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LATTICES AND BLOCK CODES

Yulong Fu1, Xiao Long Xin2

Block codes have been wildly used in error-correcting area of information
communication for many years. Recently, some researchers found that the using
of lattices may reduce the bottleneck of block codes, the lattices codes may be con-
sidered for the future 5G. However, the researches on this topic are still in its
infancy. In this article, we considered a different encode/decode method by using
lattices theory. We first introduced and studied a lattice-valued function on a set,
by which we can generate binary block codes. Moreover we discuss how to get the
lattices arising from binary block codes. We introduce the notion of semigroup
codes and prove that any binary semigroup code V is a lattice in the order ” ≤c ”.
From such lattice we can construct a lattice function f which determines a binary
block code V1 and (V1,≤c) is isomorphic to (V,≤c). For the special semigroup
code V , we can get a lattice function f such that f determines a binary block code
V1 and V1 = V . Through the above arguments, we set up a connection between
lattices and block codes, by which we can find new block codes by using properties
and structures of lattices.
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1. Introduction

In coding theory, block codes belong to the most popular and efficient type
[5]. Many wildly used real communication coding methods, such as the low-density
parity-check (LDPC) and Hamming codes are both in block codes family. Especially
some schemes of block codes are selected as the forward error correcting (FEC) sys-
tems in multiple communication standards, such as IEEE 802.3an, 802.11n, 802.15,
802.16, ETSI 2nd Gen. DVB, 3GPP LTE (4G) and ITU-T G.9960 and G.709 to
name a few [1], the researches on block codes are very important.

In a regularly scheme of FEC, the sender can add redundancy to a message,
and the receiver can decode it with minimal errors, provided that the information
rate would not exceed the channel capacity. While, in a scheme of block codes,
the codewords will have a fixed length (unlike the source coding schemes such as
Huffman coding, and unlike channel coding methods like convolutional encoding),
regardless the length of the original message is. Typically, a block code takes a k-
digit information word, and transforms it into an n-digit codeword. Block coding is
the primary type of channel coding used in earlier mobile communication systems.
A block code is a code which encodes strings formed an alphabet set S into code
words by encoding each letter of S separately.
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Recently, in paper [6], Y.B. Jun and S.Z. Song give a method to construct a
finite binary block-codes by using of a finite BCK-algebra. At the end of the paper
[6], they pose an open question on whether the converse of this statement is also
true, that is, we can get the lattices arising from binary block codes. In the paper
[3], the authors claim that, in some circumstances, the above question can be solved.
But we think that their proof may be incorrect.

In this paper we shall introduce the notion of lattice-valued functions, by which
we can get the binary block codes based by use of lattices and also the lattices arising
from binary block codes.

The rest of the paper is organized as follows. In Section II, we introduced
the preliminary definitions of our method. In Section III, the detail considerations
about the lattice-valued functions are given. In Section IV, the processes of block
codes induced by lattice functions will be discussed herein, Then in Section V, the
methods for lattices arising from block codes are presented. And finally, we conclude
the article and propose our future work in the last section.

2. Preliminaries

Definition 2.1. [2, 4] Assume that L is a nonempty set and ”∧” and ”∨” are binary
operations on L. We call L a lattice, if it satisfies the following: for all x, y, z ∈ L
(1) x ∧ x = x, x ∨ x = x;
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x;
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z);
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x.

Let L and M be lattices. A map θ : L → M is called a lattice-homomorphism
(or homomorphism) if it satisfies θ(x∧y) = θ(x)∧θ(y) and θ(x∨y) = θ(x)∨θ(y) for
all x, y ∈ L. Moreover a homomorphism is called an isomorphism if it is a bijection.
Note that a function θ is a lattice isomorphism if and only if θ is a bijection and
bilateral order preserving.

3. Lattice-valued functions

From now on, we mean that A is a nonempty set and L is a bounded lattice,
unless otherwise specified.

