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KINEMATICS AND KINETOSTATICS ANALYSIS OF THE
3-DOF PARALLEL CUBE-MANIPULATOR

Xin-Jun LIU', Stefan STAICU?, Jinsong WANG®

Lucrarea prezenta stabileste relatii matriceale pentru cinematica si
cinetostatica Cub-manipulatorului cu tripla actionare prismaticd. Cele trei elemente
active ale manipulatorului sunt orientate in sistemul cartezian astfel incat directiile
de actionare sa fie ortogonale doud cdte doud. Trei picioare identice conectate la
platforma mobila sunt localizate in trei plane perpendiculare, De aceea acest tip de
mecanism este denumit Cub-manipulator. Cunoscand miscarea de translatie a
platformei, se dezvolta mai intdi o problemda de cinematicd inversd pentru a
determina pozitiile, vitezele si acceleratiile manipulatorului. Utilizand principiul
lucrului mecanic virtual, se rezolva in continuare analiza cinetostatici a
manipulatorului. In partea finald a lucrdrii se stabilesc relatii matriceale i se
reprezintd grafice pentru fortele celor trei sisteme active.

Recursive matrix relations for kinematics and kinetostatics of a 3-DOF
parallel Cube- manipulator having three prismatic actuators are established in this
paper. The concurrent actuators are arranged according to the Cartesian
coordinate system with fixed orientation, which means that the actuating directions
are normal to each other. Three identical legs connecting to the moving platform
are located on three planes being perpendicular to each other too. For such reason
this type of mechanism is called Cube-manipulator. Knowing the translation motion
of the platform, we develop first the inverse kinematics problem and determine the
positions, velocities and accelerations of the manipulator. Further, the principle of
virtual work is used in the kinetostatics analysis. Some matrix equations offer
compact expressions and graphs for the forces of the three actuators

Key-words: kinematics, kinetostatics, dynamics, parallel manipulator,
virtual work

1. Introduction

Parallel manipulators are closed-loop structures presenting very good
performances in terms of accuracy, rigidity and ability to manipulate large loads.
Generally, the mechanism of the manipulator has two platforms: one of them is
attached to the fixed reference frame and the other one can have arbitrary motions
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in its workspace. Some movable legs, made up as serial robots, connect the
moving platform to the fixed platform. Typically, a parallel mechanism is said to
be symmetrical if it satisfies the following conditions: the number of legs is equal
to the number of degrees of freedom of the moving platform, one actuator, which
can be mounted at or near the fixed base, controls every limb and the location
while the number of actuated joints in all the limbs are the same (Tsai [1]).

The last few years have witnessed an important development in the use of
robots in the industrial words, mainly due to their flexibility. However, the
mechanical architecture of the most common robots does not seem adapted to
certain tasks. Other types of architectures [2] have therefore recently been studied,
and are being more and more regularly used within the industrial world such as
machine tools [3] and industrial robots [4].

Parallel manipulators attracted to the attention of many researches that
consider them as valuable alternative design for robotic mechanisms [5], [6], [7].
As stated by a number of authors [1], conventional serial kinematical machines
have already reached their dynamic performance limits, which are bounded by
high stiffness of the machine components required to support sequential joints,
links and actuators. Thus, while having good operating characteristics: large
workspace, high flexibility and manoeuvrability, serial robots have disadvantages
of low precision and low powers. Also, they are generally operated at low speed
to avoid excessive vibrations and deflections.

In the past two decades, some studies have led to the identification of
several mechanical architectures [8], [9] with potential applications in parallel
manipulators. Most of the parallel mechanisms studied to date consist of six legs
with six degrees of freedom, and are popular in the industrial applications, where
the high load capability and multi-DOF are needed. The spatial parallel
mechanisms with less than 6-DOF have increasingly attracted the researchers and
some of them have been used in the structure design of robotic manipulators and
in the development of high precision machine tools. The Hexapod machine tools,
for example, are one of the successful applications.

