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THE ANALYSIS OF A REACTIVE HYDROMAGNETIC
FLUID FLOW IN A CHANNEL THROUGH A POROUS
MEDIUM WITH CONVECTIVE COOLING

Anthony Rotimi HASSAN! “and Riette MARITZ?

This paper investigates the analysis of a reactive hydromagnetic fluid
flowing between two parallel plates through a porous medium with convective
boundary conditions. Neglecting the consumption of the material which is
exothermic under Arrhenius kinetics; it is assumed that the flow system exchanges
heat with the ambient following Newton’s law of cooling. Approximate solutions of
the nonlinear dimensionless equations governing the fluid flow are obtained using
the traditional perturbation method and Adomian decomposition method (ADM).
Also, the diagonal Pade approximation technique is used to determine the thermal
criticality values as well as bifurcation conditions. The entropy generation analysis
and effects of all — important flow properties on the fluid flow are also presented
and discussed.

Keywords: Reactive fluids, porous medium, thermal criticality, entropy
generation, convective cooling, Adomian decomposition method
(ADM), Pade approximation technique and Arrhenius kinetics.

1. Introduction

Over the past few decades, studies relating to analysis of a reactive
hydromagnetic fluid flow are on the increase due to its immense applications in
many engineering and industrial processes as described in [1] — [6] such as,
petroleum industries, chemical engineering, etc. In a reacting material undergoing
an exothermic reaction in which reactant consumption is neglected, heat is being
produced in accordance with Arrhenius rate law and Newtonian cooling where
convection forms an integral part of heat transfer due to differences in ambient
temperatures. The process of convection not only affects heat transfer, but also
helps maintain comfort conditions. In addition to that, [7] mentioned that thermal
explosions occur when the reactions produce heat too rapidly for a stable balance
between heat production and heat loss to be preserved.

Moreover, studies involving the fluid properties in a channel through a
porous medium have been investigated in [8] — [11], just to mention few. Also,
studies in [12] — [16] examined fluid flowing between walls with convective
cooling effects because of its importance in technological applications, for
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example, the cooling processes of nuclear reactors and refrigerators where
investigations were done on convective boundary conditions of the flow system.

However, as discussed in [11], it is needed to find out the property of
porous medium which measures the capacity and ability of the formation to
transmit fluids. Hence, in the present study, the analysis of [6] and [17] are
extended to include and investigate the effects of fluid flow through a porous
medium and symmetrical convective cooling on the overall flow structure in a
reactive hydromagnetic fluid between two parallel porous plates which was not
accounted for in the previously obtained results.

This present study has significant benefits in engineering and industrial
processes where there is an inherent simplicity for the applications just requiring
some provision for natural heat flow to the ambient which is often achieve by
adequate venting on the system of flow rather than forced convection. In order to
obtain approximate solutions for the nonlinear dimensionless equations governing
the fluid flow, traditional perturbation method shall be used to determine the
temperature profile. Also, entropy generation analysis shall be investigated while
Adomian decomposition method (ADM) together with the diagonal Pade
approximation technique shall be used to determine the thermal criticality values
as well as bifurcation conditions of the fluid flow system.

In the rest of this paper, the problem is formulated in section 2. The
governing equations are solved using traditional perturbation method in section
3.The entropy generation analysis were derived and the thermal criticality
conditions were determined using ADM and diagonal Pade approximation
technique in section 4. Presentations of analytical results of the problem are
shown in tables and graphs in section 5; while section 6 gives the concluding
remarks.

