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GENERALIZED η-RICCI SOLITONS ON LP-KENMOTSU MANIFOLDS

ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION

Shahroud Azami1

In this paper, we investigate LP-Kenmotsu manifolds admitting general-

ized η-Ricci solitons associated to the Schouten-van Kampen connection. We provide
two examples of generalized η-Ricci solitons on a LP-Kenmotsu manifolds to prove our

results.
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1. Introduction

The almost para contact Riemannian manifold was introduced by Sato [23] in 1976.
Then, the notion of a para-Sasakian and SP para-Sasakian manifolds have been defined and
studied by Adati and Matsumoto [1] as a class of almost contact Riemannian manifolds.
The Kenmotsu manifold was introduced by Kenmotsu [16] in 1972 as a new class of almost
contact metric manifolds. Kenmotsu manifolds are very closely related to the warped prod-
uct manifolds. Sinha and Prasad [26] studied para Kenmotsu manifolds as a class of almost
para contact metric manifolds. In 1989, Matsumoto introduced [17] defined and studied
Lorentzian para-Sasakian manifolds. Mihai and Rosca [19] also added some remarks on
Lorentzian para-Sasakian manifolds. In 2018, Haseeb and Prasad defined and investigated a
class of Lorentzian almost para contact metric manifolds namely Lorentzian para-Kenmotsu
(briefly LP-Kenmotsu manifolds) manifolds [14]. Devi et al. [12] studied certain curvature
connections on Lorentzian para-Kenmotsu manifolds.

In 1982, Hamilton [13] introduced the notion of Ricci soliton as a generalization of
Einstein metrics and a special solution to Ricci flow on a Riemannian manifold. A Ricci
soliton [6] is a triplet (g, V, λ) on a pseudo-Riemannian manifold M such that

LV g + 2S + 2λg = 0, (1)

where LV is the Lie derivative along the potential vector field V , S is the Ricci tensor,
and λ is a real constant. The Ricci soliton is said to be shrinking, steady and expanding
according as λ < 0 , λ = 0 and λ > 0, respectively. If the vector field V is the gradient of a
potential function ψ, then g is called a gradient Ricci soliton. Prasad et al. [22] studied Ricci
solitons on φ-semi-symmetric LP-Kenmotsu manifolds with a quarter-symmetric non-metric
connection. In 2016, Nurowski and Randall [20] introduced the notion of generalized Ricci
soliton as follows

LV g + 2µV [ ⊗ V [ − 2αS − 2λg = 0, (2)

where V [ is the canonical 1-form associated to V . Also, as a generalization of Ricci soliton,
the notion of η-Ricci soliton was introduced by Cho and Kimura [10] which it is a 4-tuple
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(g, V, λ, ρ), where V is a vector field on M , λ and ρ are constants, and g is a pseudo-
Riemannian metric satisfying the equation

LV g + 2S + 2λg + 2ρη ⊗ η = 0, (3)

where S is the Ricci tensor associated to g. Many authors studied the η-Ricci solitons
[5, 11, 15, 21]. In particular, if ρ = 0, then the η-Ricci soliton equation reduces to the Ricci
soliton equation. Motivated by the above studies M. D. Siddiqi [25] introduced the notion
of generalized η-Ricci soliton as follows

LV g + 2µV [ ⊗ V [ + 2S + 2λg + 2ρη ⊗ η = 0. (4)

Motivated by [3, 7, 18] and the above works, we study generalized η-Ricci solitons
on LP-Kenmotsu manifolds assoicated the Schouten-van Kampen connection. We give an
example of generalized η-Ricci soliton on a LP-Kenmotsu manifold assoicated the Schouten-
van Kampen connection.

The paper is organized as follows. In Section 2, we recall some necessary and fun-
damental concepts and formulas on LP-Kenmotsu manifolds which be used throughout the
paper. In Section 3, we give the main results and their proofs. In Section 4, we give two
examples of LP-Kenmotsu manifolds admit in generalized η-Ricci soliton with respect to the
Schouten-van Kampen connection.

