U.P.B. Sci. Bull., Series C, Vol. 80, Iss. 1, 2018 ISSN 2286-3540

ENTERPRISE FILE-SHARING SYSTEM WITH
LIGHTWEIGHT ATTRIBUTE-BASED ACCESS CONTROL

Zhi XIONG?, Ting GUO?*, Changsheng ZHU?®, Weihong CAI*, Lingru CAIP

Attribute-based access control (ABAC) bases on attributes to define access
rules and relies on them to make authorization decisions. The existing ABAC
schemes have two deficiencies: low efficiency in rule execution and high difficulty in
rule writing. We propose a lightweight ABAC scheme. It uses Python logical
expression to describe access rule and uses the eval function to execute rule. We
also design some mechanisms to simplify rule writing. Test results show that our
rule can overcome the above two deficiencies. Based on the ABAC scheme and
Samba, we build an enterprise file-sharing system and present its access control
effect.

Keywords: attribute-based access control; file-sharing; lightweight; access rule
1. Introduction

An enterprise has a large quantity of documents, material, software and
other files that need to be shared between its employees. It is inconvenient to
share these files through Email or removable storage devices, so it is necessary to
build an enterprise file-sharing system. An enterprise usually has many employees
and therefore the system has many users. Consequently, for security reasons, the
system must control access to file resources. Furthermore, the system must be
easy to use. Specifically, it would be preferable if users can access the shared files
online and can use the system without installing additional client software and
without an advanced level of expertise.

Currently, mainstream file-sharing methods for an enterprise are: FTP,
NFS, Samba [1], and cloud storage. However, FTP is not convenient, because
users must first download files from file server then read them, and first modify
files then upload them to file server. NFS and Samba can solve the problem, and
they allow users to access files online. Thereinto, NFS client needs to be

! Department of Computer Science, Shantou University, Shantou, Guangdong, China, e-mail:
zxiong@stu.edu.cn

2* Department of Computer Science, Shantou University, Shantou, Guangdong, China,
Corresponding author, e-mail: yb_yb163@163.com

3 Research Division, Shantou University, Shantou, Guangdong, China, e-mail: cszhu@stu.edu.cn

4 Department of Computer Science, Shantou University, Shantou, Guangdong, China, e-mail:
whcai@stu.edu.cn

5 Department of Computer Science, Shantou University, Shantou, Guangdong, China, e-mail:
Ircai@stu.edu.cn

mailto:zxiong@stu.edu.cn
mailto:yb_yb163@163.com
mailto:cszhu@stu.edu.cn
mailto:whcai@stu.edu.cn

16 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

Unix/Linux, but Samba client can be Windows. Especially, Windows users can
access the shared files in Samba through network neighborhood but need not to
install any client software. So, Samba is more suitable for an enterprise to share
files. Besides, many Internet operators provide enterprise cloud storage service,
also known as enterprise network disk. Despite the low cost of using enterprise
cloud storage, it has potential risk of data breaches because critical enterprise data
is placed on the operator's servers.

In the aspect of access control, Samba only supplies very simple control
scheme and lacks flexibility. Some products of enterprise cloud storage provide
basic access control function, but their control schemes mainly all adopt DAC
(Discretionary Access Control) or RBAC (Role-Based Access Control) model.
However, the two models cannot cope with the sharp increase of users and
resources and cannot supply fine-grained access control. ABAC (Attribute-Based
Access Control) [2] is a distinct access control model because it controls access to
resource by evaluating access rules against the attributes of the entities (such as
subject, resource and environment). Especially, if identity, role and resource
security level are also abstracted as entity attributes, ABAC model is able to
enforce traditional IBAC (ldentity-Based Access Control), RBAC and MAC
(Mandatory Access Control) models, respectively. Because of this flexibility,
ABAC provides an ideal access control scheme for open network environment. If
applying ABAC to an enterprise file-sharing system, the access rules must meet
the following requirements: (i) every user operation needs access decision, so rule
parsing and execution cost must be small; (ii) the rules may be written by normal
users, so they must be easy and convenient to write; (iii) to achieve fine-grained
access control, the rules must have strong expressivity; and (iv) adding or deleting
user attributes (user attributes may be defined by administrator) should not need to
change system code, so rule description should be loosely coupled with system
code. Aimed at these requirements, we propose a lightweight ABAC scheme.
Based on the ABAC scheme and combined with Samba and other open-source
software, we build an enterprise file-sharing system. The system is not only safe,
but also easy to use. The rest of this paper is organized as follows. The related
works are introduced in Section 2. Section 3 gives system design. In Section 4, we
propose the lightweight ABAC scheme. Section 5 introduces system
implementation. Examples and tests are given in Section 6. Finally, we conclude
in Section 7.