The parallel robots are spatial mechanisms with supplementary
characteristics, compared with the serial architecture manipulators such as: more
rigid structure, important dynamic charge capacity, high orientation accuracy,
stabile functioning as well as good control of velocity and acceleration limits. On
the other hand, parallel kinematics machines offer essential advantages over their
serial counterparts: lower moving masses, higher natural frequencies, simpler
modular mechanical construction and possibility to locate actuators on the fixed
base. Even then, these parallel mechanisms also suffer the problem of lower
mobility, which limits their applications in some fields where high dexterity is
needed, e.g. parallel kinematics machines [10]. However, most existing parallel
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manipulators have limited and complicated workspace with singularities and
highly non-isotropic input-output relations [11].

Fig. 1 Parallel Cube-manipulator

Recently, many efforts have been assigned to the kinematics and dynamics
analysis of fully parallel manipulators. Theses devices can be found in many
technical applications in which it is desired a high-speed orientation of a rigid
body in space. Accuracy and precision in the execution of the task are essential
since the robot is intended to operate on fragile objects; any error in the
positioning of the tool could lead to expensive damages. Research in the field of
parallel manipulators began with the most known application in the flight
simulator with six degrees of freedom, which is in fact the Stewart-Gough
platform (Stewart [12]; Merlet [13]; Parenti-Castelli and Di Gregorio [14]). The
Star parallel manipulator (Hervé and Sparacino [15]) and the Delta parallel robot
(Clavel [16]; Staicu and Carp-Ciocardia [17]; Tsai and Stamper [18]) equipped
with three motors, which have a parallel setting, train on the effector in a three-
degrees-of-freedom general translation motion.

The kinematics and the dynamics of parallel robots have been studied
extensively during the last two decades. When good dynamic performance and
precise positioning under high load are required, the dynamic model is important
for their control. The analysis of parallel manipulators is usually implemented
trough analytical methods in classical mechanics [19], in which projection and
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resolution of equations on the reference axes are written in a considerable number
of cumbersome, scalar relations and the solutions are rendered by large scale
computation together with time consuming computer codes. Geng [20] developed
Lagrange’s equations of motion under some simplifying assumptions regarding
the geometry and inertia distribution of the manipulator. Dasgupta and
Mruthyunjaya [21] used the Newton-Euler approach to develop closed-form
dynamic equations of Stewart platform, considering all dynamic and gravity
effects as well as viscous friction at joints. In recent years, several new
kinematical structures have been proposed that possess higher isotropy [22], [23],
[24].

The objective of this paper is to analyse the kinematics and kinetostatics of
the 3-DOF parallel Cube-manipulator, which is well adapted to the applications of
precision assembly machines. In design, the three actuators are arranged
according to the Cartesian coordinate space, which means that the actuating
directions are normal to each other and the joints connecting to the moving
platform are located on three planes being perpendicular to each other too. For
such reason this type of mechanism is called Cube-manipulator. The prototype of
this robot [25], [26] have some technological advantages such as: symmetrical
design, regular workspace shape properties with a bounded velocity amplification
factor and low inertia effects.

In the present paper we focus our attention on a recursive matrix method,
which is adopted to derive the kinematics model and the inverse dynamics
equations of the spatial parallel Cube-manipulator, which has three translation
degrees of freedom (fig. 1).

2. Inverse kinematics analysis

The mechanism input of the manipulator is made up of three actuated
orthogonal prismatic joints. The output body is connected to the prismatic joints
through a set of three identical kinematical chains (fig. 2).

The architecture of one of the three parallel closed chains of the Cube-
manipulator consists in an active prismatic system, a passive revolute joint, an
intermediate mechanism with four revolute links that connect four bars, which are
parallel two by two, ending with a passive revolute link connected to the moving
platform. Inside each chain, the parallelogram mechanism is used and oriented in
a manner that the end-effector is restricted to tramslation movement only. The
arrangement of the joints in the chains has been defined to eliminate any
constraint singularity in the Cartesian workspace (Chablat and Wenger [27]; Liu
et al. [28]).

