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BIGSCALE: AUTOMATIC SERVICE PROVISIONING FOR
HADOOP CLUSTERS

Dan HURU !, Cristian ESEANU 2, Catalin LEORDEANU 3,
Elena APOSTOL 4, Valentin CRISTEA °

As the number of interconnected devices grows in the IoT space, data
processing systems require increased resources, robustness and flexibility.
In this sense the scalability of a system becomes very important. A scalable
system can process variable data volumes, requires less costs for mainte-
nance and allows for fault tolerance and high availability. While horizontal
scalability is offered by multiple Cloud providers, vertical scalability is a
less addressed topic. In this article we first define the meaning and outline
the benefits of doing vertical scalability. We also present a scaling solution
which can automatically provision services based on the needs and resource
usage of the system.
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1. Introduction

Today various embedded devices are capable of communicating and shar-
ing data using the Internet. In this manner traditional web services are en-
riched with physical world services. In addition to the IoT vision, which gives
every device an IP address and interconnects them, there is also the notion
of Web of Things (WoT) which enables the devices to speak the same lan-
guage.Current real-time processing is mainly done on existing web data but
the extension to considerably larger amounts of data produced by multiple
sensor networks requires research and design of robust and scalable processing
platforms.
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Scalability can be described as the capacity to handle increasing work-
loads [1], or the ability to improve performance when resources are added [2].
In many articles (e.g. [3] and [4]) scalability is divided into two main categories:

e Vertical scalability : adding resources to the same logical unit (e.g. to a
cluster node)
e Horizontal scalability: adding multiple “units of resources” [4] (e.g. adding
multiple nodes to a cluster)
The multiple definitions of scalability try to take into account what is useful
for the domain and to prove a point about the system/algorithm /application
performance, how certain workflows affect the system, cost efficiency and the
ability of a system/application to scale.

While horizontal scalabilty is achieved at the infrastructure level by many
Cloud providers, services can also be scaled to further optimize existing appli-
cations.

Some of the benefits of this type of scaling can be: greater precision
when measuring service utilization; enforcing SLAs or quality levels; cost op-
timization; personalized usage/Usage patterns; less interventions from cluster
administrator.

In this paper we propose a solution that enables automatic scaling for
Hadoop based applications, in a Cloud environment. It employs three stategies:
utilize fewer resources, maximum throughput, keep resource utilization under a
threshold. The application includes automatic and manual resource allocation
and a metrics monitor.

The paper has the following structure: first we review related work and
state of the art in Section II. In Section III we propose our high-level solution,
while in Section IV we showcase implementation details. Section V describes
the experimental results and we conclude our work in Section VI.

2. Related work

The most established Cloud Providers that achieve automatic scaling are
described below.

Amazon Elastic Cloud Compute (EC2) is a web service which offers com-
puting power to users [5]. Auto scaling in EC2 has the following components
[6]: groups (a collection of EC2 instances), launch configurations (used when
creating new instances) and scaling plans (they choose how to scale a group).

There are several scaling plans: maintain current number of instances
running, manual scaling, scale based on a schedule and scale on demand. Main-
tain current number of instances running is accomplished by doing regularly
health checks. If necessary, the unhealthy instance is terminated and a new
one is launched instead. This is the default plan. Scale based on a schedule
is done by performing time-based scaling operation Scale based on demand
aka policy-based scaling. A policy is a set of rules executed by Auto Scaling
in response to an alarm. An alarm is an object that monitors a metric for a
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specified amount of time. An Auto scaling Group can have multiple scaling
policies.

Google App Engine [7] is formed by multiple services. Each service has
two components: source code and configuration file. The scaling type is speci-
fied in the configuration file and has three choices: manual scaling, basic scaling
and automatic scaling. In basic scaling a instance is created when a request
is received and is destroyed when the application is idle. In automatic scal-
ing a instance is created/turned off on demand based on different application
metrics.

Microsoft Azure[8] supports Azure Autoscale: dynamically add or remove
instances based on schedule and/or on runtime metrics. In addition, Azure
Resource Manager Rest API and/or Azure Service Management Rest API can

be used for autoscaling. Azure can also use third-party services like Paraleap
AzureWatch.

3. The Proposed Architecture

The system we propose can be functionally described in figure 1 and
consists of six main components: the Metrics Monitor, Hadoop Sinks, Metrics
Collector, Ambari Server, Ambari Rest API, BigScale and Hadoop Cluster.
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Fi1G. 1. The Proposed Architecture

The resource provisioning application dynamically scales slave compo-
nents (Data nodes and Name nodes) to ensure the required infrastructure for
a YARN application and to conform with system administrator requirements.
In order to offer different options to users, there are three automatic scaling
strategies.