2. Preliminaries

A n-dimensional Lorentzian metric manifold (M, g) is said to be a Lorentzian almost
para-contact manifold [2] with an almost contact structure (φ, ξ, η, g), if there exist a (1, 1)-
tensor field φ, a vector field ξ and a 1-form η such that

φ2(X) = X + η(X)ξ, η(ξ) = −1, (5)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (6)

for all vector fields X,Y on M . In this case, we have φξ = 0, η ◦φ = 0, and η(X) = g(X, ξ).
The fundamental 2-form Φ of M is determined by Φ(X,Y ) = g(X,φY ) = g(φX, Y ), for all
vector fields X,Y on M . A Lorentzian almost para-contact manifold M is called Lorentzian
para-Kenmotsu manifold [14] if

(∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX (7)

for all vector fields X,Y on M . In a LP-Kenmotsu manifold, we have

∇Xξ = −X − η(X)ξ, (8)

(∇Xη)Y = −g(X,Y )− η(X)η(Y ), (9)

where ∇ is the Levi-Civita connection with respect to the Lorentzian metric g. Using (18)
and (9), we find

R(X,Y )ξ = η(Y )X − η(X)Y, (10)

R(X, ξ)Y = −g(X,Y )ξ + η(Y )X, (11)

η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ), (12)

for all vector fields X,Y, Z, where R is the Riemannian curvature tensor. The Ricci tensor
S of a LP-Kenmotsu manifold M is defined by S(X,Y ) =

∑n
i=1 εig(R(ei, X)Y, ei) and we

have
S(X, ξ) = (n− 1)η(X), (13)

for all vector field X on M .
Let M be an almost contact metric manifold and TM be the tangent bundle of

M . We have two naturally defined distribution on tangent bundle TM as H = kerη and
Ĥ = span{ξ}, thus we get TM = H ⊕ Ĥ. Therefore, by this composition we can define the
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Schouten-van Kampen connection ∇̄ [4, 27] on M with respect to Levi-Civita connection ∇
as follows

∇̄XY = ∇XY − η(Y )∇Xξ + ((∇Xη)(Y ))ξ (14)

for all vector fields X,Y on M . On LP-Kenmotsu manifolds, using (8), (9), and (14) we
obtain

∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ (15)

for all vector fields X,Y on M . Let R̄ and S̄ be the curvature tensors and the Ricci tensors
of the connection ∇̄, respectively, that is,

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z, S̄(X,Y ) =

n∑
i=1

εig(R̄(ei, X)Y, ei).

On LP-Kenmotsu manifolds, applying (15) and the above relation we have

R̄(X,Y )Z = R(X,Y )Z + 3g(Y,Z)X − 3g(X,Z)Y + 2g(Y,Z)η(X)ξ (16)

−2g(X,Z)η(Y )ξ + 2η(Y )η(Z)X − 2η(X)η(Z)Y,

and

S̄(X,Y ) = S(X,Y ) + (3n− 7)g(X,Y ) + 2nη(X)η(Y ), (17)

for all vector fields X,Y, Z on M , where S denotes the Ricci tensor of the connection ∇.
Using (17), the Ricci operator Q̄ of the connection ∇̄ is determined by

Q̄X = QX + (3n− 7)X + 2nη(X)ξ. (18)

Let r and r̄ be the scalar curvature of the Levi-Civita connection ∇ and the Schouten-van
Kampen connection ∇̄. The equation (17) yields

r̄ = r + 3n2 − 9n. (19)

The generalized η-Ricci soliton associated to the Schouten-van Kampen connection is
defined by

αS̄ +
β

2
LV g + µV [ ⊗ V [ + ρη ⊗ η + λg = 0, (20)

where S̄ denotes the Ricci tensor of the connection ∇̄,

(LV g)(Y, Z) := g(∇̃Y V,Z) + g(Y, ∇̃ZV ),

V [ is the canonical 1-form associated to V that is V [(X) = g(V,X) for all vector field X,
λ is a smooth function on M , and α, β, µ, ρ are real constant such that (α, β, µ) 6= (0, 0, 0).
The generalized η-Ricci soliton equation reduces to

(1) the η-Ricci soliton equation when α = 1 and µ = 0,
(2) the Ricci soliton equation when α = 1, µ = 0, and ρ = 0,
(3) the generalized Ricci soliton equation when ρ = 0.

