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We point out new applications of earlier results on constrained extension of linear
operators. In section 2, similar results with respect to previous ones on the Riesz
decomposition property, but now for arbitrary linear bounded operators are proved.
Increasing continuous sublinear dominating operators play a central role in both sections 2
and 3. In section 3, decomposition as differences of positive bounded linear operators is
investigated. Under appropriate assumptions, one proves that the space BiX.¥1of all
bounded linear operators from X into ¥ is an order complete Banach lattice. Finally,
section 4 focuses on a constrained optimization problem.

Keywords: constrained extension of linear operators, decomposition,
equicontinuity, moment problem, constrained optimization
MSC 2010: 47A57, 46B42, 49J45

1. Introduction

Using Hahn — Banach type results in proving several other main theorems in
functional analysis and their consequences is a well - known technique. Most of
the works in the References of the present article contain more or less direct
applications of Hahn-Banach principle, or proofs of extension - results similar to
Hahn-Banach theorem. For terminology and results related to Sections 2 and 3 of
the present work see [1] - [5]. Constrained extension type results for linear
operators have been intensively applied in solving moment problems, especially
in solving Markov moment problem and related problems (see [6], [10]-[15] and
many other works). Uniqueness and construction of the solutions of Markov
moment problems are partially solved in [7] and [11]. In [8], a necessary and
sufficient condition for the existence of a linear extension of a linear operator,
preserving two constraints is stated and partially proved. Some consequences are
formulated in the same work, without proofs. Complete proofs of these results
(and of many other related theorems) can be found in [9]. Applications to the
abstract moment problem are stated in [10]. Further applications to the classical
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moment problem are proved in [6], [11] — [15]. The article [13] contains a
polynomial approximation result valid on unbounded subsets, whose proof is
using Hahn — Banach theorem. The first purpose of this paper is to prove similar
results to those from [4] (respectively from [5]), but for spaces of bounded linear
operators. Namely, one assumes that the target space F is an order complete
(Dedekind complete) normed vector lattice. The domain space E is an arbitrary
normed vector lattice. Thus, one obtains new statements for theorems 2.1, 3.1 [4]
and respectively theorems 1, 2 [5] (see section 2). All the theorems in Section 2
refer to applications of Hahn-Banach type results to the Riesz decomposition
property in spaces of linear continuous operators. For similar previous results on
this subject, see [3] - [5], [16] - [19]. It is possible that some of the extension
results of section 2 to be partially known. In this case, the contribution of Section
2 of the present paper is to give new simple proofs for such results, based on a
general earlier result mentioned above [8], [9]. The second purpose of this work is
to point out the possibility of decomposition of each element of an equicontinuous
family of linear operators as a difference of positive linear operators, such that the
corresponding families of the latter (positive) linear operators to be
equicontinuous too (section 3). Uniform evaluation of the norms is studied too.
Both Sections 2 and 3 are based on the idea of the existence of a dominating
increasing sublinear continuous operator. In the end of section 3, under
appropriate assumptions, one proves that the space B(.X, ¥} of all bounded linear
operators from X into ¥ is a Dedekind complete Banach lattice. A characteristic of
the present work which is new is that of proving results valid for BLX, ¥). Similar
(but not identical) previous results are proved for the spaces L (X, ¥ (the space of
all linear regular operators from X into ¥ , that is the space of those operators
which can be written as a difference of two linear positive operators) and
L7(X, ¥), the space of all operators which are differences of linear continuous
positive operators. Finally, the third purpose of this work is to solve constrained
optimization problems in infinite dimensional spaces, related to special Markov
moment problems [7] (Section 4). The background of the present work consists in
some chapters from [16] — [19]. The rest of the article is organized as follows.
Section 2 is devoted to Riesz decomposition property in spaces of bounded linear
operators and related results. In Section 3, decomposition of linear bounded
operators as differences of positive linear bounded operators is investigated. The
equicontinuity of the resulting families of linear positive operators is investigated
too. Under additional assumption on the target space ¥, one proves that the space
of all linear bounded operators B X,Y] is an order complete Banach lattice.
Section 4 focuses on a constrained optimization problem in infinite dimensional
spaces. Section 5 concludes the paper.