Definition 3.1. We call a map Ã : A → L a lattice-valued function (briefly, lattice
function) on A.

Definition 3.2. A map Ãq : A → {0, 1} is said to be a cut function if it satisfies

the following: Ãq(x) = 1 iff Ã(x) ≤ q for all x ∈ A.

Define Aq := {x ∈ A|Ã(x) ≤ q}, called a cut subset or a q-cut of Ā. Note that
A1 = A.

Proposition 3.1. If L is a complete lattice then Ã(x) = inf{q ∈ L|Ãq(x) = 1}, for
all x ∈ A.

Proof. The proof is easy and we omit it. �
Proposition 3.2. Assume that Ã : A → L is a lattice function on A. If q ≤ p, then
Aq ⊆ Ap, for all p, q ∈ L.
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Proof. The proof is easy and we omit it. �
Proposition 3.3. Assume that Ã : A → L is a lattice function on A. Then
(1) Ã(x) ̸= Ã(y) iff AÃ(x) ̸= AÃ(y), for all x, y ∈ A,

(2) Ã(x) ≤ q iff AÃ(x) ⊆ Aq, for all q ∈ L and x ∈ A.

Proof. (1) (⇐) It is clear.

(⇒) Let Ã(x) ̸= Ã(y) for x, y ∈ A. Then Ã(x) � Ã(y) or Ã(y) � Ã(x). Hence

AÃ(x) = {z ∈ A|Ã(z) ≤ Ã(x)} ̸= {z ∈ A|Ã(z) ≤ Ã(y)} = AÃ(y).

(2) (⇒) It follows from Proposition 3.2.

(⇐) Let AÃ(x) ⊆ Aq for q ∈ L and x ∈ A. If Ã(x) � q, then x /∈ Aq. Since

Ã(x) ≤ Ã(x), we have x ∈ AÃ(x). Hence AÃ(x) * Aq, we have a contradiction. �

Corollary 3.1. Assume that Ã : A → L is a lattice function on A. We have
Ã(x) ≤ Ã(y) iff AÃ(x) ⊆ AÃ(y)), for all x, y ∈ A.

Let Ã be a lattice function. Define AL := {Aq|q ∈ L}, ÃL := {Ãq|q ∈ L}.

Proposition 3.4. Assume that Ã : A → L is a lattice function on A. We have

(∀Y ⊆ L)(∃ inf Y ∈ L ⇒ Ainf{q|q∈Y } = ∩{Aq|q ∈ Y }).
Proof. Let Y ⊆ L and inf Y exists in L. Then we have

x ∈ Ainf{q|q∈Y } ⇔ Ã(x) ≤ inf{q|q ∈ Y } ⇔ (∀r ∈ Y )(Ã(x) ≤ r) ⇔ (∀r ∈
Y )(x ∈ Ar) ⇔ x ∈ ∩{Aq|q ∈ Y }.
This completes the proof. �
Corollary 3.2. Assume that Ã : A → L is a lattice function on A. We have

(∀p, q ∈ L)(Ap ∩Aq ∈ AL).

Proposition 3.5. Assume that Ã : A → L is a lattice function on A. We have

∪{Aq|q ∈ L} = A

Proof. The proof is easy and we omit it. �
Proposition 3.6. Assume that Ã : A → L is a lattice function on A. We have

(∀x ∈ A)(∩{Aq|x ∈ Aq} ∈ AL).

Proof. The proof is easy and we omit it. �
Let Ã : A → L be a lattice function on A. Define a binary relation ∼ by
(∀p, q ∈ L)(p ∼ q ⇔ Ap = Aq).

We can get that ∼ is clearly an equivalence relation on L. Define
Ã(A) := {q ∈ L|Ã(x) = q, for some x ∈ A}.

For q ∈ L, Define
(q] := {x ∈ L|x ≤ q}.