(1) Use fewer resources - This is done by having equal number of running
Node Managers and Data Nodes
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(2) Balanced with minimum resources - The goal is to recommission/decom-
mission Node Managers to maintain a certain level of resource utilization.
The condition for recommissioning a Node Manager is that the memory
utilization is above threshold t1 or CPU utilization is above threshold t2;
and for decommissioning a Nodemanager is that the memory utilization is
below threshold t3 and CPU utilization is below threshold t4. The CPU
and Memory threshold (t1, t2, t3, t4) may differ.

(3) Highest performance - Allocate all processing power, Node Managers must
be running - to achieve less running time for an application.

In strategy 1 the number of data nodes is equal to the number of node
managers and new node managers are added if the containers exceed their
allocated processing power. In strategy 2 scaling is done by setting thresholds
for node managers. A new node manager is recommissioned if they exceed a
certain threshold for a longer period of time. They are decommissioned if the
resource utilization is below the specified threshold. In strategy 3 the running
time of the applications is reduced by using all the available resources.

Data nodes behave the same regardless of the strategy: they scale up and
down if the space and threshold requirements are not satisfied. Also, if there
are no applications running, the recommission operation for data node/namen-
ode is prohibited. For the decommissioning command, there is a different free
space available condition for Data Nodes.

The number of Node Managers scales down to be equal to the number
of Data Nodes. This operation is necessary for the system to be more cost-
effective.

The application collects metrics offered by Ambari Metrics from the mas-
ter services (YARN’s Resource Manager and HDFS’s Name node) and depend-
ing on the scaling strategy it sends commands to the Ambari Server. Com-
mands are targeted for slave components of the master components mentioned
above (master Resource Manager to slave Node Manager and master Name
node to slave Data Node).

Decommissioning and recommissioning data nodes is done by sending a
request through Ambari REST API to the Name node to include/exclude the
data nodes hosts. Decommissioning and recommissioning Node Manager is
done also by sending a request through Ambari REST API to Resource Man-
ager to include/exclude node managers hosts. In addition, Resource Manager
stops the decommissioned host. So when a Node Manager is recommissioned
it is restored to its previous state.

4. Implementation details
4.1. Workload types

In this subsection we analyze the projected results when different types
of YARN applications run in an Apache Ambari environment. Regardless of
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the workload, an increase in in the number of Node Manager components will
result in a decrease in the running time of the YARN application.

CPU and I/0. The Wordcount program, like the Pi calculation program, is
interesting because is has a CPU and a I/O component. In this case, it is
expected a reduction in time by recommissioning Node Managers but the mon-
itoring is trickier in some situations because CPU usage level is dependent of

I/O part.

I/0O intensive. For an 1/O intensive program, like Teragen or TESTDFSIO,
adding Node Managers will reduce time and lower the resource utilization lev-
els. The workload’s objective is to write large quantities of data so adding
Data Nodes will suffice. In most cases, adding a Data Node is followed by
adding a new Node Manager and therefore the resource utilization will proba-
bly be lower. Because of the Hadoop write-once policy we expect applications
like Teragen not to produce spikes in CPU and Memory utilization levels.

4.2. Experimental setup

Our experimental setup is based on OpenStack [10], an open-source cloud
solution used for management and deploying [aaS infrastructure. It can scale
“up to 1 million physical machines, up to 60 million virtual machines and bil-
lions of stored objects”. The cluster we used for prototyping has the following
configuration:

VCPUs | RAM (MB) | Disk (GB) | State

4 4096 24 Active
1 1536 16 Active
1 1536 16 Active
1 1536 16 Active
2 4096 10 Active
4 4096 24 Active
1 1536 16 Active
1 1536 16 Active

Although we achieve promising results with 8 machines, part of future
work is to extend the experiments to larger clusters.
The metrics are collected as follows:
e Node Managers - CPU and Memory Utilization
e Data Nodes - Used space percentage and free space
On top of the cluster we installed an Apache Ambari Server[9] with the
following services: HDFS[11], YARN[12], MapReduce[13], Ambari Metrics[14]
and Zookeeper Server[15]. Zookeeper is used for coordinating distributed ap-
plications.
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5. Experimental results
5.1. Test applications

The experiments used in this chapter express different workloads. The
dynamic scheduling application’s responsibility is to handle these workload
properly. The following test applications are used: Teragen, Wordcount and
Pi.