Extension and decomposition of linear operators [...] increasing sublinear operators 135

2. On Riesz decomposition property for linear bounded operators

We start this section by recalling some known results on the subject. A
conjecture posed by A. W. Wickstead [3] found a positive answer (Theorem 3.1
[4]). This theorem is a consequence of the following extension — type result.
Theorem 2.1 (see [2], Th. 3.5and [4], Th. 2.1). Let X and ¥ be Banach lattices,
such that X is separable and ¥ has the countable interpolation property, and let
F: X = Y be a continuous sublinear operator. If X; is a vector subspace of X and
U: X, = F is a linear continuous operator satisfying &{x) = P(x] for all x € X,
then there exists a linear extension I of ¥ to all of X also satisfying &(x) =< Pix)
forall x € X.

Using Theorem 2.1, in [4] one proves the following main positive answer to the
conjecture mentioned above.
Theorem 2.2 (see [4], Th. 3.1). Let E,F be two Banach lattices such that E is
separable and F has the countable interpolation property. Then the space of all
continuous regular operators 2"(E, F ) has the Riesz decomposition property.
For statements and proofs of the above theorems formulated in a more general
setting see [5]. We recall our necessary and sufficient condition on the extension
of a linear positive extension, which generalizes H. Bauer’s theorem ([19],
Theorem V. 5.4; see also [8], [9], [10]).
Theorem 2.3 (see [8], Th. 2 and [9], Th. Ill. 2). Let X be a preordered vector
space of positive cone X, ¥ an order complete vector lattice, P: X =+ ¥ a convex
operator, X; © X a vector subspace, U: X; —+ ¥ a linear operator. The following
statements are equivalent:

(@) &r admits a linear positive extension &: X —+ ¥ such that

Hix) = Plx),¥x € X
(b) Uix") =< P(x)forall (x",x) € X, » X such that x" < x.

Theorem 2.3 was published firstly in [8], without proof. Its detailed proof and
related results can be found in [9] (see [9], p. 978 — 980). In the sequel, we
deduce some new results from this theorem.
Corollary 2.1. Let X, ¥, X, U, P be as in Theorem 2.3. Assume that F verifies the
additional condition: P(x") =< P(x] for all (x',x) € X, * X such that x* = x. The
following statements are equivalent:

(@) ¥ admits a linear positive extension X =¥ such that

Hx) < Plx),v¥x X,
(b) Ulx") = P(x")forall x' € X,
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Proof. The implication (a)=(b) is obvious. To prove the converse, we apply the
implication (b)=(a) of Theorem 2.3. Namely, due to the assumption on P, the
following relations hold
U(x") = P(x") = P(x) for all (x,x) € X, > X such that x = x.

Thus, condition (b) from Theorem 2.3 is verified. Application of the latter
theorem leads to the conclusion of the Corollary 2.1. The proof is finished. O
Corollary 2.2. Corollary 2.1 is valid in the particular case when the following
stronger condition on P holds: P(x') < Pix) for all (x',x) € X x X such that
x' = x
Example 2.1. Let X, ¥ be as above. Assume that X is a vector lattice. Let I X¥ =+ ¥
be a positive linear operator. Then P: X — ¥ defined by P(x) = U(x*),x € X is
a sublinear operator which verifies the monotony condition from Corollary 2.2.
Corollary 2.3. Let X, ¥ be normed vector lattices, such that ¥ is order complete,
F: X = Y asublinear continuous operator satisfying the monotony condition from
Corollary 2.2. Let X4 U be as in the statements of corollaries 2.1, 2.2. The
following statements are equivalent

(a) ¥ admits a linear bounded positive extension &: % — ¥ such that

Fx) = P(x),¥x X,
(b)) U(x") = P(x") forall x' € X,

Observe that Corollary 2.3 follows directly from Corollary 2.2. The continuity of
7 is a consequence of continuity of £ and of the relation & =< P on X. Also,
completeness with respect to the corresponding norms seems to be not important.
In the sequel, we prove the main result of this section. It shows that in the case
when E, F are normed vector lattices, such that F is order complete, the space
B(E,F) of all bounded linear operators from X into ¥ has the Riesz
decomposition property. Observe that contrary to Theorem 3.1 [4], the concerned
operators from Theorem 2.4 are not assumed to be regular. The proof is based on
Corollary 2.3 and also on the ideas of the proof of Theorem 3.1 [4], without
repeating technical details which remain unchanged. In the sequel, E will be an
arbitrary normed vector lattice.
Theorem 2.4. Let E, F be normed vector lattices, such that F is order complete.
Then the space B{E, F has the Riesz decomposition property.
Proof. Let T', 5,, 5, be linear bounded positive operators from E into F such that