2. Related Works

In ABAC, the description, expressivity and execution efficiency of access
rules are three key issues. XACML (eXtensible Access Control Markup
Language) is an attribute-based access control policy language and processing
model [3]. Many researches [4, 5, 6, 7] about ABAC all focus on XACML.

Enterprise file-sharing system with lightweight attribute-based access control 17

XACML uses XML (eXtensible Markup Language) to describe requests and
rules. However, it is very costly to generate and parse XML. In XACML, a rule
may trigger a set of rules, and these rules may give contradictory decisions, so
combining algorithm is used to arrive at a final access decision, and many works
[8, 9] study on it. This also introduces overhead. Furthermore, XACML uses
complex XML tags to describe rules, so it is hard for normal users to write rules.

Attribute-based encryption [10] is a type of public-key encryption in
which the secret key of a user and the ciphertext are dependent on attributes. In
such a system, the decryption of a ciphertext is possible only if the set of attributes
of the user key matches the attributes of the ciphertext [10]. So, attribute-based
encryption can be deemed as a kind of ABAC scheme. However, the expressivity
of its rule is very weak, because the rule just can express an entity with or without
some attributes but cannot compare an attribute with a number or string. Rule
engine [11] is a software system that executes some business rules in a practical
runtime environment. It enables enterprise policies and operational decisions to be
defined, tested, executed and maintained independently from application code
[11]. With the aid of rule engine, we can describe access control rules [12, 13].
However, rule engine is not designed specifically for access control, but it is a
very complicated system and its running overhead is excessive.

Some works [14, 15] themselves define the form of access rules, and
realize the parsing and execution of access rules. It is a significant amount of
work. They do not evaluate the execution efficiency of their schemes. ABAC is a
powerful access control model, but suffers from a few drawbacks, such as lower
decision efficiency and rule explosion [16]. Many works [5, 16, 17] introduce role
to ABAC and propose attribute- and role-based access control to solve these
problems. In this paper, we propose a lightweight ABAC scheme which
overcomes the two deficiencies of the existing ABAC schemes: low efficiency in
rule execution and high difficulty in rule writing. Moreover, its rule has strong
expressivity. Test results demonstrate the feasibility of our scheme.

3. System Architecture Design

The architecture of our system is given in Fig. 1. Specifically,

(i) Enterprise files are stored in MooseFS [18], which is a distributed file system.
User attributes and access rules are stored in MongoDB [19].

(i1) File-sharing system uses Linux server. We create a directory “/mnt/mfs” in the
server, and mount MooseFS to the directory by FUSE (Filesystem in
USErspace). In Samba, we share the directory.

(i) Windows wusers can access the shared directory through
network neighborhood, and Linux users can access the shared directory
through smbmount. Users can manage user attributes and access rules by web
browsers.

18 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

(iv) File access, as well as attribute and rule management, must get permission
from access controller. The access controller makes decision according to
access rules.

m Attribute and Rule . User Attributes
W Management
: Web Server

MongoDB
- : Access Controler
Windows .
\:\ Managing
. Server

. Share Mount
: T /mnt(/mfs _MOOSGFS to :
Linux Samba Directory FUSE Server Server

Server MooseFS

File-Sharing System
Fig. 1. Architecture of enterprise file-sharing system

4. Lightweight ABAC Scheme

4.1. Entity and Entity Attribute

In our scheme, access rule allows the use of three entities: subject,
resource and environment. Subject denotes user. Resource is the file or directory
being accessed, and each resource corresponds to a unique path. Environment
denotes the context of the access, such as user IP address and access time.