Teragen. Teragen application is an 1/O write application that generates spec-
ified quantities of data.([34]) thus the nodemanager and data node scaling
operations are tested by generating large quantities of data.

WordCount. The wordcount application sums up the number of appearances
of each word in the input text([35]). In this experiment, we want to see how a
workload of a program that utilises both CPU and I/O is handled.

Pi. The pi benchmark approximates the value of pi using quasi-Monte Carlo
method.([36]). The experiment utilizes this program only for demonstrating
the decrease of application running time when Node Managers are recommis-
sioned.

5.2. Assumptions and results

In this subsection the truthfulness of the assumptions made and how the
application behaves in different benchmarks are tested.
More computational resources decrease running time. if we add more Node
Manager components the application running time will decrease.
For this test we used the PI benchmark, because in other benchmarks the
I/O part may interfere and, as a consequence, the results may be inconsistent.
We obtained the following results:
e 2 Manager Nodes: 204.341 s (runtime)
e 4 Manager Nodes: 108.144 s (runtime)
e 8 Manager Nodes: 66.881 s (runtime)

Scale in when no application is running. If there are no applications running,
the slave components will scale in or out so the number of node manager
components match the number of data node components and data node com-
ponents will scale in if the free space condition specified in the configuration
file is fulfilled.

In the current setup, free space threshold is set to 20 GB, 8 active Node
Manager components, 5 active Data Node components and the dfs replication
is set to 2. There is a difference as shown in the figure 2, between the time
a Data Node was decommissioned and the time the remaining free space de-
creased. This happens because the name node needs some time to keep up
with the system changes. The node manager components will scale in order
to match the number of data nodes.
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Fic. 2. Components scale in

Even though the free space condition is fulfilled, we cannot decommission
a Data Node, because the number of decommissioning data nodes is equal to
dfs replication plus 1. This condition is necessary for having a backup of the
data in other active Data Node components.

Scaling while application are running. Teragen Mapreduce application is de-
signed to write a large file for the terasort benchmark.

Scaling Strategy 1. The following setup is employed: 2 Data Nodes, 2
Node Manager, free space 9.9 GB, free space threshold 10 GB if used space is
above 80% and 5 GB if less, node manager and data node add cooldown 30 s

In Figure 3 it can be observed that a node manager is recommissioned
after a data node is recommissioned. It also shows that when a data node
is recommissioned, the free space increases. A data node is recommissioned,
in this scenario, if the free space reaches under 15 GB free and used space is
above 80%. The second condition, free space under 5 GB and used percent
under 80% is never fulfilled. The free space continues to go down even if the
data nodes are recommissioned because it takes some time for Name node to
take notice of the system change. This will happen in all strategy plans if the
data node scaling conditions are satisfied. Figure 4 shows that the increase of
Node Managers will decrease for this program the CPU and memory usage.
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F1a. 4. Scaling out

Scaling Strategy 2. The following setup is employed: 2 Data Nodes, 2
Node Managers, free space 9.9 GB, free space threshold 11 GB if used space
percent is above 80% and 5 GB if less, node manager and data node add
cooldown 30 s, recommission node manager CPU threshold 50% and memory
60%.

Figure 5 shows how the CPU and memory usage lowers as we recommis-
sion Node Managers.

Scaling Strategy 3. The following setup is employed: 2 Data Nodes, 2
Node Managers, free space 9.9 GB, free space threshold 11 GB if used space
is above 80% and 5 GB if less, maximum Node Managers 8.

In this strategy plan, the node managers will increase at the maximum
capacity, independent of the CPU and memory metrics.

As a conclusion, the strategy that utilizes the least amount of resources
is scaling strategy 2. However, it can recommission more Node Managers than
necessary. For this reason it is not recommended for this type of program.
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5.2.1. Wordcount. Setup: 2 Data Nodes, 2 Node Managers, free space 9.9 GB,
free space threshold 11 GB if used space percent is above 80% and 5 GB if
less, 8 maximum Node Managers

In the current setup, data node scaling operations are not needed, be-
cause the scaling conditions are not satisfied (the free space available does not
lower down enough). As a consequence, applying scaling strategy 1 has no
effect on the system.

There is little difference between scaling strategy 2 and 3, as it can be
seen in 6.