T<5+5,.
We have to prove the existence of two linear operators Ty, T, € B(E, F) with the
properties

0=T, =5, j=12,
T=T,+ T,
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Consider the normed vector lattices X := E x E with the canonical order and
norm, and ¥ = F. Define
P:X=EXE—Y=FPxyx,) =850+ 5N (x,x, )€ EXE.
Obviously, P is a sublinear operator. Moreover, it is an increasing operator,
satisfying the monotony condition from corollary 2.2 (it is the sum of two such
linear operators, defined in example 2.1). Since the lattice operations on X are
continuous and §,, 5, are bounded, F is continuous too. Consider the subspace X
of X defined by X;={{xx)ix€E} and define & X;—=F by
Ulx,x) =Tix),x €E. U is a linear continuous operator and, as in the proof of
Theorem 3.1 [4], one shows that
Ulx,x) <P(x,x),xEE.
Thus ¥ <= P on X;. Application of Corollary 2.3 leads to the existence of a linear
positive (continuous) extension & of & to the whole space X = E x E, such that
O (xy,x,) = Plxy,x,), (x,,%,) EEXE.

Define

T,(x) = I (x,0), T,: E > F,

T,ix) = T (0,x), T, E = F.
By the proof of theorem 3.1 [4], Ty, T, are the desired operators. Moreover, from
the previous relations O0<T,<S, f=12, one deduces easily that

|7y = [|5;].7 = 1.2 (one uses the fact that the norms on F,E are
solid:|x4| < |x,| = llxy Il = [Ix,1). The proof is finished. O

3. Decomposition of a bounded linear operator as a difference of two
positive bounded linear operators

In this section we characterize the property of decomposition of a linear
operator dominated on the positive cone by an increasing continuous sublinear
operator, as a difference of two linear positive continuous operators. Related
results on equicontinuous families of operators are mentioned too.

Theorem 3.1 (see [8], Th. 3 and [9], Th. Ill. 4). Let X, ¥, F be as in theorem 2.3,
Ir. X = ¥ alinear operator. The following statements are equivalent
(@) & admits a decomposition & =, —,, with U,, U, positive linear
operators such that ¥;{x} = P(x), x € X;
(b) ¥ic') = Pleciforall (¢, c) € X, % X suchthate' < ¢.

Theorem 3.1 was stated for the first time in [8]. Its detailed proof can be found in
[9], p. 982-983.

Corollary 3.1. Let X, ¥ be normed vector lattices, such that ¥ is order complete,
F: X = ¥ asublinear continuous increasing operator on the positive cone = X,
(Ple") < Pic) for all (c',c) € X, x X, such that ¢’ < ). Assume additionally
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that P(x) = P{—x),x € X. Let {Uf};e; be an equicontinuous family of bounded

linear operators from X into ¥. The following statements are equivalent

(a) there exist two equicontinuous families {ULJ'};E;’{UM}}-E; of linear

bounded positive operators such that &, = &, ; — U, , Uy ; = P on X for
allye J;
(b) UJ,I':c] =Plelce€EX, jET

Proof. We only have to prove that (&} = (], since the converse is obvious. Let
(¢',c) € X, % X, besuchthat ¢’ < e
Then from (b) and the monotony property of P, we derive:
U,(c') = P(c') = P(c),j €] Theorem 3.1 ensures the existence of positive
linear operators Uy , U, ; suchthat &, = U, . — U, Uy ; =PonX,j €] Now
Uy (x) = P(x) = |P(x),x € X = —Uy (x) = U (—x) = P(—=x) = P(x)
Z|Px)ljer=