2. Mathematical Formulation

Let us consider the steady flow of an incompressible reactive fluid through
a channel made up of two parallel porous plates distant 2a apart and the fluid is
subjected to convective cooling at the boundaries. The fluid is electrically
conducted under the influence of a transversely applied magnetic field, B,. The x-

and y-axes are chosen parallel and perpendicular to the plates respectively as
shown in Fig. 1.
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Figure 1: Geometry of the problem

Neglecting the consumption of the reactant, the differential equations
governing the fluid flow in non — dimensionless form as in [6] and [17] may be
written as:

dP d?u

- = — Bza——a 1
dx ,Udy2 OBy K 1)
d*T  (du) £ -2 g
k—+u| —=| +QC,Ae /T +¢0,B,”U +=u =0 (2)
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The flow is symmetric about the vertical x — axis. Hence the corresponding
boundary conditions along the channel centreline is given as

d—E:d—I=00n§:O and
dy dy
G=0,kd—I:—h('|_'—T0) ony=+a. (3)
dy

In equations (1) — (3), u is the axial velocity, T is the absolute Temperature, P is
the modified pressure, x is the fluid viscosity, oo is the electrical conductivity, B,

is the magnetic field, K is the porous permeability of the medium, k is the thermal
conductivity, Q is the heat of reaction term, C, is the reactant species initial
concentration, A is the reaction rate constant, E is the activation energy, R is the
universal gas constant, h is the heat transfer coefficient, a is the channel half width
and X,y is the coordinate system measured in the axial and normal directions
respectively. It should be noted that the last term in equations (1) and (2) are due
to the influence of porosity as in [8 — 11]. Also, the first term in equation (4) is the
rate of heat transfer while other terms account for viscous dissipations and
magnetic effect.
Introducing the following dimensionless parameters and variables:
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The governing boundary value problem equations (1) — (3) become the
following in dimensionless form:

d—2u+G—(H2+a)u—O ®)
dy? '
2 T 2
d-|2-+/1 eMoT 4y du +(H2+a)u2 =0 (6)
dy dy
together with the boundary conditions
d_T=d_u=0 on y=0 and u:O,d—T:—BiTon y=1 (7
dy dy dy

In equations (1) — (7), other variables and parameters like To is the wall
temperature, G is the pressure gradient, U is the fluid characteristic velocity, ¢ is
the activation energy parameter, y is the viscous heating parameter, « is the porous
medium permeability parameter, Br is the Brinkman number, H is the Hartmann
number, Bi is the Biot Number, 4 is the Frank — Kamenettski parameter, Q is the
wall temperature parameter and Da is the Darcy number.

3. Perturbation Method

The fluid velocity equation (5) is a linear second order non-homogeneous
differential equation that has exact solution with the appropriate boundary
conditions as

G —GCosh[yvH? + ]
1] H?2(~G + GCosh[vH? + a])Cosh[yvH? + «]Sech[VH? + ] .

u(y) = vE

+a H? +a
. a(~G + GCosh[VH? + a])Cosh[yv/H? + a]Sech[vH? + ]
L H? +«a i
(8)

Substituting (8) in (6), it will be convenient to assume a series solution in the
Frank Kamenettski parameter due to the non-linear nature of (6) in this form
following [18]:
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T() =2 AT,() (©)

.
Where 0 < A << 1, clearly, e can be Taylor’s series expanded, using the
solution series (9) in (6) and equating the orders of A, we obtain and solve the
following:

d’T,
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) 0y’ (10)
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2 Ty 2
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dy dy
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TO
2 1+6T,
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such that T,'(0) =0, T, '(1) = —-BiT,(1) and so on.
Solving equations (10) — (13) give us the fluid temperature profile and the effects
of physical aspects of the flow properties are discussed in section 5.

4.1. Entropy Generation Analysis

The total entropy change observed in a closed system is the sum of the
entropy change which can be attributed to reversible heat transfer and the entropy
change attributable to irreversibility. Although, it is difficult to directly measure
the magnitude of irreversibility in a closed system, but can be calculated from the
entropy generation equation. The entropy production is due to heat transfer and
the combined effects of fluid friction and Joules dissipation. Following [3, 5, 6
and 20], the general equation for the entropy generation per unit volume in the
presence of a magnetic field and porous medium is given by:

—\2 —\ 2 =2 —2
sno K |AT ) pupdu) 0Bl | au (14)
Ty \dy Toldy Ty KT,
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The first term in (14) is the irreversibility due to heat transfer; the second term is
the entropy generation due to viscous dissipation and the last two are the local
entropy generation due to the effects of magnetic field and porosity respectively.
We express the entropy generation number in dimensionless form using the
existing dimensionless variables and parameter in (4) as:

ma2p2 2 2
NS 3BT (AT Brifdul gz gy (15)
kR"T, dy Q(\dy

2
The first term, (z—T} is assigned N1 which is the irreversibility due to heat
y

2
transfer and the second term, %Kg—uj +(H? +a)u2] referred to as Nz is the
y

entropy generation due to the combined effects of viscous dissipation, magnetic

. . . RT, .
field and porosity of the flow regime where Qz?‘) is the wall temperature

parameter. We defined
N2
=2 16
¢ N, (16)
as the irreversibility distribution ratio. Relation (16) shows that heat transfer
dominates when 0 < ¢ <1and fluid friction dominates when ¢ > 1. This is used to

determine the contribution of heat transfer in many engineering designs. As an
alternative to irreversibility parameter, the Bejan number (Be) is defined as

Be=—=i¢ where 0<Be<1. a7

4.2. Thermal Criticality

The analysis of the thermal criticality for the fluid flow through a porous
medium with convective cooling is done by using Adomian Decomposition
Method (ADM) and Pade approximation to obtain the solution of the non — linear
boundary value problem equations governing the fluid flow.
Using ADM, the solution of the temperature profile is given as

T(y)ao—/ljxf{e%+y{[j—;j +(H2+a)uzﬂdydy (18)

where a, =T (0) is to be determined by using the boundary conditions.
The ADM requires that the approximate solution is the partial sum

T(y) = Z_‘,Tn(y) (19a)
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of the following series
T(y) =2 T.(y) (19b)
n=0

where the components T,,T,,T,,...,T, are to be determined. Writing the non —
linear term in (18) as a series of Adomian polynomials, we have

Sam=e = (20)
such that (18) becomes
vyl o d 2
T(y)=aoﬂjj{zoﬁh(y)+y((£j +(H? +a)u dedy (21)
00| ™

and some of the Adomian polynomials obtained from (20) are
To(y)

A = e () (22a)
To(y)
_ () (22b)
[1+ 5Ty (y)]
To(y)
"0 [ (1226 = 28°T, () )T, (¥)” + 200+ STy (V) To(¥)) |
A = ; (22¢c)
2[1+68To(y)]

Following [3, 4, 17 and 20] and taking the zeroth components of (21), we have
To(y) =9 (23)
T.(y)=-A[ [%(y)w[( yj +(H? +a)u dedy (24)
Toa(y)=-2 j j A (Y)dydy , n>1 (25)

To this end, the diagonal form of the series solutions (19a) is evaluated using the
built — in Pade approximant procedure in MATHEMATICA and the boundary
conditions in (7) given as:

T'(Q)=-BiT() (26)
Taking the diagonal Pade approximant of (19a) at various values leads to an
eigenvalue problem. To show that the series converge, the unknown constant a,is
evaluated using values for the known parameters. The critical values of the Frank
— Kamenettski parameter (A4,) for the non — existence of solution or thermal

runaway for the fluid flow are presented and discussed in the next section.
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5. Discussion of Results

In this section, we discuss the solutions of velocity and temperature
profiles, solution branches, entropy generation and thermal criticality for
hydromagnetic fluid flow through a porous medium with convective cooling.

The rapid convergence of the series solutions of the temperature profile
which clearly shows the efficiency and reliability in the approximation is shown
in Table 1 while Table 2 displays the computation of the entropy generation
analysis which indicates that the entropy generation rate is maximum at the plate
surfaces and minimum around the core region of the channel. Also, the
irreversibility distribution ratio (¢) shows that heat transfer dominates at upper

and lower plate surfaces because 0<¢ <land fluid friction dominates at the
centerline of the region because ¢ >1.