We develop the inverse kinematics problem and determine the velocities
and accelerations of the manipulator, supposing that the translation motion of the
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moving platform is known. Let us locate a fixed reference frame Ox,y,z,(T;) at

the intersection point of three axes of actuated prismatic joints, about which the
three-degrees-of-freedom manipulator moves. It has three legs of known
dimensions and masses. To simplify the graphical image of the kinematical
scheme of the mechanism, in the follows we will represent the intermediate
reference systems by only two axes, so as one proceeds in most of books [1], [7],
[11], [13]. Thez, axis is represented, of course, for each component element7, .

We mention that the relative rotation or relative translation with ¢, , , angle
ord,,., displacement of7, body most be always pointing about or along the
directionz, .

The first element 1 of leg 4 is one of the three active sl/iders of the upside-
down robot. It is a homogenous rod of length 4,4, =/ and mass m,, moving

horizontally along the ZlA axis with a displacement 1 ;.

The centre of the transmission rod 4,4, =1/, is denoted as 4, . This link 2
is connected to the frame x; yzA Zfl (called7,") and it has a relative rotation

about ZzA axis with the angle @}, so thatw;, = ¢; and&;, = @;,. It has the mass
m,and the central tensor of inertiajz. Further one, two identical and parallel
bars 4,4, (3) and 4,4, with same length [, rotate about the7,' frame with the
angle ¢;, =@, . They have also the same mass 75 and the same tensor of
inertia jS. The four-bar parallelogram is closed by an element7," (4) of length/ 4
which is identical with 7} . Its tensor of inertia is./, . This element rotates with the
relative angle ¢, = ¢ .

The centre 4 of the interval between the two revolute joints A4 and A5
connects the moving platform attached at the frame x§4 y;‘ Z§4 (T: 5A) . The platform
of the robot 5 can be a cube of massem,, central tensor of iner‘[iaj5 and side
dimension /, which rotate relatively by an anglepZ, with respect to the
neighbouring body 7,". Finally, another central and principal reference system

XGYGZqis located at the centre G of the cubic moving platform. The angle «

gives the initial orientation of the three upper arms about their guide-ways.

The mobility of the constrained mechanism is generally given by the
Griibler criterion. Due to the special arrangement of the four-bar parallelograms
and the three prismatic joints at points 4;,B;,C,, the mechanism has three
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translation degrees of freedom. This unique characteristic is useful in many
applications, such as a x — y — z positioning device.

The three concurrent displacements A7, 4., A{, of the prismatic actuators
A,,B,,C,are the joint variables that give the input vector 7,, =[ 1 28 451" of the
instantaneous position of the mechanism. But, the objective of the inverse

geometric problem is to find the vector /Tlo and the position of the robot with the

given three absolute coordinates of the center G of the platform: x§ , y§, z¢.

Xq

Fig. 2 Kinematical scheme of leg A of the upside-down mechanism

Pursuing the three legs A, Band C, we obtains the following transformation
matrices

Ay =4y, @y =43a,a,, dy, = a5,a;

ay =ana,, ds, =43a,a, ,dg =ds

by, =as, b, =bja,a,, by, =bja; (1)
by, =bja,, by, =bja,a, , by, =by,

Clog =g Cy) =C1A, 0y, C3y =Cra;

Cy3 =CHay, C54 =€5,a,a, ,Cqy =Cyy

where we denoted [29]:
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0 0 -1 0 0 1 [0 0 -1
a,={0 1 0,a,=0 10],a310 0
1 0 0 -1 0 0 10 1 0
10 0 -1 00 0 -1 0
a,=/0 1 0|>a;={0 0 1|, a=1 0 0
0 0 -1 0 0 0 1
cosa sina 0 cos(p/ék_l singoék_l 0
a,=|-sina cosa 0| af, = —sin(p,ﬁk_l cosgo,f’k_l 0 ()
0 0 1 0 0 1

k
aw=[la s, (E=12..5).
Jj=1

The translation conditions for the platform are expressed by the following
identities

aggaso = bggbso = ngcso =R=1, 3)
with the notations
0O -1 0 0 0 -1 -1 0 0
ag,=/-1 0 0 [,b;,=]0 -1 0], =0 -1 0 4)
0 0 -1 -1 0 O 0 0 1