Note that

(LV g)(X,Y ) = g(∇̃Y V,Z) + g(Y, ∇̃ZV ) (21)

= LV g(X,Y ) + 2η(V )g(X,Y )− g(X,V )η(Y )− g(Y, V )η(X).
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3. Main results and their proofs

A LP-Kenmotsu manifold is said to η-Einstein with respect to the Schouten-van
Kampen connection if its Ricci tensor S̄ is of the form S̄ = ag + bη ⊗ η, where a and b
are smooth functions on manifold. Let M be a LP-Kenmotsu manifold. Now, we consider
M satisfies the generalized η-Ricci soliton (20) associated to the Schouten-van Kampen
connection and the potential vector field V is a pointwise collinear vector field with the
structure vector field ξ, that is, V = fξ for some function f on M . Using (18) we get

Lfξg(X,Y ) = (Xf)η(Y ) + (Y f)η(X)− 2f(g(X,Y ) + η(X)η(Y )),

hence

Lfξg(X,Y ) = (Xf)η(Y ) + (Y f)η(X)− 4f(g(X,Y ) + η(X)η(Y ))

for all vector fields X,Y on M . Also, we have

ξ[ ⊗ ξ[(X,Y ) = η(X)η(Y ), (22)

for all vector fields X,Y . Applying V = fξ, (17) and (22) in the equation (20) we infer

αS̄(X,Y ) +
β

2
[(Xf)η(Y ) + (Y f)η(X)− 4f(g(X,Y ) + η(X)η(Y ))]

+(µf2 + ρ)η(X)η(Y ) + λg(X,Y ) = 0 (23)

for all vector fields X,Y on M . We plug Y = ξ in the above equation and using (13) and
(17) to yield

−β
2
Xf +

β

2
(ξf)η(X) + ((2n− 8)α− µf2 − ρ+ λ)η(X) = 0 (24)

for all vector fields X on M . Taking X = ξ in (24) gives

βξf = −((2n− 8)α− µf2 − ρ+ λ). (25)

Inserting (25) in (24), we conclude

βXf = ((2n− 8)α− µf2 − ρ+ λ)η(X), (26)

which yields

βdf = ((2n− 8)α− µf2 − ρ+ λ)η. (27)

Applying (27) in (23) we obtain

αS̄(X,Y ) = (2βf − λ)g(X,Y )− ((2n− 8)α+ λ− 2βf)η(X)η(Y ), (28)

which implies αr̄ = 2βf(1−n)+λ(n+1)+(2n−8)α. Therefore, this leads to the following:

Theorem 3.1. Let (M, g, φ, ξ, η) be a LP-Kenmotsu manifold. If M admits a generalized
η-Ricci soliton (g, V, α, β, µ, ρ, λ) with respect to the Schouten-van Kampen connection such
that α 6= 0 and V = fξ for some smooth function f on M , then M is an η-Einstein manifold
with respect to the Schouten-van Kampen connection.

From (28) we also have the following:

Corollary 3.1. Let (M, g, φ, ξ, η) be a LP-Kenmotsu manifold. If M admits a generalized
η-Ricci soliton (g, V, α, β, µ, ρ, λ) with respect to the Schouten-van Kampen connection such
that V = fξ for some smooth function f on M , then αr̄ = 2βf(1−n)+λ(n+1)+(2n−8)α.

Now, let M be an η-Einstein LP-Kenmotsu manifold with respect to the Schouten-
van Kampen connection and V = ξ. Then we get S̄ = ag + bη ⊗ η for some functions a and
b on M . From (21) we have

Lξg(X,Y ) = −4(g(X,Y ) + η(X)η(Y )),
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for all vector fields X,Y . Therefore,

αS̄ +
β

2
Lξg + µξ[ ⊗ ξ[ + ρη ⊗ η + λg

= (aα+ λ− 2β)g + (bα+ µ+ ρ− 2β)η ⊗ η.