Different types of enterprises need different user attributes, so our system
allow the enterprise to self-define subject attributes. The system has an
administrator user (admin), who has the highest permission level. Subject
attributes are defined by the administrator, and he is also responsible for
maintaining the attribute values of every user account. Resource attributes and
environment attributes are defined by the system. Resource attributes include
owner and security level. Environment attributes include user IP address, access
date and access time.

4.2. Permission Types

Access rules are made by the administrator or normal users. Excessive
permissions will make rule-making complex and prone to error, so we just define
three permissions: read, write and manage. Table 1 gives the corresponding
operations of each permission. The write permission for a directory is
meaningless, but we allow a file/directory inherits the permission from its parent
directory (see Section 4.6), so the write permission for a directory is still useful.

4.3. Rule Description
Each permission of each resource corresponds to an access rule. We use a
logical expression to describe an access rule. A rule may consist of subject,

Enterprise file-sharing system with lightweight attribute-based access control 19

resources and environment attributes, arithmetic, logical, relational and set
operators, numeric and string constants, and so on. The execution result of a rule
is a boolean value, and True denotes permission while False denotes denial.

Table 1
The corresponding operations of each permission
Resource | Read Write Manage
Directory | 1St the files and directories | | Rename or delete the file/directory.
within the directory Modify the attributes or access
File Read the file Write the file | rules of the file/directory.

In an access rule, an entity (namely subject, resource or environment) is
denoted by a dictionary variable, and an entity attribute is denoted by an item in
the dictionary. The key of item corresponds to attribute name, and the value of
item corresponds to attribute value. The reason why we use dictionary but not
class (the rule engine Drools uses class, see Section 6.1) to denote entity is that
the structure of a dictionary needs not to be defined in advance, but a class needs.
This way, we can add or delete some entity attributes without touching any system
code. We also provide that the subject, resource and environment are represented
by the variable S, R and E, respectively. For example,

(S['Username']==R['Owner’]) or (E['UserIP']=="192.168.1.111")
and

(S['Title'] in ['Professor’, 'Associate Professor']) and (R['SecurityLevel']<=2)
are two legitimate access rules.

4.4. Common Functions

In access rules, we can use the built-in functions of the programming
language, e.g., round and min. In order to further enhance rule’s expressivity, the
system also defines some common functions, and allow users to use these
functions in the rules. For example, RegExpMatch and WeekDay are two
functions defined by the system, RegExpMatch is regular expression matching
function, and WeekDay is used to get the day of the week. Then,

(RegExpMatch(E['UserIP'], '*192\.168\.1\.")) and (WeekDay(E['Date'])==5)

is a valid rule.

4.5. Rule Call
The intention of rule call is to facilitate the reuse and writing of rules. We
can store some frequently-used rules as callee rules, and call (hamely contain)
them in the access rules of resource. This is somewhat similar to procedure call.
Each callee rule has a name, and we provide that a callee rule is called by using
“{#RuleName#}”. For example, there are two callee rules:
OwnerAceess: S['Username]==R['Owner],
StaitcIP: RegExpMatch(E['UserIP'], "7192\.168\.1\.[1-9][0-9]$"),

javascript:void(0);

20 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

then
{#OwnerAceess#} and {#StaitclP#}
is a valid rule.

As mentioned in Section 2, many works introduce role to ABAC so as to
overcome the disadvantages of ABAC. The function of role is easy to implement
through rule call. For example, the «callee rule “CSStaff:
S['Department]=="Computer” can be used to denote the role of “the staff in
computer science department”, and we can contain “{#CSStaff#}” in a rule to
authorize the role of “the staff in computer science department”.

