly if more than one natural mode is being excited by the
disturbance input. Fig. 4 shows a comparison between the excitation force and the
control force that corresponds to the controlled response shown in Fig. 2(b). It
may be noted that the control effort can be significantly reduced if the controller is
co-located at the location of the excitation input.

T
Excitation farce
—+ — Control force

Force per unit length (W/m)
o

o i I i i i i I i i
0 001 002 003 004 005 006 007 008 003 01
Time (sec)

Fig. 4. Excitation versus control force — Excitation at First Mode
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Fig. 5. Controlled Response — Excitation at Fig. 6. Controlled Response — Excitation
First Mode between First & Second Modes

Figs. 5 and 6 compare the controlled response between the two feed-forward
control algorithms outlined in the previous section. Fig. 7 demonstrates the
sensitivity of the response amplitude to the placement of the controller actuator
when the disturbance input excites the first mode only. Co-location of the
controller actuator with the excitation input, if possible, results in minimum
amplitudes. This can be observed in Fig. 7 for the controller location of 0.6 m
(600 mm), which is coincident with the excitation location for this simulation.
However, placement of the controller at a location that coincides with a node will
result in significant deterioration of the control performance.
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Another simulation run is performed in order to determine the influence of
the proposed control algorithms on the useful life of the cantilever beam with a
pre-existing crack depth of 1.5 mm. A sinusoidal load varying between 720 N and
240 N is used as the excitation input at x;, = 600 mm, resulting in maximum and
minimum normal stresses of 128 MPa and 42.7 MPa respectively, and the
excitation frequency of the input load is 10 Hz. All other parameters remain the
same as in the previous simulation. Using linear elastic fracture mechanics
(LEFM), the crack depth is expected to extend till 7.5 mm before failure due to
brittle fracture can be expected. Fig. 8 shows the drop in natural frequencies
resulting from crack propagation, as the crack length increases from 1.5 mm to 7.5
mm. The controlled response is simulated by placing the controller at x. = 400 mm
and the control algorithm that minimizes deflection at the crack location is used to
determine the control force. The useful life of the beam is computed as the
number of cycles it takes the crack to propagate from 1.5 mm to 7.5 mm, using
modified Paris law and numerical integration [18, 19] and is briefly discussed in

Appendix B.
e Uncontrolled 7 Uncontralled
DU B T Controlled —E = Contralled
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Fig. 9. Crack Propagation Results Fig. 10. a-N Plot — Comparison
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The results are shown in Fig. 9 with the area under the curve representing
useful life. As can be observed from Fig. 9, implementation of the control
algorithm results in increasing useful life by an order of magnitude. Fig. 10 shows
the a-N plot comparing crack growth between the un-controlled and the controlled
beam, an order of magnitude increase in the useful life can be observed from this
plot as well. This serves as a validation of the proposed control algorithms to
minimize transverse deflection of the damaged beam and simultaneously reduce
the rate of crack propagation and, hence, increase the useful life of the damaged
beam.

5. Conclusions

This paper proposes the use of two feed-forward control algorithms in
order to minimize transverse deflection as well as mitigate crack propagation in a
cantilever beam with a pre-existing single-sided open-crack. Simulation results
demonstrate that transverse displacement is substantially reduced when the beam
response is dominated by a single mode, and that the useful life of the damaged
beam can be increased by an order of magnitude. The results further demonstrate
that the control effort can be minimized if the controller is co-located with the
excitation source.

The control algorithms presented in this paper can be used in conjunction
with crack detection and identification techniques by studying changes in natural
frequencies and mode shapes or by the analysis of the vibration response of the
beam, and thereby identifying the crack size and the crack location. Once the
crack is detected, one of the two control algorithms presented in this paper can be
used to significantly reduce the rate of crack propagation and enhance the useful
life of the damaged structure. Future work will implement the proposed
algorithms on breathing cracks. Future work will also be undertaken to implement
the proposed algorithms on truss structures and experimentally evaluate the
implementation of the feed-forward algorithms proposed in this paper by using a
semi-active control device so as to minimize power requirements.
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APPENDIX A

The change in strain energy of the torsional spring used to model the
crack, as discussed in Section 2, can be represented in terms of the bending
moment, M, at the crack location as follows:

M2

2K,
In Eq. (A.1), 4U is the change in strain energy and X, is the torsional stiffness of
the spring. The change in strain energy resulting from the presence of the crack
can be expressed in terms of the stress intensity factor as [18, 19]:

AU = (A1)

17 ,
AU=E.([K, dA (A.2)
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In Eq. (A.2), K; is the stress intensity factor (SIF) corresponding to Mode |
(opening mode) of crack propagation, £ is the modulus of elasticity of the beam
material and A is the area of the cracked section of the beam at the crack location.
Only Mode 1| is considered for contribution to any change in strain energy in Eq.
(A.2), since shear due to bending is expected to be negligible. It may be noted that
Eq. (A.2) holds for a plane stress condition only. A modified form of the modulus
of elasticity can be used for plane strain applications.

The stress intensity factor corresponding to a crack length, @, and a
nominal (or far-field) stress of ¢ is defined as follows:

K, =0 ﬂaF(é‘) (A.3)
In Eq. (A.3), F(5)is a dimensionless function governed by geometry, boundary

conditions and loading conditions of the cracked structure, and ¢ is the
dimensionless crack length. For a cantilever beam with a rectangular cross-section
and a bending load acting on the cross-section which results in an opening mode,
the dimensionless function is empirically defined as [18, 19]:

2 o
5”‘”(2] w5’
F(6)=2"——~2710923+0.199 1—Sin(—j (A.4)
(7[5) 2
Cos| —
2
o . oM .

Substituting Egs. (A.3) and (A.4), with GZW and d4=bhda , in Eq. (A.2) and

equating Egs. (A.1) and (A.2) yields the following:

1 = 72”4 janda (A.5)

K, Ebh"y
Solving Eqg. (A.5) yields the torsional stiffness of the modeled spring used to
represent the crack. K, as defined in Eq. (A.5), represents the torsional stiffness of
the spring used to model the open single sided edge-crack, as shown in Fig. 1. It
may be noted that the torsional stiffness is a function of relative crack length, and,
therefore, changes as the crack propagates. This modeled stiffness has been used
in Sections 2 and 3 in the form of a dimensionless stiffness constant, K, defined
as:

kKt

El

In Eq. (A.6), I is the area moment of inertia of the entire un-cracked cross-section

of the beam. K is called the crack section stiffness and is dimensionless. The

inverse of K, represented by &, is called the crack section compliance or flexibility

and has been used in the governing beam equation in Sections 2 and 3 to model
the crack.

(A.6)
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APPENDIX B

The rate of crack propagation in a damaged structure is most widely
modeled by using the modified Paris Law, also commonly called as the Walker
equation, and is expressed as:

dN (1_R)”'1( 7)
In Eq. (B.1), C1, mx and y are material constants, R is the ratio between the
minimum and maximum stress intensity factors that the crack geometry is subject
to and 4K is the range of the stress intensity factors resulting from cyclic loading.

For constant amplitude loading, the Walker equation is expressed
iteratively so as to compute crack growth per unit cycle or vice versa. This is
written as:

(&) Lo ®.2)
da); C(AK,)" c(FAS\za;)

In Eq. (B.2), 45 is the stress range and F; is the dimensionless function of crack
length, defined in Appendix A, Eg. (A.4), for the geometry and boundary
conditions of the cantilever beam used in this paper. Furthermore, C is used to
replace the coefficient in Eq. (B.1) and is a function of the material constants and
the ratio, R.

The Walker equation can be used to compute the number of loading cycles
that will lead to final failure as the crack propagates. Using the modified
Simpson’s rule, life of the damaged structure can be computed as [18]:

N, = Z#H‘%l r(2-r)+ (‘%jﬂl (r+1)"+ [”;—ZZJM (2r —1)} (B.3)

In Eq. (B.3), Ny is the number of cycles that the crack takes to propagate from
length a; to length ar and r is the increment in crack length used for integration

such that a, =r"a, and n is any even number, with the substitution of Eq. (B.2).
A value of » = 1.0272 and »n = 60 has been used for calculating Nj in the

simulation presented in Section 4 with ¢; = 1.5 mm and a; = 7.5 mm. The material
constants used for computing N, in the simulation in Section 4 are C; = 2.71x10™

_mleyele .y =3.7andy = 0.641.
(MPa/m)"