Uy (x| = |P(x)jelx€X.
Since the norms on ¥, X are solid, one deduces that

||U1U,-[xj|| = ||Plx)lllxeX,jE]
The continuity of P and || |l at the origins of .X, respectively ¥ leads to the
continuity of I Il 2P at 0, Hence, there exists a radius r = 0 such that
IECx3]l = 1 for all x = X with [|x]l <= ». From the relations written two lines
above, we infer that ||&r, ;(x)|| < 1 for all x € X such that [lx]l < » and for all

i€ J. Thus, the family {ULI}}-E; is equicontinuous. Since {Uf};e; was assumed to

be equicontinuous and U,;=1U,—U,j ] it follows that {Uzu,.}}_EJr IS
equicontinuous too. This concludes the proof. m|
Corollary 3.2. Let X,¥, {Uf};e; be as in corollary 3.1, and V¥ € BL(X,¥) a

(bounded) positive linear operator applying X into ¥. The following statements
are equivalent
(a) there exist two equicontinuous families {ULJ.}}_ o {Uz,;}}. ., Of linear
bounded positive operators such that &, = &, ; — U, , Uy ;(x) < [V(x]l,x € X,
j € 7 (in particular Uy || = IVILj € 5);
(b) Uc)=ViclcEX,JE]T

Proof. One applies corollary 3.1 to F defined by P(x) = [V{x])],x € X. It is easy
to see that P verifies all conditions from the statement of corollary 3.1, and F = ¥
on the positive cone X.. The conclusion follows. |
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Remark 3.1. The set of all sublinear operators F: X —+ ¥ which are monotone on
X, in the sense specified in corollary 3.1, and have the property
P(x) =P(—x),x€ X, is closed with respect to the addition and “sup” —
operations.

A question which appears naturally is the following one: which are concrete
sublinear operators F verifying the two conditions mentioned in corollary 3.1 and
how such examples can be applied? A partial answer was given in [9], theorem
I11. 5, p. 983. Now we prove a similar result, adapted to the case of normed vector
lattices setting. In this particular case, an evaluation of a common upper bound for
{ler;|I: 7 € 7} is deduced.

Corollary 3.3. Let X, ¥ be normed vector lattices, such that ¥ is order complete,

it has an order unit w4 and its unit ball is the order interval [—t4,1t5]. Let {Uf};e;

be an equicontinuous family of bounded linear operators from X into ¥. There
exist two equicontinuous families {ULJ'}}-E;*{UZJ};E; of linear bounded positive
operators such that

Uy = Uy — Uy Uy () (1)l x €X,FET,
where r == 0 is sufficiently small such that UJ,.[E{D; rj] C [—ugity), €T In
particular, ||y ,|| = 1/r,7 €.

Proof. For x € X{0}, (ﬁ:] € B(0;7), hence ﬁuj{xj € [—ug 1), that is

1
+U,(x) < = lxllag. € 1

Apply Corollary 3.1 to P(x) == % llx|l1¢4, x € X. Since the norm on X is solid and
symmetric, it is clear that the sublinear operator F has the two properties
mentioned in the statement of corollary 3.1. Application of the latter corollary
shows that ¥, ,(x) = (1/r)llxllzey,x € X, j € J. Replacing x by - x one obtains
Uy ()| < (1/r)llxlluy . x € X, F€F Now the relations ||&r, ;|| < 1/r,j €]
follow from the fact that the norm of ¥ is solid too. This concludes the proof. O
Corollary 3.4. Under the hypothesis and with the notations from Corollary 3.3, if
M= mp}'ej”“}”! then ”ULJ'” =Mje]
Example 3.1. Let
€ (01X =Y =L ([ 1)U (g)(t) =t7@(t)t € [-s1]pec
L_([—=z1]),j EN.