where R = Itepresent the diagonal identity matrix. From these relations, one
obtains the following relations between angles
A 4 B B C_ C
Ps4 = P21 5 Psa = P15 P54 = P21+ ()
For the inverse geometric analysis, the position of an end-point P(x.,y.,z.)is

treated as known and the goal is to find the joint variables A7}, A5, A5, that yield

the given location of the tool. If the aim is to generate a sequence of points to
move the tool along an arc, care must be taken to avoid branch switching during
motion, which may cause inefficient or impossible manipulator motions.
Moreover, leg singularities may occur at which the manipulator loses degrees of
freedom and the joint variables become linearly dependent.

Supposing, for example, that the rectilinear motion of the mass center G of the
platform is expressed by the following relations

e G G G
roo=0xy ve ozl
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xg = xOG*(l—coszT”t)

v =yd (1 cos%rt) (6)

£3 2
zy =z (1- cos?ﬂt),

the inputs 1,4, 15, of the manipulators and the variables ¢, , 02,05, 05,05,
will be given by the following geometrical conditions
4
iy T -4 T ~GA
o + 2 aroliyix +aspls =
k=1
4 (7
~B T -B T ~GB
=rno + zbkork+l,k +bs7s
k=1

4
_=C T =C T ~GC
=Ro + 2 Cholestr +C5075
k=1
where, for example, one denoted
1

0
ﬁ1=0,ﬁ2=1,u3=0,u3=
0 0

Il
S

o
()
|
—_
o

S

- / - L L,
7‘10 = (ﬂ/ ﬁ)_ll _13 COSQ—E)GIT;)M, 7"21;1 leu3, }’3/; :_lu:; (8)

=4 _Z = GA Z O]T

-4 _ - 2 - _ .
Ty =—l,, 7 _Eu“ 7" =[1sina ~3

Actually, these equations means that there is only one inverse geometric

solution for the manipulator
G
. z
Sm(ﬂfzi ==, Sin(‘/’z/i+a) = )
I Iy cos gy,

y¢ +1,sina

A =x. +1, cosa — 1, cos(p3 +ar)cosp )
G

. x I+ 1 si
sing,, =—-% , sin(p)+a) = w )
I [, cos @,
Ab =y +1, cosa — 1, cos(ps +a)cosp
. O +1, si
sing; =20 sin(p ) =020
I Iy cos gy,
Ay =z¢ +1, cosa — 1, cos(ps, +a)cosgs, -
The motions of the component elements of each leg (for example the leg A)
are characterized by the following skew symmetric matrices [30]:
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@io =0
~ A4 ~4 T A4~
Wiy = A g1 D10 1 + O3> (K=2,...5), (10)

which are associated to the absolute angular velocities given by the recurrence
relations

@iy =0

- ~ 4 A = A . A

Oro = A k1Pf-1,0 T Of g1U35 O 1 = Pl 1 - (11)
Following relations give the velocities v;{, of the joints A,

=4 1 A = =4 =4 ~ A =4

Vip = Ao Uy Vi =y {vk-l,O T D107k }" (12)
If the other two kinematical chains of the manipulator are pursued, analogous

relations can be easily obtained. Equations of geometric constraints (3) and (7)

can be differentiated with respect to time to obtain the following matrix conditions
of connectivity [31]

A=T T - A=T T - _
@)1ll; Al + W54 Asity =0 (13)
A=T T - A=T T~ T - A=T T~ _=T>G (.
Viol; @ygtiy +L30311; ayiizasiiy +Losil; azgiisiy =i; 1y, (i=1,2,3),
whereu,, u,, u; are skew symmetric matrices associate to three orthogonal unit
TRRTRRT) ; i iag A A A A_ 4
vectorsu,, u,, u; .From these equations, relative velocitiesv;, w3, w3, and wg, = 3,

result as functions of the translation velocity of the platform. The relations (13)
give the complete Jacobian matrix of the manipulator. This matrix is a
fundamental element for the analysis of the robot workspace and the particular
configurations of singularities where the manipulator becomes uncontrollable.

