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KINEMATICS AND KINETOSTATICS ANALYSIS OF THE   
3-DOF PARALLEL CUBE-MANIPULATOR 

Xin-Jun LIU1, Ştefan STAICU2, Jinsong WANG3 

Lucrarea prezentă stabileşte relaţii matriceale pentru cinematica şi 
cinetostatica Cub-manipulatorului cu triplă acţionare prismatică. Cele trei elemente 
active ale manipulatorului sunt orientate în sistemul cartezian astfel încât direcţiile 
de acţionare să fie ortogonale două câte două. Trei picioare identice conectate la 
platforma mobilă sunt localizate în trei plane perpendiculare, De aceea acest tip de 
mecanism este denumit Cub-manipulator. Cunoscând mişcarea de translaţie a 
platformei, se dezvoltă mai întâi o problemă de cinematică inversă pentru a 
determina poziţiile, vitezele şi acceleraţiile manipulatorului. Utilizând principiul 
lucrului mecanic virtual, se rezolvă în continuare analiza cinetostatică a 
manipulatorului. În partea finală a lucrării se stabilesc relaţii matriceale şi se 
reprezintă grafice pentru forţele celor trei sisteme active. 

Recursive matrix relations for kinematics and kinetostatics of a 3-DOF 
parallel Cube- manipulator having three prismatic actuators are established in this 
paper. The concurrent actuators are arranged according to the Cartesian 
coordinate system with fixed orientation, which means that the actuating directions 
are normal to each other. Three identical legs connecting to the moving platform 
are located on three planes being perpendicular to each other too. For such reason 
this type of mechanism is called Cube-manipulator. Knowing the translation motion 
of the platform, we develop first the inverse kinematics problem and determine the 
positions, velocities and accelerations of the manipulator. Further, the principle of 
virtual work is used in the kinetostatics analysis. Some matrix equations offer 
compact expressions and graphs for the forces of the three actuators  

Key-words: kinematics, kinetostatics, dynamics, parallel manipulator, 
                         virtual work 

1. Introduction 

Parallel manipulators are closed-loop structures presenting very good 
performances in terms of accuracy, rigidity and ability to manipulate large loads. 
Generally, the mechanism of the manipulator has two platforms: one of them is 
attached to the fixed reference frame and the other one can have arbitrary motions 
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in its workspace. Some movable legs, made up as serial robots, connect the 
moving platform to the fixed platform. Typically, a parallel mechanism is said to 
be symmetrical if it satisfies the following conditions: the number of legs is equal 
to the number of degrees of freedom of the moving platform, one actuator, which 
can be mounted at or near the fixed base, controls every limb and the location 
while the number of actuated joints in all the limbs are the same (Tsai [1]). 

The last few years have witnessed an important development in the use of 
robots in the industrial words, mainly due to their flexibility. However, the 
mechanical architecture of the most common robots does not seem adapted to 
certain tasks. Other types of architectures [2] have therefore recently been studied, 
and are being more and more regularly used within the industrial world such as 
machine tools [3] and industrial robots [4]. 

Parallel manipulators attracted to the attention of many researches that 
consider them as valuable alternative design for robotic mechanisms [5], [6], [7]. 
As stated by a number of authors [1], conventional serial kinematical machines 
have already reached their dynamic performance limits, which are bounded by 
high stiffness of the machine components required to support sequential joints, 
links and actuators. Thus, while having good operating characteristics: large 
workspace, high flexibility and manoeuvrability, serial robots have disadvantages 
of low precision and low powers. Also, they are generally operated at low speed 
to avoid excessive vibrations and deflections. 

In the past two decades, some studies have led to the identification of 
several mechanical architectures [8], [9] with potential applications in parallel 
manipulators. Most of the parallel mechanisms studied to date consist of six legs 
with six degrees of freedom, and are popular in the industrial applications, where 
the high load capability and multi-DOF are needed. The spatial parallel 
mechanisms with less than 6-DOF have increasingly attracted the researchers and 
some of them have been used in the structure design of robotic manipulators and 
in the development of high precision machine tools. The Hexapod machine tools, 
for example, are one of the successful applications. 