Table 1
Rapid convergence of the series solutions of the Temperature Profiles
y=y=H=G=6=a=1 Bi=10, 1=0.5
n T, >,
0 0 0
1 0.109963 0.0549816
2 0.0476533 0.0668949
3 0.0103951 0.0681943
4 —0.0052743 0.0678646
5 —0.0045403 0.0677161
6 —0.0004259 0.0677161
Table 2
Computation of the Entropy Generation Analysis
y=H=G=8=a=1 Bi=10, 1=05 BrQ"'=0.1
y N, N, N, ¢ Boo
1+d
-1 0.535876 0.0394614 0.575338 0.0736391 0.931412
-0.75 0.306524 0.020341 0.326865 0.0663601 0.93777
-0.5 0.140285 0.0150814 0.155367 0.107505 0.902931
-0.25 0.0358832 0.0144756 0.0503588 0.40341 0.71255
0 1.73334 x 103 | 0.00146287 | 0.0146287 8.43964 x 10% 1.18488 x 10%°
0.25 0.0358832 0.0144756 0.0503588 0.40341 0.71255
0.5 0.140285 0.0150814 0.155367 0.107505 0.902931
0.75 0.306524 0.020341 0.326865 0.0663601 0.93777
1 0.535876 0.0394614 0.575338 0.0736391 0.931412
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Table 3

Effect of different parameters on the development of thermal runaway
Pade | H | 7 o G a Bi y)

C
2/2 1 101 |01 |1 0.1 |10 | 0.8939930073508189
2/2 1 101 |01 |1 0.5 |10 | 0.8943907315538621
2/2 1 (01 |01 |1 1.0 |10 | 0.8948222921987654
2/2 1 (01 |01 |1 0.1 |10 | 0.8939930073508189
2/2 1 (01 |01 |1 01 |25 1.0072845560814208
2/2 1 101 |01 |1 0.1 |50 | 1.0488443355711630
2/2 1 101 |01 |1 0.1 |10 | 0.8939930073508189
2/2 2 /01 (01 |1 0.1 |10 | 0.8960742476940970
2/2 3 /01 (01 |1 0.1 |10 | 0.8974303789687192

Meanwhile, Table 3 shows the effects of different parameters on the development
of thermal runaway. It shows that the magnitude of thermal criticality increases
with increasing values of porous medium term (a), convective cooling term (Bi)
and magnetic field intensity (H) which stabilizes the fluid flow.

The velocity profiles with variations in porous medium term and magnetic
field are respectively shown in Figs. 2 and 3. It is shown that the fluid velocity
reduces with increasing values of porous medium term (o) and magnetic field
intensity (H) which is due to the retarding effect of the porosity and magnetic
force present in the channel.

H=1G=1 a=1G6=1

4

S0 Y 05 107 o Y 05 10”7

Fig. 2: Fluid velocity profile with variations  Fig. 3: Fluid velocity profile with variations
in porous medium term in magnetic field intensity

The temperature profiles are shown in Figs. 4 — 8. In fig. 4, the fluid temperature
increases as the viscous heating parameter increases, this is caused by the
conversion of kinetic energy in the moving fluid to internal energy. The maximum
fluid temperature is obtained at the minimum values of magnetic field intensity
parameter (H) as shown in fig. 5. Also, in Fig. 6, the fluid temperature reduces as
the porous medium term increases; this is due to the reduction in fluid flow and
the time taken for fluid to flow within the porous medium thereby reduces the
temperature.
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The fluid temperature profile with variations in convective cooling term
(Bi) is shown in figure 7; it is observed that the minimum value of temperature is
obtained at the maximum value of Biot number due to the influence of thermal
conductivity on the fluid temperature. Also, the fluid temperature increases as
Frank — Kamenettski parameter (1) increases as shown in figure 8; this is due to an
increase in the heat generated within the flow channel.
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Fig. 4: Fluid temperature profile with variations  Fig. 5: Fluid temperature profile with variations
in viscous heating parameter in magnetic field intensity
H=1y=1G6=16=1Bi=10,A=05 . - .
! T H=1,a=056G=16=1y=1A=05

e
!

