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BI-TANGENT QUATERNION KAEHLER MANIFOLDS

Deniz POYRAZ', Bayram SAHIN?

Complex structures and tangent structures are well known. Almost semi-quaternion
manifolds formed by the combination of these two structures have been also studied. In
this paper, firstly, the existence of a structure similar to the quaternion Kaehler manifold
for an almost semi-quaternion manifold is investigated. For this purpose, the necessary
conditions are obtained for the covariant derivative of each cross-section to remain in
the vector bundle formed by these cross-sections. After this stage, the interactions of
these cross-sections and the curvature tensor field are investigated. In this direction, new
relations were found. Finally, the flatness of the manifolds with this type of structure in
case of constant curvature is examined.
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1. Introduction

In differential geometry, manifold endowed with certain structures have been active
field since almost complex manifolds were introduced in 1930’s. Nowadays, there are many
structures inspiring from complex manifolds and contact manifolds see: [4, 10, 15, 23, 28].

Since Ishihara[16] defined and studied quaternion Kaehler manifolds, manifolds con-
taining more than one linear endomorphism have been studied by many authors. Among
these, hypercomplex structures, polysymplectic structures [1, 2], 3-contact structures [17]
and Para-quaternionic structures [5] can be mentioned. Various versions of product struc-
tures and complex structures were also studied by Cruceanu in [6, 7, §].

On the other hand, almost tangent structures or almost subtangent structures have
interesting properties. Manifolds containing these structures have been studied by many
authors [3], [21] and [22]. The almost semiquaternion structures is a degenerate, hyper-
complex structure defined by the semiquaternion algebra. It has appeared in F. Tricerri’s
clasification of the structures of type FyFy + FoFy = al, F? = F2 = —I(I identity, a € R),
on a differentiable manifold, when a? = 4. In Tricerri’s paper [24] this is irregular case.
All these considerations hold good for o # 4. Munteanu [18, 19, 20] examined manifolds
with two tangent structures and one complex structure, calling them semi-quaternions, and
showed the existence of the Riemannian metric on such manifolds. However, if the covariant
derivative of almost complex structures on an almost quaternion manifold remain in the sub-
bundle determined by these almost complex structures, such almost quaternion manifolds
are called quaternion Kaehler manifolds and such manifolds are the most studied quaternion
manifold types in the literature. However, Munteanu did not examine this situation.

In this paper, we define the bi-tangent quaternion Kaehler manifold with the help of
almost semiquaternion structure which we will call almost bi-tangent quaternion structure.
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We give an example and obtain the covariant derivatives of each cross-section to be in the
vector bundle defined by these cross-sections. Then we obtain certain relations for curvature
tensor fields with linear endomorphisms. Finally, we show that a manifold endowed with
such structure is flat when it is a manifold with constant sectional curvature.

2. Preliminaries

Let (M(c), g) be a complete simply connected Riemannian manifold of constant cur-
vature c¢. Then the curvature tensor field R is given by

R(X,Y)Z = c{g(Y,2)X — g(X,Z)Y}

for any vector fields X and Y on M.

If M is a 4m-dimensional manifold with the Riemannian metric g, then M is said
to be a quaternion Kaehler manifold [29] if there exists a 3-dimensional vector bundle V' of
type (1,1) with local basis of almost Hermitian structures Jp, Jo, J3 satisfying

J10J217J20J1:J3

and
3
Vxde = > Qu(X)Ji, k=123,
=1

for all vector fields X tangent to M, where V is the Levi-Civita connection and Qy; are
certain 1-forms locally defined on M such that Qg + @;x = 0. The second condition can be
given by

VxJi = r(X)J2—q(X)Js,
VxJo = —r(X)J1+p(X)Js,
VxJs = q(X)J1 —p(X)Js,

for all vector fields X tangent to M, where p, g and r are certain 1-forms locally defined on M.