The parallel robots are spatial mechanisms with supplementary 
characteristics, compared with the serial architecture manipulators such as: more 
rigid structure, important dynamic charge capacity, high orientation accuracy, 
stabile functioning as well as good control of velocity and acceleration limits. On 
the other hand, parallel kinematics machines offer essential advantages over their 
serial counterparts: lower moving masses, higher natural frequencies, simpler 
modular mechanical construction and possibility to locate actuators on the fixed 
base. Even then, these parallel mechanisms also suffer the problem of lower 
mobility, which limits their applications in some fields where high dexterity is 
needed, e.g. parallel kinematics machines [10]. However, most existing parallel 
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manipulators have limited and complicated workspace with singularities and 
highly non-isotropic input-output relations [11]. 

 

                      
                                                                 

Fig. 1 Parallel Cube-manipulator 
 

Recently, many efforts have been assigned to the kinematics and dynamics 
analysis of fully parallel manipulators. Theses devices can be found in many 
technical applications in which it is desired a high-speed orientation of a rigid 
body in space. Accuracy and precision in the execution of the task are essential 
since the robot is intended to operate on fragile objects; any error in the 
positioning of the tool could lead to expensive damages. Research in the field of 
parallel manipulators began with the most known application in the flight 
simulator with six degrees of freedom, which is in fact the Stewart-Gough 
platform (Stewart [12]; Merlet [13]; Parenti-Castelli and Di Gregorio [14]). The 
Star parallel manipulator (Hervé and Sparacino [15]) and the Delta parallel robot 
(Clavel [16]; Staicu and Carp-Ciocardia [17]; Tsai and Stamper [18]) equipped 
with three motors, which have a parallel setting, train on the effector in a three-
degrees-of-freedom general translation motion. 

The kinematics and the dynamics of parallel robots have been studied 
extensively during the last two decades. When good dynamic performance and 
precise positioning under high load are required, the dynamic model is important 
for their control. The analysis of parallel manipulators is usually implemented 
trough analytical methods in classical mechanics [19], in which projection and 
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resolution of equations on the reference axes are written in a considerable number 
of cumbersome, scalar relations and the solutions are rendered by large scale 
computation together with time consuming computer codes. Geng [20] developed 
Lagrange’s equations of motion under some simplifying assumptions regarding 
the geometry and inertia distribution of the manipulator. Dasgupta and 
Mruthyunjaya [21] used the Newton-Euler approach to develop closed-form 
dynamic equations of Stewart platform, considering all dynamic and gravity 
effects as well as viscous friction at joints. In recent years, several new 
kinematical structures have been proposed that possess higher isotropy [22], [23], 
[24]. 

The objective of this paper is to analyse the kinematics and kinetostatics of 
the 3-DOF parallel Cube-manipulator, which is well adapted to the applications of 
precision assembly machines. In design, the three actuators are arranged 
according to the Cartesian coordinate space, which means that the actuating 
directions are normal to each other and the joints connecting to the moving 
platform are located on three planes being perpendicular to each other too. For 
such reason this type of mechanism is called Cube-manipulator. The prototype of 
this robot [25], [26] have some technological advantages such as: symmetrical 
design, regular workspace shape properties with a bounded velocity amplification 
factor and low inertia effects. 

In the present paper we focus our attention on a recursive matrix method, 
which is adopted to derive the kinematics model and the inverse dynamics 
equations of the spatial parallel Cube-manipulator, which has three translation 
degrees of freedom (fig. 1). 

 
2. Inverse kinematics analysis 

 
The mechanism input of the manipulator is made up of three actuated 

orthogonal prismatic joints. The output body is connected to the prismatic joints 
through a set of three identical kinematical chains (fig. 2). 

The architecture of one of the three parallel closed chains of the Cube-
manipulator consists in an active prismatic system, a passive revolute joint, an 
intermediate mechanism with four revolute links that connect four bars, which are 
parallel two by two, ending with a passive revolute link connected to the moving 
platform. Inside each chain, the parallelogram mechanism is used and oriented in 
a manner that the end-effector is restricted to translation movement only. The 
arrangement of the joints in the chains has been defined to eliminate any 
constraint singularity in the Cartesian workspace (Chablat and Wenger [27]; Liu 
et al. [28]). 