120 120

100 100

80 80

50 60

40 40

20 20

0

0
11:34:05 PM  11:36:58 PM  11:39:50 PM 11:42:43 PM  11:45:36 PM 23:26:53 23:28:19 23:20:46 23:31:12 23:32:38 23:34:05 23:35:31

——Cpu_usage
——mem_usage

F1ag. 6. CPU and Memory usage in scaling: Strategy 1 (left);
Strategy 2 (right)

The difference is given by the time needed to gather the measurements,
satisfying Node Manager thresholds and the overhead between two successive
scaling operations in scaling strategy 2.
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6. Lessons and Limitations

A data node is not recommended to be decommissioned if there are
df s.replication — 1 nodes in the decommissioning state, because there is a
possibility that a certain file would not exist on any available nodes if the
decommissioning operation is done

If there is no application running there must be an add prohibition for
slave components. This option would not be so relevant if the application has
a prediction component. In the current state, there is no way to know when a
new application will start so the best action is to keep resource utilization to
a minimum.

The reaction time of master components to system changes must be
taken into consideration when the metrics are obtained, because some metrics
may be compromised during this time interval and should not be taken into
consideration.

There must be a time interval between two scaling operations applied on
the same component type so not to overwhelm the system with requests and
to leave time for Resource Manager to allocate those new resources, master
components to notice the system changes and to collect enough metrics for
calculated decision.

If a slave component is deleted, then the master component must be
restarted. This is happening because Resource Manager and Name node does
not run in high availability mode. A consequence is that there is an overhead
time caused by restarting the master and the slave components, in order to
determine them to resume their previous state. Luckily, if a component is
added, there is no such restriction.

In Hadoop only one writer is allowed at a certain moment, but there can
be many readers. This will limit the throughput for write operations, but will
increase it for read operations.

Ambari Metrics Collector runs in embedded mode (default option), be-
cause the cluster has a small size (eight nodes). By running in distributed
mode, metrics are stored in HDFS and therefore there is an additional net-
work overhead that will limit the applications throughput. Additionally, the
Name node restart will take longer because it has to index all the files in the
HDFS. The metrics are obtained through Hadoop services master components:
YARN’s Resource Manager and HDFS’s Name node. The same information
can be obtained through the slave services: Data Node and Node Managers.
The upside is that there is no overhead time to take notice of system changes
(e.g. decommissioning a data node, recommissioning a Node Manager), but
the downside is that the time for getting the metrics through increases with
the growth of the slaves.

The time for getting a metric through Ambari REST is fairly long. In
order to reduce the time of a regular Ambari REST get command, a partial
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request is used to select and retrieve only the metrics from the master compo-
nents that are important to decide what scaling operations should be done.

The small files are a huge problem for Hadoop, because it spends a lot
of time managing their metadata information and as pointed [16] the memory
usage is also high (63.53%). That happens because the metadata information
is stored in the Name node memory [17]. Another issue for small files is that
Name node restricts the number of files stored in the HDFS and according to
[17], “accessing a large number of these files results in a bottleneck in Name
node”. Furthermore, high latency is expected when reading small files and the
throughput falls below expectations.

7. Conclusions and future work

In this article we have argued for the importance of scalability in dis-
tributed systems, specifically vertical scalability and its implications. We have
outlined the benefits of this approach and proposed a solution capable of au-
tomatic scaling in and out of a Hadoop cluster. We have described 3 scaling
strategies and ran experiments on multiple types of workloads. The experi-
ments demonstrate that such an approach is feasible and can integrate easily
with other cluster components.

Although we achieved promising results, we intend to extend our experi-
ments to larger clusters. The experiments will also involve multiple concurrent
applications competing for the same resources. This will imply the develop-
ment of a scheduling algorithm and the encryption of the transmitted data.
The scheduling algorithm will need to employ a check-pointing mechanism in
order to resume the applications once they are able to run.

Future work will also involve scaling services such as processing, messag-
ing and storage. The application will also be transformed to allow for more ab-
stract scaling expressions. In this sense the administrator will input QoS/SLA
parameters (e.g data processing throughput or response time) and BigScale
will adjust the cluster to those purposes. The underlying infrastructure will
also receive horizontal scaling recommendations.

Currently, the application performs regular polling operations of the clus-
ter metrics. As part of a modular solution, we will employ an event-based
architecture to reduce the resulting overhead. Commissioning and decommis-
sioning will be done in a parallel fashion, in order to speed up the short-term
capability of the scaling process.
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