4.6. Rule Inheritance and Reference

Enterprise files are usually organized into a tree-like hierarchical structure.
Moreover, we have the following considerations: (i) The permissions of a
resource (directory or file), most of the time, inherit the permissions from its
parent resource (directory); (ii) If one has read permission to a resource, he
usually has to have read permission to its parent resource; (iii) If one has write
permission to a resource, he usually also has write permission to its sub resources;
(iv) If one has write permission to a resource, he usually has to have read
permission to the resource; (v) Manage permission is similar to write permission.

Hence, the system defines three fields for each permission: inherit,
reference (read permission does not need this field) and rule. Field inherit and
reference hold values of the boolean type, and field rule holds a value of the string
type. For each permission of a resource, the relationship between the
combination of its field values and its final access rule is given in Table 2.

Table 2
The final access rule of each permission
L. Field .
Permission - Final access rule
Inherit | Reference | Rule
Tree |\ Emot The final access rule of read permission of its
Pty parent resource (by default)
True |\ Not empt (The final access rule of read permission of its
Read Pty parent resource) and (the value of rule)
False |\ Empty True
False |\ Not empty | The value of rule
True Emot The final access rule of write/manage permission
Pty of its parent resource (by default)
Wri (The final access rule of write/manage
rite I .
and True Not empty | permission of its parent resource) or (the value
Manage of rulfe) __ _
False | True The final access rule of read permission of itself
False | False Empty True
False | False Not empty | The value of rule

Enterprise file-sharing system with lightweight attribute-based access control 21

The inheritance and reference mechanisms of access rules enable the rules
of the parent resource to be reused by the sub resources and enable the rule of read
permission to be reused by write and manage permission. It can not only
significantly reduce the storage space of rules, but also greatly reduce the
workload of rule-writing. In addition, for a permission, the case of “the value of
field inherit is True and the value of field rule is empty” is viewed as the default
case, under which we need not store its access rule. Because the case occurs
frequently, it can save a large amount of storage space.

By the way, each user operation just corresponds to a final access rule, that
is, each user operation just triggers one rule. So, unlike XACML, we do not need
combining algorithm to deal with rule conflict.

5. System Implementation

5.1. Rule Description Language and Rule Execution

We use Python logical expression to describe access rule. Due to the
flexibility and powerful expressivity of the Python language, its logical expression
can easily describe complicated access control rule. Moreover, as long as one
masters the basic syntax of Python, he can write access rules.

The eval function is used to execute an access rule. Since the rules are
written by users, we must prevent them to execute malicious code in the rules, for
example using “__import__ (*0s").system(command)” to delete or modify system
files. Therefore, we do not allow “__import__” to appear in rules. Further, we
limit the variables and functions that can be used in the rules. The
eval(expression[, globals[, locals]]) function takes two extra arguments to allow
us to do this. In our scheme, the permissible variables are S, R and E, and the
permissible functions are Python built-in functions and the common functions
supplied by the system, such as RegExpMatch and WeekDay.

5.2. Storage of Entity Attributes and Access Rules

Environment attributes need not be stored, and they are dynamically
generated. Subject attributes and resource attributes are stored in MongoDB,
which is an open-source document database. In MongoDB, a collection is similar
to a table in relational databases, and a record in collection is a document which is
a data structure composed of field and value pairs.

Resource attributes and access rules are stored together in the same
collection, and a resource may correspond to a document in the collection. For
example, the document for the root of the shared directory is:

{

Path: “/”, Owner: “admin”, SecurityLevel: 3,
Rules: {
read: {inherit: False, rule: “S['Username']|=='admin')”},

22 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

write: {inherit: False, reference: True},
manage: {inherit: False, reference: True},

¥
¥

5.3. Access Controller

Samba is written in the C language and access rules are Python logical
expression, so we need a cross-language service development framework to
implement access controller. The Apache Thrift [20] is such a software
framework, and it supports many languages, including C, PHP and Python. By
using Thrift, we only need to define service interface in a .thrift file, then compile
the file to source code by Thrift compiler. The generated code can be used to
easily build RPC (Remote Procedure Call) clients and servers that communicate
seamlessly and efficiently across programming languages. So we use Thrift
framework to develop access controller.