—‘i.O‘ — —Ol.S ‘ ‘ ‘0.‘5 l 1.10 z -1.0 I —0'.5‘ ‘ ' IO.I5 . 1.‘0 4
Fig. 6: Fluid temperature profile with variations Fig. 7: Fluid temperature profile with variations
in porous medium parameter in convective cooling term
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Fig. 8: Fluid temperature profile with variations in Frank — Kamenettski parameter
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Figs. 9 to 12 display the variation of parameters on entropy generation rate.
Generally, it is noticed that the entropy generation rate is at maximum at the
surfaces and at minimum around the core region of the channel of fluid flow. In
figure 9, the influence of porous medium parameter (« ) is clearly noticed as it
yields an interesting result with respect to the entropy generation rate with
increasing value of « over moving surfaces. On the other hands, Figs. 10 and 11
showed that the entropy generation rate increases respectively with increasing
values of Frank — Kamenettski parameter (1) and wall temperature parameter
(BrQ™) in the thermodynamic performance of the flow system. In Fig. 12, the
rate of disorder is reduced with an increase in magnetic field intensity (H)

S0 -os 05 107 0 05 05 107

Fig. 9: Entropy generation rate for Fig. 10: Entropy generation rate for
various values of porous medium parameter various values of wall temperature parameter
i _ . Br 1 r e _ e BG......5)
H=1Bi=10,6=10=1a=05y=1 —=01 Bi=10,A=056=10=1a=05y=1, —=01
] J L 0
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_ 02f ;
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Fig. 11: Entropy generation rate for Fig. 12: Entropy generation rate for
various values of Frank — Kamenettski parameter various values of magnetic field intensity

However, Figs. 13 — 15 show the Bejan number (Be) for various
parametric values in the channel width. The general observation is that the fluid
friction over irreversibility dominates at the channel core region while heat
transfer rate over irreversibility dominates at both upper and lower wall surfaces.
It is clearly noticed that, the dominant influence of heat irreversibility of the plate
increases with increasing values of porous medium parameter (« ) and Frank —
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Kamenettski parameter (1) in Figs. 13 and 14, while the reverse is the case in Fig.
15 where heat irreversibility of the plate decreases with an increasing value of the

wall temperature parameter (BrQ™)

H=1 =05Bi=10.6=1 =1
Be Be
P T N e 1.0 ,/_4-9—:-=‘- -------------- 10F ceccemmeeeaa
g TN g
= ; a=0.1 V8L S A
06} Losblof
2 e A A=05
4+ Of [
H ,-' A=01
o+ ois‘ 'f
S0 s ‘ 05 0¥ A0 o5 ' s BT
Fig. 13: Bejan number for various Fig. 14: Bejan number for various
values of porous medium parameter values of Frank — Kamenettski parameter
H=1A=05Bi=10.6=1.6=1a= =1 =01, H=1,6=10=01a=01,8i=10
Be Thax
B _o1 12 “‘
08f & .
........... 10F
Egs
. 0.6 i ot A 3 N Ac =0.89399200735081
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Fig. 15: Bejan number for various Fig. 16: A slice of approximate bifurcation diagram

values of wall temperature parameter

Finally, another interesting aspect of the problem is the critical point
shown in figure 16, a slice of approximate bifurcation diagram, it is noticed that
the problem has upper and lower solutions atA <A, , a single solution at

A=A, and no solutionatA > 4, .

6. Conclusion

The analysis of a reactive hydromagnetic fluid flow between two parallel plates
through a porous medium with convective boundary conditions is investigated
using the traditional perturbation method together with Adomian Decomposition
Method (ADM) and diagonal Pade Approximant to determine the thermal
criticality values as well as bifurcation conditions. It is observed that the fluid
velocity reduces with increasing values of porous medium and magnetic intensity
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parameters. The fluid temperature decreases with increasing values of activation
energy, porous medium, magnetic intensity and convective cooling terms. Also,
an increase in the convective cooling, porous medium and magnetic intensity
fields on the fluid flow will improve stability and this will help to bring about a
delay in the appearance of thermal runaway.
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