3. Almost bi-tangent quaternion manifolds

Inspring from quaternion Kaehler manifolds, there are many new manifolds similar
to the quaternion Kaehler manifolds such as paraquaternionic manifolds, almost 3-contact
structure, bi-product manifolds, etc ([5, 9, 11, 12, 13, 14, 17, 25, 26, 27]).

We recall the definition of semiquaternion manifolds, but we will give a new name
for such manifolds because the notion of semiquaternion sounds semi-Riemannian geometry
however metric almost semiquaternion manifolds are Riemannian manifolds.

Let M be a differantiable manifold with dimM = 4m and J,T1,T5 are (1,1) tensor
fields on M. If the following conditions are satisfied

J? =1, T2 =T;=0,  rankT) = 2m,

JT) = -T\J =T, JTo = ~ToJ = Ty, TiTo = ToT} = 0, (1)

then M is called almost bi-tangent quaternion (almost semiquternion) [19] structure, shortly
SQ-structure on M.

Considering the vertical distribution V = KerT; and H a fixed distribution, called horizon-
tal, complementary to V in T(M) (i.e.T,(M) = H, ®V,, ¥(x) € M) which is preserved by
J and denoting by h and v the corresponding projectors, from [20] and [28] it is known the
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existence of a (1,1) tensor field 77, (T7)? = 0, called generalized inverse of T}, uniquelly
defined (for chosen distribution H ) by the conditions:

Ty =h,  oTf =0, Tih=0.

The triad SQ* = (J, T}, Ty = J - T}) defines also on M a bi-tangent quaternion structure,
called adjoint to SQ.

If g is a Rimannian metric on M, then we can define uniquely H as the distribution
orthogonal to V by g, i.e.:

g(vX,hY) =0, X, Y € x(M). (2)

Definition 3.1. [19] Let M be an almost bi-tangent quaternion manifold. Then we define
a Riemannian metric on M by

g(JX7JY):g(X7Y)7 (3)
X, Y € x(M)
(X, ThY) = g(hX,hY), (4)

where h is the projector on H, orthogonal to 'V, with respect to g. In this case, (M, J,T1,Ts,g)
is called metric almost bi-tangent quaternion manifold.

Proposition 3.1. [19] On every paracompact manifold M, endowed with a QS-structure,
there exist a metric almost bi-tangent quaternion structure.

Proof. Let be the SQ-structure given by (1) . Choosing a Riemannian metric f on M, let H
be the orthocomplement of V with respect to the metric f. Let be the Riemannian metric:

Then the metric
g(X,Y) =g(X,Y)+g(J X, JY)

determines on M a metric almost bi-tangent quaternion structure. O

Example 3.1. Let R*™, (m > 1) be a Euclidean space. Then the canonical structures
J, 11, Ty of R¥ and the Riemannian metric g are given by

0 0 —I 0 0 I 00 00 0 —I
0 0 0 I 00 0 0 00 0 0
T=l7 0 o o=l ooor |2 0710 o
0 -I 0 0 00 00 00 0 0

and

P / ro ’
g(($1,y1, 21, W1y ey Ty Yms vawm)v (xlvylﬁ Ry Wiy oy Loy Y Zm’wm))

/ / / / / / / /
=12 Y1y 212 Fwiwy + .o+ T, + YmYy, T ZmZ,, T WnWw,,

for all X = (z,y,z,w),Y = (/9,2 ,w') € R*™, where I is the m x m identity matriz.
Now we can define

V= KerT; = {(fﬂ,y,z,’lﬂ) : Tl(xvyasz) = 0}
= {(x’07z’0):x7Z€R}7
H = {(0,9,0,w):y,weR}.

It is easy to see that Definition 3.1 is satisfied.
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4. Bi-tangent quaternion Kaehler manifolds

In this section we introduce bi-tangent quaternion Kaehler manifolds and investi-
gate curvature relations. We also show that a bi-tangent quaternion Kaehler manifold M
with dimM = 4m is flat when M is of constant curvature.