We develop the inverse kinematics problem and determine the velocities 
and accelerations of the manipulator, supposing that the translation motion of the 
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moving platform is known. Let us locate a fixed reference frame )( 0000 TzyOx  at 
the intersection point of three axes of actuated prismatic joints, about which the 
three-degrees-of-freedom manipulator moves. It has three legs of known 
dimensions and masses. To simplify the graphical image of the kinematical 
scheme of the mechanism, in the follows we will represent the intermediate 
reference systems by only two axes, so as one proceeds in most of books [1], [7], 
[11], [13]. The kz axis is represented, of course, for each component element kT . 
We mention that the relative rotation or relative translation with 1, −kkϕ  angle 
or 1, −kkλ  displacement of kT body most be always pointing about or along the 
direction kz . 

The first element 1 of leg A  is one of the three active sliders of the upside-
down robot. It is a homogenous rod of length 121 lAA = and mass 1m , moving 

horizontally along the Az1  axis with a displacement A
10λ . 

The centre of the transmission rod 263 lAA =  is denoted as 2A . This link 2 

is connected to the frame AAA zyx 222  (called AT2 ) and it has a relative rotation 

about Az2 axis with the angle A
21ϕ , so that AA

2121 ϕω = and AA
2121 ϕε = . It has the mass 

2m and the central tensor of inertia 2Ĵ . Further one, two identical and parallel 
bars 43 AA (3) and 76 AA with same length 3l  rotate about the AT2 frame with the 
angle AA

6232 ϕϕ = . They have also the same mass 3m  and the same tensor of 

inertia 3Ĵ . The four-bar parallelogram is closed by an element AT4 (4) of length 4l , 

which is identical with AT2 . Its tensor of inertia is 4Ĵ . This element rotates with the 
relative angle AA

3243 ϕϕ = . 
The centre 5A of the interval between the two revolute joints 4A and 5A  

connects the moving platform attached at the frame )( 5555
AAAA Tzyx . The platform 

of the robot 5 can be a cube of masse 5m , central tensor of inertia 5Ĵ and side 
dimension l , which rotate relatively by an angle A

54ϕ  with respect to the 
neighbouring body AT4 . Finally, another central and principal reference system 

GGG zyx is located at the centreG of the cubic moving platform. The angle α  
gives the initial orientation of the three upper arms about their guide-ways. 

The mobility of the constrained mechanism is generally given by the 
Grübler criterion. Due to the special arrangement of the four-bar parallelograms 
and the three prismatic joints at points 111 ,, CBA , the mechanism has three 
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translation degrees of freedom. This unique characteristic is useful in many 
applications, such as a zyx −−  positioning device. 

The three concurrent displacements CBA
101010 ,, λλλ  of the prismatic actuators 

111 ,, CBA are the joint variables that give the input vector TCBA ][ 10101010 λλλλ = of the 
instantaneous position of the mechanism. But, the objective of the inverse 
geometric problem is to find the vector 10λ and the position of the robot with the 
given three absolute coordinates of the center G  of the platform: Gx0 , Gy0 , Gz0 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Kinematical scheme of leg A of the upside-down mechanism 
 
Pursuing the three legs BA, and C , we obtains the following transformation 
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The translation conditions for the platform are expressed by the following 
identities 
                                          IRccbbaa TTT ==== 505050505050 ,                                  (3) 
with the notations 
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where IR = represent the diagonal identity matrix. From these relations, one 
obtains the following relations between angles 
                                           CCBBAA

215421542154 ,, ϕϕϕϕϕϕ === .                                  (5) 
For the inverse geometric analysis, the position of an end-point ),,( 000

PPP zyxP is 

treated as known and the goal is to find the joint variables CBA
101010 ,, λλλ  that yield 

the given location of the tool. If the aim is to generate a sequence of points to 
move the tool along an arc, care must be taken to avoid branch switching during 
motion, which may cause inefficient or impossible manipulator motions. 
Moreover, leg singularities may occur at which the manipulator loses degrees of 
freedom and the joint variables become linearly dependent. 