In the service interface of the access controller, we just need to define one
service method that returns a boolean value. The service interface is as follows:

service AccessControl {
bool CheckPermission(1: string username, 2: string userip,
3: string resourcepath, 4: string permission)

}

The CheckPermission method checks permission by calling the recursive method
Decision(resourcepath, permission, S, E). The two methods are written in Python.

5.4. Permission Check in Samba

In our system, the version of Samba is 4.4.9. In the
NTSTATUS smbd_check access_rights(struct connection_struct *conn, const
struct smb_filename *smb_fname, bool use_privs, uint32_t access_mask)
function of smbd/open.c file, we add some code to check permission. Specifically,
we call the CheckPermission method in the AccessControl service interface via
Thrift. It’s worth mentioning that we can distinguish user operation according to
access_mask and some rights bits, such as SEC_FILE READ_DATA,
SEC_FILE_WRITE_DATA, SEC DIR_LIST, and SEC _STD DELETE. If the
returned value is False, the smbd check access rights function returns
NT_STATUS_ACCESS_DENIED denying this access. In addition, our permission
check does not affect the permission check done by Samba itself.

6. Examples and Tests

In this section, we first, combined with practical examples, compare our
ABAC scheme with two popular ABAC schemes, namely XACML and rule
engine, then we present the access control effect of our system. Note that,

Enterprise file-sharing system with lightweight attribute-based access control 23

attribute-based encryption is also a kind of ABAC scheme, but its expressivity of
rule is very weak (see Section 2), so we do not compare our scheme with it.

6.1. Rule Writing

Suppose we want to describe the rule: user’s username equals resource’s
owner and user’s IP address matches a regular expression.

In our scheme, the rule can be described as follows:

(S/ ‘Username’]==R[‘Owner’]) and
(RegExpMatch(E['UserIP'], '"*192\.168\.1\.[1-9][0-9]$"))

In XACML, the main code of the policy file that describes the rule is as
follows. It can be seen that the rule-writing in XACML is very difficult.

<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:and">
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator Attributeld="Username"
DataType="http://www.w3.0rg/2001/XMLSchema#string" />
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<ResourceAttributeDesignator Attributeld="Owner"
DataType="http://www.w3.0rg/2001/XMLSchema#string" />
</Apply>
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">
... For the limitation of space, this part is omitted.
</Apply>
</Apply>

Drools [21] is an open-source rule engine in Java. If describing the rule in
Drools, the main code of the rule file is as follows. We can see that it is easy to
describe rules in Drools. However, Drools uses class to denote entity. The
structure of a class needs to be defined in advance, so when we add or delete some
entity attributes, we have to change system code.

when
$S:Subject()
$R:Resource(owner == $S.username)
$E:Environment(userIP matches "*192.168.1.[1-9][0-9]$")
then
drools.getWorkingMemory().setGlobal(""Result", new Boolean(true));

The three schemes all not only allow us to use various types of variables,
various types of operators, regular expression, etc., in the rules, but also allow us
to self-define functions, so the expressivity of their rules is very strong. However,
the rule-writing in our scheme is more concise and clear.

https://www.baidu.com/link?url=B_wUiyjFJ_3FYbzf1DSthrzNWjzwrQhxjsrhFcURigLBxX3tJ3Hj-sWc4xo6QMMOuQxPdmwC1Hwul08-uShHfq&wd=&eqid=a464521000004c2a0000000658c7f6e3