Definition 4.1. Let M be a almost bi-tangent quaternion manifold with a 3-dimensional
vector bundle V' consisting of {J,T1, T2} . If ® is a cross-section (local or global) of the bundle
V', then Vx® also a cross-section of V., X being an arbitrary vector field in M. In this case,
M will be called bi-tangent quaternion Kaehler manifold.

We now obtain the meaning of the above definition.

Theorem 4.1. Let M be a bi-tangent quaternion Kaehler manifold, then we have

VxJ
VxTi
VxTs

for X € x(M), where p(X), ¢(X), r(X) and s(X) differentiable functions on M.

p(X)T1 + q(X) 1z,
= ’I"(X)Tl + S(X)TQ,
—S(X)Tl =+ ’I”(X)Tg,

Proof. From Definition 4.1, we can write

VxJ
VxTi
VxTs

for X € x(M). From (1) we have

VxTi = VxTyJ
= (VxTQ)J+T2(VX<]).
Using (8) and (10) we obtain
VxTh = (as1d + as2Th + assTe)J + Ta(annd + a12Th + ai31h)

= azJJ +azTiJ + azzTod + anTod + a12T>Th + a1315T5

= apJ + a1 + a31y
= a21J + a22T1 + a23T2

= az1J + a3zxT1 + azsTh.

= —ag1 + (a33 + a11)T1 — az2To.

Similarly from (1) we have

VxTs

and using (8) and (9) we get

VXTQ = (a11J + (112T1 + a13T2)T1 + J(a21J + a22T1 + a23T2)
= aJT1 4+ arxThTh + a13T5Th + as1JJ + aseJT + assJTs

= VXJTl

(Vx)Th + J(VxTh)

= —ag1 — az3Th + (a11 + az2)Te.

Therefore we have as; = az1 = a11 = 0, as3 = —asze and ags = ass.

There is such a relationship between the above equations.

—~
-3
~
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Lemma 4.1. Let M be a bi-tangent quaternion Kaehler manifold. Then the following
relation is satisfied,

_ (PX)r(X) + g(X)s(X) A(X)r(X) — p(X)s(X)
vas= () e ( :

for any vector field X on M.

> VxTy,

Proof. Multiplying (6) with s(X) and multiplying (7) with r(X) gives T5. Also multiplying
(6) with »(X) and multiplying (7) with —s(X) gives T;. If we substitute T} and T in (5),
then we obtain the relation. ]

Now we will examine the relationship between the curvature tensors.

Lemma 4.2. Let M be a bi-tangent quaternion Kaehler manifold. Then the following
curvature relations are satisfying

(R(X,Y)))Z = C(X,Y)T.Z+ B(X,Y)T»Z, (11)
(RIX,Y)TV)Z = AX,Y)T1Z+ D(X,Y)T»Z, (12)
(RIX,Y)T5)Z = —-D(X,Y)T\.Z+ A(X,Y)T»Z, (13)

for X,Y, Z € x(M), where A, B, C and D are differentiable functions on M.
Proof. From (5) we obtain
VxVyJZ = Vx((VyJ)Z+JVyZ)
Vx(p(Y)TWZ + qY)T2Z + JVy Z)
Vxp(Y)T1 Z +Vxq(Y)T2Z +VxJIVyZ
= X(pY))WZ+pY)VxT1Z + X(q(Y))T2Z
+q(V)VxToZ + (VxJ)(VyZ)+ IJVxVyZ.

Hence we have
VxVyJZ = X@eY)TZ+pY)(VxT1)Z +T1VxZ]
+X(qY)NZ +q(Y)(VxT2)Z + 1oV x Z]
+p(X)TWWVy Z + q(X)ToVy Z + JVxVy Z.
From (6) and (7) we derive
VxVyJdZ = XpY)ThZ+pY)[r(X)TWZ+ s(X)T2Z + T'Vx Z]
+X(@Y)NZ +qYV)[-s(X)ThZ + r(X)T2Z + ToV x Z]
+p(X)T1VyZ + q(X)TQVyZ + JVxVyZ.