From the above equation M admits a generalized η-Ricci soliton (g, ξ, α, β, µ, ρ, λ) with
respect to the Schouten-van Kampen connection if λ = −aα + 2β and ρ = −bα − µ + 2β.
Hence, we can state the following theorem:

Theorem 3.2. Suppose that M is a η-Einstein LP-Kenmotsu manifold with respect to the
Schouten-van Kampen connection such that S̄ = ag+bη⊗η for some function a and constant
b on M . Then manifold M satisfies a generalized η-Ricci soliton (g, ξ, α, β, µ,−bα − µ +
2β,−aα+ 2β) with respect to the Schouten-van Kampen connection.

Now assume that a LP-Kenmotsu manifold with respect to the Schouten-van Kampen
connection satisfying the condition R̄(X,Y ).S̄ = 0 for all vector fields X,Y on M . Then we
have

S̄(R̄(X,Y )Z,W ) + S̄(Z, R̄(X,Y )W ) = 0,

for all vector fields X,Y, Z,W on M . Replacing X by ξ in the above equation, we conclude

S̄(R̄(ξ, Y )Z,W ) + S̄(Z, R̄(ξ, Y )W ) = 0,

for all vector fields Y,Z,W on M . Using (16) we can write

S̄(2g(Y, Z)ξ − η(Z)Y,W ) + S̄(Z, 2g(Y,W )− η(W )Y ) = 0,

which yields

2g(Y,Z)S̄(ξ,W )− η(Z)S̄(Y,W ) + 2g(Y,W )S̄(Z, ξ)− η(W )S̄(Z, Y ) = 0.

Putting Z = ξ in the above equation gives

S̄(Y,W ) = 2(2n− 8)g(Y,W )− (2n− 8)η(Y )η(W ).

Thus we have the following theorem.

Theorem 3.3. Let M be a LP-Kenmotsu manifold with the Schouten-van Kampen connec-
tion satisfy the condition R̄.S̄ = 0. Then manifold M satisfies a generalized η-Ricci soliton
(g, ξ, α, β, µ, (2n−8)α−µ+2β,−2(2n−8)α+2β) with respect to the Schouten-van Kampen
connection.

Now assume that a LP-Kenmotsu manifold with respect to the Schouten-van Kampen
connection satisfying the condition (S̄(X,Y ).R̄)(U,W )Z = 0 for all vector fieldsX,Y, Z, U,W
on M . Let (X ∧S̄ Y )Z = S̄(Y, Z)X − S̄(X,Z)Y , then we have

(X ∧S̄ Y )R̄(U,W )Z + R̄((X ∧S̄ Y )U,W )Z + R̄(U, (X ∧S̄ Y )W )Z

+R̄(U,W )(X ∧S̄ Y )Z = 0.

Putting Y = ξ in the above equation we obtain

(2n− 8)
[
η(R̄(U,W )Z)η(X) + η(R̄(X,W )Z)η(U) + η(R̄(U,X)Z)η(W )

+η(R̄(U,W )X)η(Z)
]

+ S̄(X, R̄(U,W )Z)− S̄(X,U)η(R̄(ξ,W )Z)

−S̄(X,W )η(R̄(U, ξ)Z)− S̄(X,Z)η(R̄(U,W )ξ) = 0.

Replacing U and Z by ξ in the last equation we deduce

S̄(X,W ) = −(2n− 8)g(X,W )− 2(2n− 8)η(X)η(W ).

Thus we have the following theorem.
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Theorem 3.4. Let M be a LP-Kenmotsu manifold with the Schouten-van Kampen connec-
tion satisfy the condition S̄.R̄ = 0. Then manifold M satisfies a generalized η-Ricci soliton
(g, ξ, α, β, µ, 2(2n− 8)α− µ+ 2β, (2n− 8)α+ 2β) with respect to the Schouten-van Kampen
connection.

Definition 3.1. Let M be a LP-Kenmotsu manifold with the Schouten-van Kampen con-
nection ∇̄. The concircular curvature tensor C̄ with respect to the Schouten-van Kampen
connection on M is defined by

C̄(X,Y )Z = R̄(X,Y )Z − r̄

n(n− 1)
(g(Y, Z)X − g(X,Z)Y ) , (29)

for all vector fields X,Y, Z on M .