Supposing, for example, that the rectilinear motion of the mass center G of the 
platform is expressed by the following relations 

                                       ][ 0000
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the inputs CBA
101010 ,, λλλ  of the manipulators and the variables CCBBAA

322132213221 ,,,,, ϕϕϕϕϕϕ  
will be given by the following geometrical conditions 
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where, for example, one denoted 
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Actually, these equations means that there is only one inverse geometric 
solution for the manipulator 
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The motions of the component elements of each leg (for example the leg A) 

are characterized by the following skew symmetric matrices [30]: 
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which are associated to the absolute angular velocities given by the recurrence 
relations  
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Following relations give the velocities A
kv 0 of the joints kA  
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If the other two kinematical chains of the manipulator are pursued, analogous 
relations can be easily obtained. Equations of geometric constraints (3) and (7) 
can be differentiated with respect to time to obtain the following matrix conditions 
of connectivity [31] 
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where 321
~,~,~ uuu are skew symmetric matrices associate to three orthogonal unit 

vectors 321 ,, uuu .From these equations, relative velocities AAAv 322110 ,, ωω and AA
2154 ωω =   

result as functions of the translation velocity of the platform. The relations (13) 
give the complete Jacobian matrix of the manipulator. This matrix is a 
fundamental element for the analysis of the robot workspace and the particular 
configurations of singularities where the manipulator becomes uncontrollable.  

Rearranging, above nine equations (9) of the Cube-manipulator can 
immediately written as follows 
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where the “zero” position TGr ]000[0

0 = corresponds to the joints variables 
T]000[0

10=λ . The derivative with respect to time of conditions (14) leads to 
the matrix equation 

                                                        GrJJ 02101 =λ .                                            (15) 
Matrices 1J and 2J  are, respectively, the inverse and forward Jacobian of the 
manipulator and can be expressed as 
                                                }{ 3211 αααdiagJ =  



Xin-Jun Liu, Ştefan Staicu, Jinsong Wang 12

                                                
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

301

320

021

2

αβ
βα

βα

G

G

G

y
x

z
J ,                                           (16) 

with 
            AG lx 10301 cos λαα −+= , BG ly 10302 cos λαα −+= , CG lz 10303 cos λαα −+=          
                     αβ sin301 lxG += , αβ sin302 lyG += , αβ sin303 lz G += .                  (17) 

The three kinds of singularities of the three closed-loop kinematical chains can 
be determined through the analysis of two Jacobian matrices 1J and 2J [34]. 

Let us assume that the manipulator has a virtual motion determined by the 
velocities 0,1 1010 == Bv

a
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av . The characteristic virtual velocities are 

expressed as functions of the position of the mechanism by the kinematical 
constraints equations of two independent loops BA − and CB − determined by the 
three legs:  
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Some other relations of connectivity can be obtained if one considers successively 
that 110 =Bv
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As for the relative accelerations AAA
322110 ,, εεγ  and AA

2154 εε =  of the manipulator, 
the derivatives of the relations (13) give other following conditions of connectivity 
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The angular accelerations A
k0ε  and the accelerations A

k0γ  of joints are given by 
some relations, obtained by deriving the relations (11) and (12): 
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The relations (13), (19) represent the inverse kinematics model of the parallel 
Cube-manipulator.    
 
  3. Equations of motion   
 

In the context of the real-time control, neglecting the frictions forces and 
considering the gravitational effects, the relevant objective of the dynamics is to 
determine the input forces, which must be exerted by the actuators in order to 
produce a given trajectory of the effector.  

                                              Fig, 3 Force Af10 of first actuator 
 

There are three methods, which can provide the same results concerning 
these actuating forces. The first one is using the Newton-Euler classic procedure 
[32], the second one applies the Lagrange’s equations and multipliers formalism 
[20] and the third one is based on the principle of virtual work [1], [11], [29]. 