24 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

6.2. Rule Execution Efficiency

We also use the three schemes to describe the following rule: user’s
position is manager and resource’s security level is no more than 2. This rule is
denoted as Rule 2, and the rule in Section 6.1 is denoted as Rule 1. We test the
execution time of the two rules in the three schemes on a PC, which runs
Windows 7 64bit with Intel Core i5-3470S CPU and 4G memory. The
implementation of XACML we used is Sunxacml [22], which is open-source and
written in the Java language. The version of Sunxacml, Drools and Java is 2.0,
6.5.0. Finally, and 1.7.0_80, respectively. In our system, the version of Python is
3.6.0. Table 3 gives the test results. When we test the rule execution time in
Sunxacml and Drools, the rules are stored in files. However, the time of reading

rule file is just about 1ms, so it can be ignored.
Table 3
Rule execution time

Rule Execution time (ms)

Sunxacml Drools Our scheme
Rule 1 417 1531 0.03
Rule 2 413 1492 0.02

The rule execution in Sunxacml and Drools is costly, because they need to
parse complex rule. In contrast, our scheme needs not parse complex rule (it is
very easy to handle rule call), but executes the rule directly, so the execution cost
is very small. Specially, Drools is not designed specifically for access control, but
is a powerful hybrid reasoning system, so it is very complicated and costly.

6.3. Access Control Effect

We test the access control effect of our system on a Windows 7 client.
First of all, it is important to note that we can access the shared files through
network neighborhood on Windows systems but need not to install any
client software. Fig. 2 to 4 give the test results.

Windows Security =] | test.bxt - Notepad [o][@]| =]
File Edit Format View Help
Enter Network Password This 35 a1
Enter your password to connect to: FILESHARING Notepad [R>S

3 ’ User name ‘ ! . Accessis denied.

[Password ‘
\ Domain: WIN7EN
| Remember my credentials oK

&9 Logon failure: unknown user name or bad password.

OK Cancel y . S

Fig. 2. Login Fig. 3. Have no permission to write a file

Enterprise file-sharing system with lightweight attribute-based access control 25

Network Error &=
Windows cannot access \\FILESHARING\FileSharing\Finance

You do not have permission to access \\FILESHARING\FileSharing\Finance. Contact your
network administrator to request access.

For more information about permissions, see Windows Help and Support

Close
Fig. 4. Have no permission to read a file/directory

Fig. 2 is the login dialog box shown by the OS (Operating System). The
login validation is done by Samba, but not our system. If we have no permission
to write a file, when we have modified the file and try to save it, the OS will
pop up a “Save as” dialog box. If we try to overwrite the original file forcibly, the
OS will refuse us to write the file and give the dialog box as Fig. 3 shows. If we
have no permission to read a file or directory, but try to read it, the OS will deny
our operation and pop up the dialog box as Fig. 4 shows.

For the limitation of space, we do not present more test screenshots.
To sum up, our system can enforce access control for the read, write, delete,
rename, and so on operations of files and directories

7. Conclusions

In this paper, aimed at the requirements of enterprise file-sharing system,
we propose a lightweight ABAC scheme. It uses Python logical expressions to
describe access rules, and directly uses the eval function to execute rules.
Common function mechanism is used to enhance rule’s expressivity. We also
design some mechanisms to simplify and facilitate the writing of rules, including
rule call, inheritance and reference. Based on the ABAC scheme, Samba and other
open-source software, we build an enterprise file-sharing system. We give the
implementation method of access controller and permission check. The test results
show that, in our scheme, the access rule not only has strong expressivity and
small execution cost, but also is more concise and easy to write. The test results
also show that our system can exactly enforce access control according to access
rules. In conclusion, our system is not only safe, but also easy to use.

REFERENCES

[1] The Samba Team. Samba. https://www.samba.org/.

[2] V.C.Hu,D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller and K. Scarfone. Guide to
Attribute Based Access Control (ABAC) Definition and Considerations. NIST Special
Publication 800-162, NIST, 2014.
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf.

[3] R. Cover. Extensible Access Control Markup Language (XACML), 12 December 2009,
http://xml.coverpages.org/xacml.html.