Rearranging, above nine equations (9) of the Cube-manipulator can
immediately written as follows

(x +1cosa—A4) +(yd +Lsina)’ +z0° =13

vy +Lcosa—A0) +(zf +1,sina)’ +x.° =1} (14)

(z +Lcosa—A ) +(x$ +1sina)’ +yS* =12,
where the “zero” position7’? =[0 0 0] corresponds to the joints variables
A 7=[0 0 0]". The derivative with respect to time of conditions (14) leads to
the matrix equation

S Aoy = o1y (15)

Matrices J,and J, are, respectively, the inverse and forward Jacobian of the

manipulator and can be expressed as
Jy=diagla, o, a;}
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a p oz
=5 Bl (16)
By (? a,
with
a, =x) +1,cosa—Al,a, =ys +1;cosa -, a, =z +1, cosa— A
B =x{ +sina, B, =y +Lsina, B, =z +1;sina . (17)
The three kinds of singularities of the three closed-loop kinematical chains can
be determined through the analysis of two Jacobian matrices J, and J, [34].
Let us assume that the manipulator has a virtual motion determined by the

velocities Vf& =1, vlog =0, v10a =0. The characteristic virtual velocities are

expressed as functions of the position of the mechanism by the kinematical
constraints equations of two independent loops A — B and B — C determined by the

three legs:

ST T oAy _ =TT _ =T T=Cv o
U; AsyVso, = U; bSOVSOa U; C50Vso,» (1=1,2,3)

(18)
Av Ay Bv _ __Bv Cv _ _Cv
Ws4q = W1y > Wsgq = W)y 5 Wsgy = W31y
Some other relations of connectivity can be obtained if one considers successively
B Av — —
thatv® =1,v% =0,v/, =0 and v, =1 leC 0,v0 =0.
. . A .
As for the relative accelerations y i, £ 4, € 5, and & Z,= ¢ ;, of the manipulator,
the derivatives of the relations (13) give other following conditions of connectivity
A=T T - A=T T - _
31l axglly + Esal; asoiy =0 (19)
A=T T - A=T T~ T - A=T T~ - _ =T:G
Yiol; @ity + 1365115 ayilzaziiy +3exu; azgisiy =u; 1y’ =
A A=-T T ~~ T - A A=T T ~~ -
— Ly ayiziizazi,; — oy aygiisisiy -
A A=T T~ T~ - .
- 2[360216032”1 a20u3a32u3u2, (l = 1, 2, 3)
The angular accelerations £/ and the accelerations 7 of joints are given by
some relations, obtained by deriving the relations (11) and (12):
4 =
Elp=0
=4 _ =4 A = A ~4 T =
Er0 = A f1€k,0 T Ex Uz T Op g1y 1 D)1,0% f—1U3
~A <A | ~A _ ~A4  ~4 ~4 T 4 A4 =~ o~
DD + Exo = A -1 (a)k—l,owk—l,o T k10 )ak,k—l F Op j—1 D f—1U3U3 +
4~ 4 ~4 T o~
+ &g j U3 + 200 4 1Ay j 1 Dfy 08 f-1U3 (20)
Ny
Yo = /110”3

A4 _ —A ~ A ~ A ~A4 —A
Vko = Ak [7 k1,0 T (wk—l,oa)k—l,o + &k 10 )r k,k—l]
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The relations (13), (19) represent the inverse kinematics model of the parallel
Cube-manipulator.

3. Equations of motion

In the context of the real-time control, neglecting the frictions forces and
considering the gravitational effects, the relevant objective of the dynamics is to
determine the input forces, which must be exerted by the actuators in order to
produce a given trajectory of the effector.

a4 i i i i i
1] 0.5 1 1.5 2 25 3
t(s)

Fig, 3 Force floA of first actuator

There are three methods, which can provide the same results concerning
these actuating forces. The first one is using the Newton-Euler classic procedure
[32], the second one applies the Lagrange’s equations and multipliers formalism
[20] and the third one is based on the principle of virtual work [1], [11], [29].

Within the kinematics problem, in the present paper one applies the
principle of virtual work in order to establish some recursive matrix relations for
the forces of the three active systems.