Proposition 3.7. Assume that Ã : A → L is a lattice function on A. Then we have
(∀p, q ∈ L)(p ∼ q ⇔ (p] ∩ Ã(A) = (q] ∩ Ã(A)).

Proof. The proof is easy and we omit it. �
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4. Block codes induced by lattice functions

Let p ∈ L. Define p/ ∼:= {q ∈ L|p ∼ q}, which is an equivalence class
containing p.

Lemma 4.1. Assume that Ã : A → L is a lattice function on A. Then for each
x ∈ A, we have Ã(x) = sup{Ã(x)/ ∼ ∩Ã(A)}.

Proof. Obviously Ã(x) ∈ {Ã(x)/ ∼ ∩Ã(A)}. Let p ∈ {Ã(x)/ ∼ ∩Ã(A)}. Then

p = Ã(y) for some y ∈ A and p ∼ Ã(x). Therefore AÃ(x) = Ap. Since y ∈ Ap, then

y ∈ AÃ(x). Thus Ã(y) ≤ Ã(x), and so p ≤ Ã(x). We complete the proof. �

Assume that L is a finite lattice and A = {1, 2, · · · , n}. We can induce a

binary block-code V with length n by a lattice function Ã : A → L on A, as the
following: Foe each x/ ∼, where x ∈ L, construct a codeword vx = x1x2 · · ·xn such

that xi = j ⇔ Ãx(i) = j, for i ∈ A and j ∈ {0, 1}. Define an order relation ≤c on V
by

vx ≤c vy ⇔ xi ≤ yi for i = 1, 2, · · · , n (4.1),
where vx = x1x2 · · ·xn and vy = y1y2 · · · yn and vx, vy ∈ V .

Lemma 4.2. Assume that Ã : A → L is a lattice function on A.
(1) For x, y ∈ A, if Ã(x), Ã(y) are incomparable, then ÃÃ(x), ÃÃ(y) are incomparable

in the order ≤c;
(2) (∀x, y ∈ A)(Ã(x) ≤ Ã(y) ⇒ ÃÃ(x) ≤c ÃÃ(y));

(3) (∀x, y ∈ A)(ÃÃ(x) ≤c ÃÃ(y) ⇒ Ã(x) ≤ Ã(y)).

Proof. (1) Let x, y ∈ A and Ã(x), Ã(y) are incomparable. Denote Ã(x) = p, Ã(y) =

q. Then we have that Ãp(x) = 1, Ãp(y) = 0 and Ãq(x) = 0, Ãq(y) = 1. This means

that Ãp, Ãq are incomparable. Therefore ÃÃ(x), ÃÃ(y) are incomparable in the order
≤c.
(2) Let x, y ∈ A. Denote Ã(x) = p, Ã(y) = q. If Ã(x) ≤ Ã(y), then Ap ⊆ Aq by

Proposition 3.1. If Ãp(z) = 1 for z ∈ A, then z ∈ Ap ⊆ Aq and so z ∈ Aq. This

means that Ãq(z) = 1 and hence Ãp ≤c Ãq.

(3) Let Ãp ≤c Ãq. By (1), Ã(x), Ã(y) are comparable. If Ã(x) > Ã(y), by (2) we

get Ãp > Ãq, which contradicts the hypothesis. Therefore we get Ã(x) ≤ Ã(y). �

Theorem 4.1. Let L be a finite lattice. Then it determines a block-code V such
that (L,≤) and (V,≤c) are lattice isomorphic, where ≤c is given by Eq. (4.1).