Now consider a LP-Kenmotsu manifold M is concircularly flat with respect to the
Schouten-van Kampen connection, that is, C̄(X,Y )Z = 0 for all vector fields X,Y, Z on M .
Hence we get

R̄(X,Y )Z =
r̄

n(n− 1)
(g(Y,Z)X − g(X,Z)Y ) , (30)

and

g(R̄(X,Y )Z, ξ) =
r̄

n(n− 1)
(g(Y, Z)η(X)− g(X,Z)η(Y )) . (31)

From (12) and (16) we ahve

g(R̄(X,Y )Z, ξ) = 2 (g(Y, Z)η(X)− g(X,Z)η(Y )) . (32)

Applying (32) in (31), we infer

r̄ − 2n2 + 2n

n(n− 1)
(g(Y,Z)η(X)− g(X,Z)η(Y )) = 0. (33)

If r̄ 6= 2n2 − 2n then

g(Y,Z)η(X) = g(X,Z)η(Y ). (34)

Replacing Y and X by ξ and QX, respectively, we conclude

S(X,Z) = (1− n)η(X)η(Y ) (35)

and

S̄(X,Z) = (3n− 7)g(X,Z) + (1 + n)η(X)η(Y ) (36)

for all vector fields X,Z on M . Therefore, we have the following theorem.

Theorem 3.5. Let M be a concircularly flat LP-Kenmotsu manifold with respect to the
Schouten-van Kampen connection satisfy the condition r̄ 6= 2n2 − 2n. Then manifold M
satisfies a generalized η-Ricci soliton (g, ξ, α, β, µ,−(1+n)α−µ+2β,−(3n−7)α+2β) with
respect to the Schouten-van Kampen connection.

Definition 3.2. A LP-Kenmotsu manifold with the Schouten-van Kampen connection ∇̄ is
called ξ-concircularly flat with respect to the Schouten-van Kampen connection if C̄(X,Y )ξ =
0 for all vector fields X,Y on M .

Now assume thatM is a ξ-concircularly flat LP-Kenmotsu manifold with the Schouten-
van Kampen connection. In this case, we have

R̄(X,Y )ξ =
r̄

n(n− 1)
(η(Y )X − η(X)Y ) . (37)

From (10) and (16) we have

R̄(X,Y )ξ = 2 (η(Y )X − η(X)Y ) . (38)
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Applying (38) in (37), we infer

r̄ − 2n2 + 2n

n(n− 1)
(η(Y )X − η(X)Y ) = 0. (39)

If r̄ 6= 2n2− 2n then η(Y )X − η(X)Y = 0. Replacing Y by ξ we conclude −X − η(X)ξ = 0,
and taking inner product with vector field W we get g(X,W ) = −η(X)η(W ) and replacing
X by QX, we obtain S(X,W ) = (1− n)η(X)η(W ), hence,

S̄(X,W ) = (3n− 7)g(X,W ) + (1 + n)η(X)η(W ). (40)

for all vector fields X,W on M . Therefore, we have the following theorem.

Theorem 3.6. Let M be a ξ-concircularly flat LP-Kenmotsu manifold with respect to the
Schouten-van Kampen connection satisfy the condition r̄ 6= 2n2 − 2n. Then manifold M
satisfies a generalized η-Ricci soliton (g, ξ, α, β, µ,−(1+n)α−µ+2β,−(3n−7)α+2β) with
respect to the Schouten-van Kampen connection.

Definition 3.3. A LP-Kenmotsu manifold with the Schouten-van Kampen connection ∇̄
is called pseudo-concircularly flat with respect to the Schouten-van Kampen connection if
g(C̄(φX, Y )Z, φW )) = 0 for all vector fields X,Y, Z,W on M .