[4] S.M. Park and S.M. Chung. Privacy-Preserving Attribute-Based Access Control for Grid

https://www.samba.org/

26 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

Computing. International Journal of Grid and Utility Computing, 2014, vol. 5, no. 4, pp. 286-
296.

[5] X.Jin, R. Sandhu and R. Krishnan. RABAC: Role-Centric Attribute-Based Access Control.
In Proceedings of International Conference on Mathematical Methods, Models, and
Architectures for Computer Network Security, 2012, Lecture Notes in Computer Science,
vol. 7531, pp. 84-96.

[6] M. Huffmeyer and U. Schreier. Formal Comparison of an Attribute Based Access Control
Language for RESTful Services with XACML. In Proceedings of the 21st ACM on
Symposium on Access Control Models and Technologies, 2016, pp. 171-178.

[7] 1. Ray, T.C. Ong, I. Ray and M.G. Kahn. Applying Attribute Based Access Control for
Privacy Preserving Health Data Disclosure. In Procceedings of 3rd IEEE EMBS International
Conference on Biomedical and Health Informatics, 2016, pp. 1-4.

[8] D. Xu, N. Shen and Y. Zhang. Detecting Incorrect Uses of Combining Algorithms in XACML
3.0 Policies. International Journal of Software Engineering and Knowledge Engineering,
2015, vol. 25, no. 09n10, pp. 1551-1571.

[9] J. Crampton and C. Williams. On Completeness in Languages for Attribute-Based Aaccess
Control. In Proceedings of ACM Symposium on Access Control Models and Technologies,
2016, pp. 149-160.

[10] V. Goyal, O. Pandey, A. Sahai and B. Waters. Attribute-Based Encryption for Fine-Grained
Access Control of Encrypted Data. In Proceedings of ACM Conference on Computer and
Communications Security, 2006, pp. 89-98.

[11] Wikipedia. Business Rules Engine. https://en.wikipedia.org/wiki/Business_rules_engine.

[12] M. Yu, X. Ding, X. Wang and Y. Gong. The Design of Intelligent Access Control Systems
Based on Jess. In Proceedings of International Conference on Advances in Computer
Science, Environment, Ecoinformatics, and Education, 2011, pp. 57-62.

[13] Z. Xiong, J. Xu, G. Wang, J. Li and W. Cai. UCON Application Model Based on Role and
Rule-Engine. Computer Engineering and Design, 2013, vol. 34, no. 3, pp. 831-836.

[14] L. Zhang, X. Wang, W. Dou and D. Liu. Acess Control Method Based on Fuzzy ECA Rules
for Pervasive Computing Environments. Computer Science, 2013, vol. 40, no. 2, pp. 78-83.

[15] J. Zhong and S. Hou. Attribute-Based Universal Access Control Framework in Open
Network Environment. Journal of Computer Applications, 2010, vol. 30, no. 10, pp. 2362-
2365, 2640.

[16] H. Xiong, X. Chen, X. Fei and H. Gui. Attribute and RBAC-Based Hybrid Access Control
Model. Application Research of Computers, 2016, vol. 33, no. 7, pp. 2162-2169.

[17] V. Varadharajan, A. Amid and S. Rai. Policy Based Role Centric Attribute Based Access
Control Model Policy RC-ABAC. In Proceedings of International Conference on Computing
and Network Communications, 2015, pp. 427-432.

[18] Core Technology, Inc. MooseFS. https://moosefs.com/.

[19] MongoDB, Inc. MongoDB. http://www.mongodb.org/.

[20] Apache Software Foundation. Apache Thrift. http://thrift.apache.org/.

[21] Red Hat, Inc. Drools. https://www.drools.org/.

[22] SourceForge. Sun's XACML Implementation. http://sunxacml.sourceforge.net/.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Indrajit%20Ray.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Michael%20G.%20Kahn.QT.&newsearch=true
https://en.wikipedia.org/wiki/Business_rules_engine
http://www.apache.org/
http://thrift.apache.org/
http://sunxacml.sourceforge.net/