Then it easy to see that sup; || ;|| = 1 (= M. One obtains
Uy = Uy, — Uy, Uy (@)() = 0,8 € [—5, 0L Uy (@) (8] = t7 (1), £ € [0,1];
Uy (@) (t) = =t @(t) t e [—5 0L Uy (@)(E) =0t € [01]j €T =N
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It is easy to see that sup;y|| Uy, || =1 (= 2), sup, || U,]| = 2 < 1. So this
example shows that the case sup,||Uy,|| = sup, ||| may occur, while in
general, sup, o |[Uy, || # supe | U]
For two normed vector lattices X, ¥, recall that one denotes by L (X, ¥ the space
of all linear regular operators from X into ¥ (that is the space of those operators
which can be written as a difference of two linear positive operators). By £7(.X, ¥}
one denotes the space of all operators which are differences of linear continuous
positive operators.
Theorem 3.2. Let X, ¥ be Banach lattices, such that ¥ is order complete, has an
order unit w4 and its unit ball is equal to the order interval [—tt4.1t5]. Then we
have B(X,¥) = £7(X,¥) = L"(X, Y] and the space B(.X, ¥) is an order complete
Banach lattice with respect to the operatorial norm.
Proof. Relation B(X ¥} c £7(X,¥) follows from Corollary 3.3 (or from
Corollary 3.4). The converse inclusion - relation is obvious, so that the equality
B(X,¥) = £7(X.Y) is proved. On the other hand, Proposition 1.3.5 [17] claims
that every positive linear operator applying a Banach lattice X into a normed
vector lattice ¥, is continuous. Hence L7(X, ¥)=LT(X¥]). Thus,
B(X, Y) = £"(X,Y) = L"(X,Y). Application of Theorem 1 from [16], p. 162 —
163, proves that L"(.X, ¥} is an order complete vector lattice. Hence B(X, ¥ has
the same property with respect to the usual order relation. It is also a Banach
space with respect to the usual operatorial norm, since ¥ is a Banach space, hence
it is complete as a metric space. It remains to prove that B(X,¥) is a Banach
lattice, that is:
U,V e By, U = v = U <

This assertion is equivalent to the fact that the unit ball of the space B(X, ¥
(which — will be  denoted by By, is a solid  subset:
UVeB(XY),VeB, Ul =|V|=2UeB;. Since VeB,, also using the
assumptions on ¥, as well as the formula for computing |¥| in the space
L"(X,¥) = B(X,¥) proved in [16], Proposition 3, p. 164, we derive that
lxll = 1= U] = [UIC|x]) = [VI(]x])

= 5|yt ot V()] < s 1) VO] < g

(we have used the fact that the norm on X is solid, and also the relation
V(B(0,; 1) © [—ugu,])). The norm on ¥ being also solid, one deduces:

lxll = 1 = 1T = lluy [ =1,
that is & € By. Thus By is solid, and so is the norm on B(X, ¥. This concludes the
proof. O
Corollary 3.5. Let X, ¥ be as in Theorem 3.2. Then B(X,Y) is Archimedean and
has the Riesz decomposition property.
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4. A Markov moment problem and related optimization

This Section starts by recalling briefly one of the earlier extension type
results [10] and, on the other hand, by formulating one main problem due to
Douglas Todd Norris’ PhD Thesis, entitled “Optimal Solutions to the L_infinity
Moment Problem with Lattice Bounds” [7], directed by Professor Emeritus
Robert Kent Goodrich. The latter work suggested us the results of this section.
One proves a result in a general setting, motivated by a similar problem to that
considered in [7] (theorem 4.2 from below). A constrained related optimization
problem in infinite dimensional spaces is solved too. The next result refers to the
abstract moment problem [10], and is based on constrained extension theorems for
linear operators [8], [9]. It will be applied in the sequel.

Theorem 4.1. Let X be a preordered vector space with its positive cone X Y
an order complete vector lattice, {Xj}jcj < X, {Y}jcs =Y given families,

Uy, Up e L()Z,Y) two linear operators. The following statements are equivalent:
(@) there exists a linear operator U e L()Z,Y) such that

Ui(\) SU(X) <Up(x), WxeX,, U(xj))=yj, Vjed;

(b) for any finite subset J, = J and any {A;};.;, = R, we have:

D AXj =02 =01 Lo € X, |= D 4jyj <Uz(e2)-Ui(en).
jedo jedo

In particular, using the latter theorem, one obtains a necessary and sufficient
condition for the existence of a feasible solution (see theorem 4.2 from below).
Under such condition, the existence of an optimal feasible solution follows too.
On the other hand, the uniqueness and the construction of the optimal solution
seems to be not obtained easily by such general methods. Therefore, we focus
mainly on the existence problem. For other aspects of such problems on an
optimal solution (uniqueness or non — uniqueness, construction of a unique
solution, etc.), see [7]. In the latter work, one considers the following primal
problem (P)

v:inf{||¢||oo:(pe|_°;(X), jx opidu=bj, j=12,..n, OSaS(pSﬁ}
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where o, are in Lﬁ(X), {(pj}rj‘:l is a subset of Lﬁl(X) and

b=(b,b,,...,0,)" €eR". The function ¢ is unknown, and in general it is not

determined by a finite number of moments. The next theorem generalizes some of
the above existence — type results for a feasible solution. Here (X, 5} is a measure
space endowed with a @ — finite positive measure j, and 5 is the @ — algebra of
all measurable subsets of X.

Theorem 4.2. Let pe[loo) and g be the conjugate of p. Let {9;};.;, be an

arbitrary family of functions in LE(X), where the measure p is o — finite, and
{b;};.; a family of real numbers. Assume that «,p e Lﬂ,(X) are such that
0 < a <. The following statements are equivalent:
(a) there exists ¢ e L‘jI(X) such that J'X eo;du=b;,j € L0<a<p<pP;
(b) for any finite subset J, = J and any {‘11'}}-5; c R, the following
implication holds
> Ajoj=vo-v1, vwa e(Lh(X) = D 4jb; ij wZﬂdﬂ—Ix yradu

jedo jedo
Moreover, the set of all feasible solutions ¢ (satisfying the conditions (a)) is

weakly compact with respect the dual pair (L?,L%) and the inferior

V::inf{||g0||q:gpeLal(X), -[X ppjdu="Dbj, jel, OSOthoS,B}ZHqu

Is attained at an optimal feasible solution ¢, at least.

Proof. Since the implication (a) = (b) is obvious, the next step consists in
proving that (b) = (a). Define the real valued linear positive (continuous) forms

Up,Uj on X = LE(X), by

Ui(p)=|, padu. Ua(o)=], opdu peX.

Then condition (b) of the present theorem coincides with condition (b) of theorem
4.1. A straightforward application of the latter theorem, leads to the existence of a

linear form U on X , such that the interpolation conditions U(gj) =bj, jeld
are verified and

jx WoﬂﬂSU(V/)SIX Ay, weX, .
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In particular, the linear form ¥ is positive on X = LE(X), and this space is a

Banach lattice (in particular, X isa complete metric topological vector space and
an ordered vector space, whose positive cone X + Is closed and generating). It is
known that on such spaces, any linear positive functional is continuous (cf. [19],
ch. V, sect. 5). The conclusion is that & can be represented by means of a

nonnegative element ¢ L‘},(X). From the previous relations, we derive
< < X
fx !//adu—fx l/f(ﬁdu—fx wyAp, yeX, .

Writing these relations for y = yg, where B is an arbitrary measurable set of
positive measure u(B), one deduces

jB (p—a)du>0, IB (B—@)du>0, BeS, u(B)>0.

Then a standard measure theory argument shows that a <@ <3 a.e. This finishes

the proof of (b) = (). To prove the last assertion of the theorem, observe that the
set of all feasible solutions is weakly compact by Alaoglu’s theorem (it is a

weakly closed subset of the closed ball centered at the origin, of radius || B |,). On

the other hand, the norm of any normed linear space is lower weakly semi -
continuous. The conclusion is that the norm ||-[|, is weakly lower semi-

continuous on the weakly (convex) and compact set described at point (a), so that
it attains its minimum at a function o, of this set. Hence, there exists at least one

optimal feasible solution. This concludes the proof. O

Remark 4.1. If the set {q:u].}_ET is total in the space L}, (X), then the set of all
1

feasible solutions is a singleton, so that there exists a unique solution.

5. Conclusions

We have proved new results or gave modified statements and proofs for theorems
similar to previous ones, by means of earlier theorems on extension and
decomposition of linear operators. It is possible that further related applications
can be found particularizing the theorems proved above to concrete spaces. An
optimization problem related to Markov moment problem is discussed as well.
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