Now assume that M is a pseudo-concircularly flat LP-Kenmotsu manifold with the
Schouten-van Kampen connection. In this case, we have

g(R̄(φX, Y )Z, φW ) =
r̄

n(n− 1)
(g(Y, Z)g(φX, φW )− g(φX,Z)g(Y, φW )) . (41)

Insetring Y = Z = ei and summing for i, we obtain

S(φX, φW ) =

[
−3n+ 7 +

r̄(n+ 3)

n(n− 1)

]
g(φX, φW ). (42)

Using (42) and

S(φX, φW ) = S(X,W ) + (n− 1)η(X)η(W ) (43)

we have

S(X,W ) =

[
−3n+ 7 +

r̄(n+ 3)

n(n− 1)

]
g(X,W ) +

[
−4n+ 8 +

r̄(n+ 3)

n(n− 1)

]
η(X)η(W ). (44)

Hence,

S̄(X,W ) =
r̄(n+ 3)

n(n− 1)
g(X,W ) +

[
−2n+ 8 +

r̄(n+ 3)

n(n− 1)

]
η(X)η(W ). (45)

for all vector fields X,W on M . Therefore, we have the following theorem.

Theorem 3.7. Let M be a pseudo-concircularly flat LP-Kenmotsu manifold with respect to
the Schouten-van Kampen connection and has constant scalar curvatur. Then manifold M
satisfies a generalized η-Ricci soliton (g, ξ, α, β, µ,−bα − µ + 2β,−aα + 2β) with respect to

the Schouten-van Kampen connection where a = r̄(n+3)
n(n−1) and b = −2n+ 8 + r̄(n+3)

n(n−1) .

Definition 3.4. A vector field V is said to a conformal Killing vector field if

(LV g)(X,Y ) = 2hg(X,Y ), (46)

for all vector fields X,Y , where h is some function on M . The conformal Killing vector
field V is called

• proper when h is not constant,
• homothetic vector field when h is a constant,
• Killing vector field when h = 0.
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Let vectoe field V is a conformal Killing vector field with respect to the Schouten-van
Kampen connection and satisfies in (LV g)(X,Y ) = 2hg(X,Y ). By (17) and (20) we have

αS̄(X,Y ) + βhg(X,Y ) + µV [(X)V [(Y ) + ρη(X)η(Y ) + λg(X,Y ) = 0. (47)

for all vector fields X,Y . By inserting Y = ξ in the above equation we get

g((2n− 8)αξ + βhξ + µη(V )V + ρξ + λξ,X) = 0. (48)

Since X is arbitrary vector field we have the following theorem.

Theorem 3.8. If the metric g of a LP-Kenmotsu manifold satisfies the generalized η-Ricci
soliton (g, V, α, β, µ, ρ, λ) where V is and conformally Killing vector field with respect to the

Schouten-van Kampen connection, that is LV g = 2hg then

((2n− 8)α+ βh+ ρ+ λ)ξ + µη(V )V = 0. (49)

Definition 3.5. A nonvanishing vector field V on pseudo-Riemannian manifold (M, g) is
called torse-forming [29] if

∇XV = fX + ω(X)V, (50)

for all vector field X, where ∇ is the Levi-Civita connection of g, f is a smooth function
and ω is a 1-form. The vector field V is called

• concircular [9, 28] whenever in the equation (50) the 1-form ω vanishes identically,
• concurrent [24, 30] if in equation (50) the 1-form ω vanishes identically and f = 1,
• parallel vector field if in equation (50) f = ω = 0,
• torqued vector field [8] if in equation (50) ω(V ) = 0.

Let (g, V, α, β, µ, ρ, λ) be a generalized η-Ricci soliton on a LP-Kenmotsu manifold
where V is a torse-forming vector filed and satisfied in (50). Then

αS̄(X,Y ) +
β

2
[(LV g)(X,Y ) + 2η(V )g(X,Y )− g(X,V )η(Y )− g(Y, V )η(X)]

+µV [(X)V [(Y ) + ρη(X)η(Y ) + λg(X,Y ) = 0, (51)

for all vector fields X,Y . On the other hand,

(LV g)(X,Y ) = 2fg(X,Y ) + ω(X)g(V, Y ) + ω(Y )g(Y,X), (52)

for all vector fields X,Y . Applying (52) into (51) we arrive at

αS̄(X,Y ) +
β

2
[2fg(X,Y ) + ω(X)g(V, Y ) + ω(Y )g(Y,X) (53)

+2η(V )g(X,Y )− g(X,V )η(Y )− g(Y, V )η(X)] + µV [(X)V [(Y )

+ρη(X)η(Y ) + λg(X,Y ) = 0.