Proof. Denote L = {a1, a2, · · · , an}, in which a1 and an are the least element and

the greatest element, respectively. Let A = {1, 2, · · · , n} and Ã : A → L be the

lattice function on A defined by Ã(i) = ai for i = 1, 2, · · · , n. The decomposition of

Ã gives a set V = {Ãq|q ∈ L}. Then (V,≤c) is the desired code, where the order

≤c is given by Eq. (4.1). Define f : L → {Ãq|q ∈ L} by f(q) = Ãq for all q ∈ L.
By Lemma 4.1, each ∼-class contains only one element. Hence f is one-to-one. By
Lemma 4.2, f is bilateral order preserving. Therefore f is a lattice isomorphism. �

Example 4.1. Consider the lattice L with the universe {0, a, b, c, d, e, f, 1}. Lattice
ordering is such that 0 < d < c < b < a < 1 and 0 < d < e < f < a < 1, and
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elements from {b, c} and {e, f} are pairwise incomparable. Let Ã : L → L be a
lattice function on L given by

Ã =

(
0 a b c d e f 1
0 a b c d e f 1

)
.

Then

ÃL 0 a b c d e f 1

Ã0 1 0 0 0 0 0 0 0

Ãa 1 1 1 1 1 1 1 0

Ãb 1 0 1 1 1 0 0 0

Ãc 1 0 0 1 1 0 0 0

Ãd 1 0 0 0 1 0 0 0

Ãe 1 0 0 0 1 1 0 0

Ãf 1 0 0 0 1 1 1 0

Ã1 1 1 1 1 1 1 1 1

Therefore the binary block-code V , determined by the lattice function Ã, is the
following form: V = {10000000, 11111110, 10111000, 10011000, 10001000, 10001100,
10001110, 11111111} and the diagrams of (L,≤) and (V,≤c) are in the following:c
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5. Lattices arising from block codes

Assume that V is a binary block-code of length n. For c1 = (x1x2 · · ·xn),
c2 = (y1y2 · · · yn) ∈ V , define

c1 ∗ c2 = ((x1 × y1)(x2 × y2) · · · (xn × yn)),
θ = (10 · · · 0),1 = (11 · · · 1),

where × are ordinary multiplication operator.

Definition 5.1. Assume that V is a binary block-code of length n. V is said a
semigroup code if it satisfies the following conditions:
(1) θ,1 ∈ V ,
(2) if ci = (x1x2 · · ·xn) ∈ V , then x1 = 1,
(3) for all c1, c2 ∈ V , c1 ∗ c2 ∈ V .
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Example 5.1. Consider a binary block-code

V = {10000000, 11111110, 10111000, 11000110, 11111111}.
We can check that V is a semigroup code.

Proposition 5.1. Let V be a semigroup code of length n. Then (V, ∗) is a semigroup
with the identity 1.

Proof. Straightforward. �
Indeed, semigroup codes have the stronger structures.

Theorem 5.1. Let V be a semigroup code of length n. Then (V,≤c) forms a lattice
in which θ is the minimum element and 1 is the maximal element, where ≤c is the
order given by Eq.(4.1).

Proof. Let a, b ∈ V and a = (x1, x2, · · · , xn), b = (y1, y2, · · · , yn). Obviously a∗b ≤ a
and a ∗ b ≤ b. Assume that c = (z1, z2, · · · , zn) ∈ V and c ≤ a, b. Then zi ≤ xi and
zi ≤ yi and hence ci ≤ xi × yi, that is c ≤ a ∗ b. This shows that a ∗ b is the infimum
of a and b. Therefore (V,≤c) forms a meet semi-lattice. Since V has the greatest
element 1, (V,≤c) becomes a lattice. �
Example 5.2. The semigroup code (V,≤c) given in Example 5.1 is a lattice with
Hasse diagram as follows. c
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11111110

10111000 11000110

Theorem 5.2. Assume that V is a semigroup code, in which there are m codewords
of length n. Then there exist a set A with m elements, a lattice L and a lattice
function f : A → L such that f determines a binary block code V1, and (V1,≤c) and
(V,≤c) are lattice isomorphic.