Three independent mechanical systems 4,, B,, C; that generate three

spatial forces fi0 = fiaiiy, fio = fiolis, f1g = J1o Uy, Which are concurrent in O

and oriented along the axes ZIA , ZlB , ZIC , control the motion of the three sliders

of the manipulator and the displacement of the moving platform.
The force of inertia

Zind

Al=A4 ~A ~A ~A \=CA
0 = My [7k0 +(a)k0a)k0 + &5 )’”k ] 21)
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and the resultant moment
iy = —Im{ T T L+ TLEL + @] D] (22)
of the forces of inertia of an arbitrary rigid body 7, are determined with respect to
the joint’s center 4,. On the other hand, the wrench of two vectors f, and i,
evaluates the influence of the action of the weight m,g and of other external and

internal forces applied to the same element 7} of the manipulator, for example
Fit=9.81ma,,ii,

mt =9.81m!7 M ay i (k=1,2,...,5). (23)

FIOB{M)

(IR 1 15 2 24 3
tig)

Fig, 4 Force f;4 of second actuator

Knowing the position and kinematics state of each link as well as the external
forces acting on the robot, in that follow one apply the principle of virtual work
for the kinetostatics problem. The active forces required in a given motion of the
moving platform will easily be computed using a recursive procedure.

The fundamental principle of the virtual work states that a mechanism is under
dynamic equilibrium if and only if the virtual work developed by all external,
internal and inertia forces vanish during any general virtual displacement, which
is compatible with the constraints imposed on the mechanism. Assuming that
frictional forces at the joints are negligible, the virtual work produced by the
forces of constraint at the joints is zero. Applying the fundamental equations of
the parallel robots dynamics established by Staicu [33], [35] the following
compact matrix relation results
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A_=T|z4 | v 74

Jio =u3 [Fl @5 M3 +

Y S (VR p Ay F (24)

vl 08 v ol (M5 - 55+ 317 )+

v oSS + 0, (16 + 31+ 11 E )],

where one denoted:

FA=FA+al, . F

k=10 T Uy plien (25)

~ A _ A T ~T T £
M =M + Qs oM i1 + Tt j Ve o P
A pind A
FkO ——Jko ~ Jk

ME =—m™ - (k=1,2,..,6).

The relations (23) and (24) represent the inverse dynamics model of the

parallel Cube-manipulator.

f0c()

i 05 1 15 2 25 3
t(s)

Fig, 5 Force flg of third actuator

As application let us consider a manipulator which has the following

characteristics:
[=0.20m, I, =0.15m, I, =0.08m, [;=0.85m
T

=1, a=—
4 20‘36

my =0.35kg,my, =02kg, my =2.5kg
my =m,,ms =15kg, mg =ms.
Considering the kinematical parameters
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x&=010m,y$ =0.05m, 25" =-0.15m, At=3s
and the analitical equations (6), in a MATLAB simulation program we obtains the
graphs of forces £, (fig.3), 1,5 (fig.4), £,$ (fig.5) of the three actuators.

4. Conclusions

Most of dynamical models based on the Lagrange formalism neglect the
weight of intermediate bodies and take into consideration only the active forces or
moments and the wrench of applied forces on the moving platform. The number
of relations given by this approach is equal to the total number of the position
variables and Lagrange multipliers inclusive. The commonly known Newton-
Euler method, which takes into account the free-body-diagrams of the mechanism,
leads to a large number of equations with unknowns among which are also the
connecting forces in the joints.

Within the inverse kinematics analysis some exact relations that give in
real-time the position, velocity and acceleration of each element of the parallel
robot have been established in present paper. The dynamics model takes into
consideration the masses and forces of inertia introduced by all component
elements of the parallel mechanism. The new approach based on the principle of
virtual work can eliminate all forces of internal joints and establishes a direct
determination of the time-history evolution of forces and powers required by the
actuators. The recursive matrix relations (23) and (24) represent the explicit
equations of the dynamics simulation and can easily be transformed in a model for
the automatic command the parallel Cube-manipulator.
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