We take contraction of the above equation over X and Y to obtain

αr̄ + n [βf + λ]− ρ+ βω(V ) + (n− 1)βη(V ) + µ|V |2 = 0. (54)

Therefore we have the following theorem.

Theorem 3.9. If the metric g of a LP-Kenmotsu manifold satisfies the generalized η-Ricci
soliton (g, V, α, β, µ, ρ, λ) where V is the torse-forming vector filed and satisfied in (50), then

λ = − 1

n

[
α(r + 3n2 − 9n)− ρ+ βω(V ) + (n− 1)βη(V ) + µ|V |2

]
− βf. (55)
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4. Examples

In this section, we give two examples of LP-Kenmotsu manifolds with respect to the
Schouten-van Kampen connection.

Example 4.1. Let (x, y, z) be the standard coordinates in R3 and M = {(x, y, z) ∈ R3|z >
0}. We consider the linearly independent vector fields e1 = z ∂

∂x , e2 = z ∂
∂y , e3 = z ∂

∂z . We

define the metric g by

g(ei, ej) =


1, if i = j and i, j ∈ {1, 2},
−1, if i = j = 3

0, otherwise.

We define an almost contact structure (φ, ξ, η) on M by

ξ = e3, η(X) = g(X, e3), φ =

 0 −1 0
−1 0 0
0 0 0

 ,

for all vector field X. Note the relations φ2(X) = X + η(X)ξ, η(ξ) = −1, and g(φX, φY ) =
g(X,Y ) + η(X)η(Y ) hold. Thus (M,φ, ξ, η, g) defines an almost contact structure on M .
We obtain

[, ] e1 e2 e3

e1 0 0 −e1

e2 0 0 -e2

e3 e1 e2 0

The Levi-Civita connection ∇ of M is give by

∇eiej =

 −e3 0 −e1

0 −e3 −e2

0 0 0

 .

Hence the structure (φ, ξ, η) satisfies the formula ∇Xξ = −X − η(X)ξ and (∇Xφ)Y =
−g(φX, Y ) − η(Y )φX, thus (M,φ, ξ, η, g) becomes a LP-Kenmotsu manifold. Now, using
(16) we get the Schouten-van- Kampen connection on M as follows

∇̄eiej =

 −2e3 0 −2e1

0 −2e3 −2e2

0 0 0

 .

The nonvanishing components of curvature tensor with respect to the Schouten-van Kampen
connection are:

R̄(e1, e2)e1 = −4e2, R̄(e1, e2)e2 = 4e1, R̄(e1, e3)e1 = −4e3,

R̄(e1, e3)e3 = −2e1, R̄(e2, e3)e2 = −2e3, R̄(e2, e3)e3 = −2e2,

Thus, we get S̄ = 4g + 6η ⊗ η. If we assume that V = ξ then LV g = −4(g + η ⊗ η). Then
(g, ξ, α, β, µ, ρ = −6α+ 2β − µ, λ = −4α+ 2β) is a generalized η-Ricci soliton on manifold
M with respect to the Schouten-van Kampen connection.

Example 4.2. Let (x, y, z, u, v) be the standard coordinates in R5 and M = {(x, y, z, u, v) ∈
R3|v > 0}. We consider the linearly independent vector fields e1 = z ∂

∂x , e2 = z ∂
∂y , e3 =

z ∂
∂z , e4 = z ∂

∂u , e5 = z ∂
∂v . We define the metric g by

g(ei, ej) =


1, if i = j and i, j ∈ {1, 2, 3, 4},
−1, if i = j = 5

0, otherwise.
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We define an almost contact structure (φ, ξ, η) on M by