Within the kinematics problem, in the present paper one applies the 
principle of virtual work in order to establish some recursive matrix relations for 
the forces  of the three active systems. 

Three independent mechanical systems ,, 11 BA 1C  that generate three 
spatial forces ,31010 uff AA = 31010 uff BB = , 31010 uff CC = , which are concurrent in O  

and oriented along the axes Az1 , Bz1 , Cz1 , control the motion of the three sliders 
of the manipulator and the displacement of the moving platform. 

The force of inertia  
                             ( )[ ]CA

k
A

k
A
k

A
k

A
k

A
k

inA
k rmf 00000

~~~ εωωγ ++−=                         (21) 
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and the resultant moment  
                                ]ˆ~ˆ~[ 00000

A
k

A
k

A
k

A
k

A
k

A
k

CA
k

A
k

inA
k JJrmm ωωεγ ++−=              (22) 

of the forces of inertia of an arbitrary rigid body kT are determined with respect to 
the joint’s center kA . On the other hand, the wrench of two vectors *

kf and *
km  

evaluates the influence of the action of the weight gmk  and of other external and 
internal forces applied to the same element kT of the manipulator, for example 

                                  30
* 81.9 uamf k

A
k

A
k =  

                                  30
* ~81.9 uarmm k

CA
k

A
k

A
k =  )5,...,2,1( =k .                           (23)  

                                           Fig, 4 Force Bf10 of second actuator   

 
Knowing the position and kinematics state of each link as well as the external 

forces acting on the robot, in that follow one apply the principle of virtual work 
for the kinetostatics problem. The active forces required in a given motion of the 
moving platform will easily be computed using a recursive procedure. 

The fundamental principle of the virtual work states that a mechanism is under 
dynamic equilibrium if and only if the virtual work developed by all external, 
internal and inertia forces vanish during any general virtual displacement, which 
is compatible with the constraints imposed on the mechanism. Assuming that 
frictional forces at the joints are negligible, the virtual work produced by the 
forces of constraint at the joints is zero. Applying the fundamental equations of 
the parallel robots dynamics established by Staicu [33], [35] the following 
compact matrix relation results 
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[
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where one denoted: 

                               
1,1,11,10
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FaFF                          (25) 

                                           A
k

inA
k

A
k ffF ∗−−= 00  

                                           A
k

inA
k

A
k mmM ∗−−= 00  )6,...,2,1( =k . 

The relations (23) and (24) represent the inverse dynamics model of the 
parallel Cube-manipulator. 

                                               Fig, 5 Force Cf10 of third actuator 

 
As application let us consider a manipulator which has the following 

characteristics: 

                              

36
,
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24
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πα ==

====

ll

mlmlmlml
 

                                
.,15,
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321
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===
===  

Considering the kinematical parameters 
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                        stmzmymx GGG 3,15.0,05.0,10.0 *
0

*
0

*
0 =Δ−===  

and the analitical equations (6), in a MATLAB simulation program we obtains the 
graphs of forces Af10 (fig.3), Bf10 (fig.4), Cf10 (fig.5) of the three actuators. 

4. Conclusions 

Most of dynamical models based on the Lagrange formalism neglect the 
weight of intermediate bodies and take into consideration only the active forces or 
moments and the wrench of applied forces on the moving platform. The number 
of relations given by this approach is equal to the total number of the position 
variables and Lagrange multipliers inclusive. The commonly known Newton-
Euler method, which takes into account the free-body-diagrams of the mechanism, 
leads to a large number of equations with unknowns among which are also the 
connecting forces in the joints.  

Within the inverse kinematics analysis some exact relations that give in 
real-time the position, velocity and acceleration of each element of the parallel 
robot have been established in present paper. The dynamics model takes into 
consideration the masses and forces of inertia introduced by all component 
elements of the parallel mechanism. The new approach based on the principle of 
virtual work can eliminate all forces of internal joints and establishes a direct 
determination of the time-history evolution of forces and powers required by the 
actuators. The recursive matrix relations (23) and (24) represent the explicit 
equations of the dynamics simulation and can easily be transformed in a model for 
the automatic command the parallel Cube-manipulator. 
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