Proof. Let V = {a1, a2, · · · , am} be a semigroup code. By Theorem 5.1, (V,≤c) is a
lattice. We consider A = V and the identity map f : A → V , such that f(w) = w
as a lattice function. By Theorem 4.1, f determines a binary block code V1 and
(V1,≤c) is lattice isomorphic to (V,≤c). �
Example 5.3. Consider the semigroup code (V,≤c) given in Example 5.1. By Ex-
ample 5.2, (V,≤c) is a lattice.

Let A = {x, y, z, u, v} and let Ã : A → V be a lattice function on A defined by

Ã =

(
x y z u v

10000000(0) 10111000(a) 11000110(b) 11111110(c) 11111111(1)

)
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Then Ã determines a binary block code V1 by following table and (V1,≤c) has
the following Hasse Diagram.

ÃV x y z u v
0 a b c 1

Ã0 1 0 0 0 0

Ãa 1 1 0 0 0

Ãb 1 0 1 0 0

Ãc 1 1 1 1 0

Ã1 1 1 1 1 1

c

c

c
c c
@
@
@

�
�
�

�
�
�

@
@
@

11111

10000

11110

10100 11000

Assume that V is a binary block-code which has n codewords of length n.
Define the matrix MV = (mi,j)i,j∈{1,2,··· ,n} ∈ Mn({0, 1}) where the rows consist of
the codewords of V . We call MV as the matrix associated to the code V .

Theorem 5.3. Assume that V is a binary block-code which has n codewords of length
n. If the matrix MV is upper triangular with mij = 1, for all i, j ∈ {1, 2, · · · , n}
and i ≤ j, then there are a set A with n elements, a lattice L and a lattice function
f : A → L such that f determines V .

Proof. Let V = {w1, w2, · · · , wn}, with w1 ≤c w2 ≤c · · · ≤c wn where the order ≤c

is as in Eq. (4.1). From here, we obtain that w1 = 10 · · · 0︸ ︷︷ ︸
(n−1) time

and wn = 11 · · · 1︸ ︷︷ ︸
n time

1.

We remark that w1 = θ is a minimum element and wn = 1 is a maximal element
in (V,≤c). We can see that V is a semigroup code. By Theorem 5.1 (V,≤c) is a
lattice. We consider A = V and the identity map f : A → V , such that f(w) = w
as a lattice function. Using Theorem 5.2, f determines f a binary block code V1.
We prove V = V1. For wi ∈ V , we have fwi(wj) = 1 iff f(wj) ≤ wi iff wj ≤ wi.
Therefore for j = 1, 2, · · · , i wj ≤ wi and so fwi(wj) = 1 for j = 1, 2, · · · , i. That
is fwi(wj) = 1 for j = 1, 2, · · · , i. This shows that fwi = 11 · · · 1︸ ︷︷ ︸

i times

0 · · · 0 = wi, for

i = 1, 2, · · · , n. This shows V = V1. �
Example 5.4. Consider a binary block-code V = {10000, 11000, 11100, 11110,
11111} .

= {0, a, b, c, 1}. Let A = V and let f : A → V be the identity map. Then f
determines a binary block code V1 = {f0, fa, fb, fc, f1} as follows.

fV 0 a b c 1
f0 1 0 0 0 0
fa 1 1 0 0 0
fb 1 1 1 0 0
fc 1 1 1 1 0
f1 1 1 1 1 1

We can see that V = V1.

6. Conclusion

In this paper, by use of the notion of lattice-valued functions, we established
block-codes. Conversely we proved that to each semigroup code V we can associate
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a lattice L such that the binary block-code VL, generated by L, is isomorphic to V .
In some particular case, we have VL = V .

Future research will focus on finding new codes by using lattice-valued func-
tions. It is important method that various classical error-correcting codes are con-
structed by ideals. As well known, all cyclic codes are principal ideals and other
classes of codes also are ideals in group algebras. By using other algebraic structure,
ones have developed faster encoding and decoding algorithms for these codes (see,
for example, [7, 8, 9]). We also will construct certain codes by use of the ideal theory
of lattice-algebras.
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