ξ = e5, η(X) = g(X, e5), φ =


0 −1 0 0 0
−1 0 0 0 0
0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 0

 ,

for all vector field X. Note the relations φ2(X) = X + η(X)ξ, η(ξ) = −1, and g(φX, φY ) =
g(X,Y ) + η(X)η(Y ) hold. Thus (M,φ, ξ, η, g) defines an almost contact structure on M .
We have

[, ] e1 e2 e3 e4 e5

e1 0 0 0 0 −e1

e2 0 0 0 0 −e2

e3 0 0 0 −e3

e4 0 0 0 0 −e4

e5 e1 e2 e3 e4 0

The Levi-Civita connection ∇ of M is determined by

∇eiej =


−e5 0 0 0 −e1

0 −e5 0 0 −e2

0 0 −e5 0 −e3

0 0 0 −e5 −e4

0 0 0 0 0

 .

We see that the structure (φ, ξ, η) satisfies the formula ∇Xξ = −X − η(X)ξ and (∇Xφ)Y =
−g(φX, Y ) − η(Y )φX, thus (M,φ, ξ, η, g) becomes a LP-Kenmotsu manifold. Now, using
(16) we get the Schouten-van- Kampen connection on M as follows

∇̄eiej =


−2e5 0 0 0 −2e1

0 −2e5 0 0 −2e2

0 0 −2e5 0 −2e3

0 0 0 −2e5 −2e4

0 0 0 0 0

 .

The nonvanishing components of curvature tensor with respect to the Schouten-van Kampen
connection are:

R̄(e1, e2)e1 = −4e2, R̄(e1, e2)e2 = 4e1, R̄(e1, e3)e1 = −4e3,

R̄(e1, e3)e3 = 4e1, R̄(e1, e4)e1 = −4e4, R̄(e1, e4)e4 = 4e1,

R̄(e1, e5)e1 = −2e5, R̄(e1, e5)e5 = −2e1, R̄(e2, e3)e2 = −4e3,

R̄(e2, e3)e3 = 4e2, R̄(e2, e4)e2 = −4e4, R̄(e2, e4)e4 = 4e2,

R̄(e2, e5)e2 = −2e5, R̄(e2, e5)e5 = −2e2, R̄(e3, e4)e3 = −4e4,

R̄(e3, e4)e4 = 4e3, R̄(e3, e5)e3 = −2e5, R̄(e3, e5)e5 = −2e3,

R̄(e4, e5)e4 = −2e5, R̄(e4, e5)e5 = −2e4.

Hence, we obtain S̄ = 10g + 2η ⊗ η. If we consider V = ξ then LV g = −4(g + η ⊗ η).
Therefore (g, ξ, α, β, µ, ρ = −2α + 2β − µ, λ = −10α + 2β) is a generalized η-Ricci soliton
on manifold M with respect to the Schouten-van Kampen connection.

5. Conclusions

The main study of the paper is to obtain geometrical conditions and characteristics of
generalized η-Ricci solitons with respect to the Schouten-van Kampen connection to apply
their existence in a LP-Kenmotsu manifold. We first assume that (g, fξ, α, β, µ, λ) satisfies
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in a generalized η-Ricci soliton and we show that in this case, maifold is a η-Einstein LP-
Kenmotsu manifold. Then, we show that any η-Einstein LP-Kenmotsu manifold satisfies
in a generalized η-Ricci soliton. Also, we give some geometric conditions on LP-Kenmotsu
manifolds which under these condition manifolds satisfy in generalized η-Ricci solitons. Then
we study a generalized η-Ricci soliton (g, V, α, β, µ, λ) on LP-Kenmotsu manifolds when
vector field V is a conformal Killing vector field or a torse-forming vector field. There
are some quastions that have arisen from our article and are a potential study for further
research.
(1) Are the results of this paper also hold in other classes of Riemannian and Lorentzian
almost contact manifolds?
(2) Are the results of this paper also are true if we consider ∗-Ricci tensor instead of Ricci
tensor, that is, we consider generalized ∗-η-Ricci solitons?
(3) Are the results of this paper also hold when we consider another connection instead of
Shouten-van Kampen connection?
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