Hence we obtain
VxVyJZ = XpY))ThZ +p(Y)r(X)TlZ +p(Y)s(X)ToZ +p(Y)I1Vx Z
+X(q(Y)T2Z — q(YV)s(X)T1 Z + (Y )r(X)12Z
(Y)TQVXZ +p(X)TW'VyZ 4+ q¢(X)ToVyZ + JVxVy Z.
Similarly we get
VyVxJZ = Vy(VxJ)Z+ JVxZ)
= Y(pX)ThZ +p(X)7“(Y)TlZ +p(X)s(Y)T2Z + p(X)Th'Vy Z
+Y (@(X) 122 — ¢(X)s(Y)T1 Z + ¢(X)r(Y)12Z
+q(X)T2VyZ +p(Y)T1VxZ + q(Y)ToVx Z + JVyVx Z.
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From (5) we have
V[va]JZ = (V[XQ/]J)Z + JV[X viZ4
= p([X, Y)W Z +q([X,Y])T2Z + IV x vy Z.
Summing up we conclude that
(RX,Y)))Zz = (X(p(Y)T1Z =Y (p(X)ThZ - p([X,Y)T1Z) + (p(Y)r(X)T1 Z
—p(X)r(Y)T1Z) + (p(Y)s(X)12Z — p(X)s(Y)T22)
+(X (Q(Y))Tzz Y(¢(X)T2Z — ¢([X,Y]) T2 Z)
—(q(Y)s(X)T1 Z — q(X)s(Y)T1 Z) + (q(Y)r(X)T2Z
—q(X)r(Y)TxZ ) (JVxVyZ = INyVxZ — IV xy1Z).
Thus we find
(RIX,Y))Z = 2dp(X,Y)T1Z + (p Ar)(Y, X)TL Z + (p A s)(Y, X)ToZ
2dq(X,Y)T2Z — (g As)(Y, X)W Z + (g A7) (Y, X)T2Z
+JR(X,Y)Z — JR(X,Y)Z
= (2dp+ (rAp)+ (gNs)(X, Y)W Z + (2dg + (s A p)
+(r A )X, Y)TxZ.
Similarly from (6) we find
VxVyThZ = Vx(VyTh)Z+T1VyZ)
= Vx(r(YYWZ +s(Y)T2Z +T'Vy2)
er(Y)T1Z + VXS(Y)TQZ +VxT1Vy Z
X(r(W)TWZ+r(Y)VxThZ + X(s(Y))T2Z
+s(Y)VxToZ + (VxT1)(VyZ)+ T1VxVy Z.

Hence we have
VxVyTiZ = X(r(Y)WZ+r(Y)(VxT1)Z +T1VxZ]
+X(s(Y)ToZ + s(Y)[(VxT2)Z + ToV x Z]
+r(X)T'Vy Z 4+ s(X)T2VyZ + T1VxVy Z.

From (6) and (7) we derive
VxVyTiZ = X(r(Y)TWZ+r(Y)r(X)TWZ + s(X)T2Z +T1VxZ]

+X(sY)NZ + s(Y)[—s(X)ThZ +r(X)ToZ + ToV x Z]
+r(X)T1Vy Z + 8(X)2Vy Z + T1Vx Vy Z.

Hence we obtain

VxVyThZ = X(r(Y))TlZ +r(Y)r(X)WZ+r(Y)s(X)ToZ +r(Y)TZ'VxZ
+X(s(Y)12Z = s(Y)s(X)T1 Z + s(Y)r(X)12Z
S(Y)TQVXZ +r(X)TZWVy Z + s(X)ToVy Z + Th'VxVy Z.

+

Similarly we get
VvV xTZ = Y((Vle)Z+T1VXZ)
= Y(r(X)) T1Z+T(X) YT Z 4+ r(X)s(Y T2Z+T( YWy Z
+Y (s(X)12Z — s(X)s(Y )TV Z + s(X)r(Y)T>
+5(X)T2VyZ+r( YT1'VxZ 4+ s(Y) QVXZ+T1VyVXZ

<
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and from (6) we have
Vxy'Z = (Vixy/T)Z+TiVixyZ
= (X, Y)W Z + s([X,Y])T2Z + T1V|x v Z.
Summing up we conclude that
(R(X,Y)T)Z = (X(r(Y))TWZ =Y (r(X))Th —T([X Y)W Z)
(X (s(V)T2Z - Y (s(X))T2Z — s([X, Y])122)
= 2dr(X,Y)T) Z + 2ds(X, )TQZ
Similarly from (7) we find
ViVyToZ = Vx(VyT)Z + TVyZ)
= Vx(—s(WTWZ +r(Y)I2Z+T2VvZ)
—Vxs(YYTWZ +Vxr(Y)ToZ + VxToVy Z
= —X(s(Y)TWZ—-s(Y)VxThZ + X(r(Y))TxZ
(V) VxToZ + (VxT2)(Vy Z) + ToVx Vy Z.

Hence we obtain
VxVyThZ = —-X(sY)WZ—-s(Y)(VxTh)Z+T1VxZ]
+X(r(Y)NZ +r(Y)[(VxTe)Z + ToVx Z]
—s(X)TW'Vy Z +r(X)ToVy Z + ToVxVy Z.

From (6) and (7) we derive
VaVyThZ = —X(s(Y)T1Z - s(V)[r(X)TLZ + s(X)ToZ + T1V x Z]

+X(r(Y)LzZ +r(Y)[—s(X)TWZ 4+ r(X)T2Z + 1oV x 7]
—s(X)TW'Vy Z +r(X)ThVy Z + ToVxVy Z.

Thus we have

VxVyTz = —X(s(Y)hZ —s(Y)r(X)ThZ - s(Y)s(X)12Z - s(Y)T1Vx Z
+X(r(Y)TaZ —r(Y)s(X )T1Z+T(Y) (X)T2Z
+r(Y)VxZ — s(X)T\Vy Z + r(X)TaVy Z + TyV x Vy Z.

Similarly we get

VyVxToZ VY((VXT2)Z +ToVxZ)
Y (X)W Z — s(X)r(Y)TW Z — s(X)s(Y)T2Z — s(X)T'Vy Z
+Y (r(X))12Z — r(X)s (Y)T1Z+ (X)r(Y)T3
+r(X)T2VyZ (Y)W Z + r(Y)ToVxZ + TgVyVXZ

From (7) we find
VixyT2Z = (Vixy|T2)Z +TaVixy)Z
= (XY Z+ (X, Y]))T2Z + ToVix v Z.
Summing up we conclude that
(R(X, Y)TQ)Z = (*X(S(Y))le + Y(S(X))le + s([X, Y])T1Z)
(X(r(Y)T2Z =Y (r(X)T2Z —r([X,Y])T22)
= —2ds(X,Y)T\Z + 2dr(X,Y)T, Z.
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There is a relationship between the equations we found above as follows:

Lemma 4.3. Let M be a bi-tangent quaternion Kaehler manifold. Then the following
relation is satisfied,

_ C(X,Y)A(X,Y) + B(X,Y)D(X,Y)
(R(X,Y))Z = AKX TP DT (R(X,Y)T\)Z
B(X,Y)A(X,Y) — C(X,Y)D(X,Y)

A(X,Y)2 + D(X,Y)?

(R(X,Y)T»)Z.

Proof. Multiplying (12) with D(X,Y) and multiplying (13) with A(X,Y") gives ToZ. Also
multiplying (12) with A(X,Y) and multiplying (13) with —D(X,Y) gives T1Z. If we sub-
stitute 71 Z and T5Z in (11), then we obtain the relation. O

Now we will show that a bi-tangent quaternion Kaehler manifold M with dimM = 4m
is flat when M is of constant curvature.

Theorem 4.2. Let M be a real 4m-dimensional bi-tangent quaternion Kaehler manifold. If
M is of constant curvature, then M 1is flat.

Proof. If M is of constant curvature ¢, then

R(X,)Y)Z =c{g(V,2)X —g(X,2)Y} (14)
for any vector fields X, Y and Z on M. From (12) and (13) we can write
R(X,Y)[1Z = TiR(X,Y)Z+ AX,Y)T1Z + D(X,Y)T»Z, (15)
RX,Y)T2Z = T,RX,Y)Z-DX,Y)IWZ+ A(X,Y)T>Z. (16)
Choosing Z = T1Z in (14) and using (15) we have
gV T 2)X —g(X, TW2)Y} = c{g(Y,2)hX —g(X, Z)T1Y} (17)

+AX, YW Z + D(X,Y)TZ.
Now substituting Z by T»Z in (14) and using (16) we have
gV T22)X —g(X. T22)Y} = c{g(V.2)TX — g(X, 2)T>Y'} (18)
DX, Y)W Z + A(X,Y)T>Z.
If we take Z = —JY in (17) then we have
gV, TY)X — g(X. LYY} = ef{g(Y.~JY)T1X + g(X,JY)T,Y}
+AX, Y)Y — D(X,Y)T}Y.
Taking inner product of both sides the above equation with T5Y
c{9(Y, oY) g(X, TrY) — cg(X, T2Y)g(Y, T2Y)}
=cg(X,JY)g(ThY, oY) + A(X,Y)g(ToY, 1Y) = D(X,Y)g(T1Y, TY).
Hence we find
AX,Y)=0. (19)
Similarly taking inner product of both sides the same equation with JY
c{g(Y. T2Y)g(X, JY) — cg(X, T2Y)g(Y, JY)}
=cg(X,JY)g(ThY,JY)+ A(X,Y)g(T2Y,JY) — D(X,Y)g(T Y, JY).
Hence we find

D(X,Y) = 2cg(X, JY). (20)
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If we substitute (19) and (20) in (18) then we have
AV TZ)X — g(X, T32)Y} = e{g(Y, 2)ToX — g(X, Z)T3Y'} — 2¢9(X, JY )T Z.
Taking inner product of both sides of above equation with any vector field W on M
{9V, T2 Z)g(X, W) — g(X, T22)g(Y, W)}
=c{g(Y, 2)g(ToX, W) — g(X, Z)g(ToY, W)} — 2¢g(X, JY )g(T1 Z, W).
Let {e1,ea,,,,€4m} be a orthonormal frame of M. Taking X =W =¢;

4m
> (clg(VTaZ)geis i) = glei, T2 2)g(Y, e0)})
= Z (c {9(Y, Z)g(Txe;,e;) — glei, Z)g(TnY, e;)} — 2¢cq(e;, JY)g(Th Z, ei)).
Then we get

dmeg(Y, ToZ) — cg(T2Z,Y) = cg(Y, Z)g(Tae;, e;) — cg(T2Y, Z) + 2¢g(Y, T2 Z)
and therefore we have
(A4m — 3)cg(Y, T2 Z) = cg(Y, Z)g(Tsei, e;) — cg(Z, T2Y).
Choosing Z = JY
(4m —3)cg(Y, ThY) = cg(Y, JY)g(Tze;, e;) — cg(JY, ToY).
Then we find
(4m — 2)eg(Y, T1Y) = 0.
This completes the proof. O

Remark 4.1. We note that g(Y,T1Y) # 0. Indeed, from our Example 3.1 it is easy to see
that T\Y = (y,0,w,0) for non zero Y = (z,y,z,w) € R* and g(T1Y,Y) = zy + 2w. In a
similar way, one can see that g(Y,ToY) # 0.
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