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A PROPERTY OF LOGARITHMICALLY ABSOLUTELY
MONOTONIC FUNCTIONS AND THE LOGARITHMICALLY

COMPLETE MONOTONICITY OF A POWER-EXPONENTIAL
FUNCTION

Bai-Ni Guo1, Feng Qi2

In this work, the notion of a “logarithmically absolutely monotonic func-
tion” is introduced, the inclusion that a logarithmically absolutely monotonic func-
tion is also absolutely monotonic is revealed, the logarithmically complete mono-
tonicity and the logarithmically absolute monotonicity of the function (1+α/x)x+β

are proved, where α and β are given real parameters. A new proof for the inclusion
that a logarithmically completely monotonic function is also completely monotonic
is given, and an open problem is posed.
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1. Introduction

Recall [31, 33, 46, 48] that a function f is said to be completely monotonic on
an interval I if f has derivative of all orders on I such that

(−1)kf (k)(x) ≥ 0 (1)

for x ∈ I and k ≥ 0. For our own convenience, the set of the completely monotonic
functions on I is denoted by C[I].

Recall also [31, 33, 45, 46, 48] that a function f is said to be absolutely
monotonic on an interval I if it has derivatives of all orders and

f (k−1)(t) ≥ 0 (2)

for t ∈ I and k ∈ N, where N denotes the set of all positive integers. The set of the
absolutely monotonic functions on I is denoted by A[I].

Recall again [6, 35, 38, 40] that a positive function f is said to be logarithmi-
cally completely monotonic on an interval I if its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (3)
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for k ∈ N on I. Similar to above, the set of the logarithmically completely monotonic
functions on I is denoted by CL[I].

The famous Bernstein-Widder’s Theorem [48, p. 161] states that f ∈ C[(0,∞)]
if and only if there exists a bounded and nondecreasing function µ(t) such that

f(x) =
∫ ∞

0
e−xtdµ(t) (4)

converges for 0 < x < ∞, and that f(x) ∈ A[(0,∞)] if and only if there exists a
bounded and nondecreasing function σ(t) such that

f(x) =
∫ ∞

0
extdσ(t) (5)

converges for 0 ≤ x < ∞.
In [7, 35, 38, 40, 41, 46] and many other references, the inclusions CL[I] ⊂ C[I]

and S ⊂ CL[(0,∞)] were revealed implicitly or explicitly, where S denotes the class
of Stieltjes transforms.

The class CL[(0,∞)] is characterized in [7, Theorem 1.1] explicitly and in [21,
Theorem 4.4] implicitly by

f ∈ CL[(0,∞)] ⇐⇒ fα ∈ C for all α > 0 ⇐⇒ n
√

f ∈ C for all n ∈ N.

In other words, the functions in CL[(0,∞)] are those completely monotonic functions
for which the representing measure µ in (4) is infinitely divisible in the convolution
sense: For each n ∈ N there exists a positive measure ν on [0,∞) with n-th convo-
lution power equal to µ.

To the best of our knowledge, the terminology “logarithmically completely
monotonic function” and some properties of it appeared firstly without explicit def-
inition in [6], re-coined independently with explicit definition by the first author in
[38], the preprints of [20, 35]. Since then, a further deep investigation on the log-
arithmically completely monotonic functions was explicitly carried out in [7] and a
citation of the logarithmically completely monotonic functions appeared in [16].

It is said in [7] that “In various papers complete monotonicity for special
functions has been established by proving the stronger statement that the function
is a Stieltjes transform”. It is also said in [8] that “In concrete cases it is often
easier to establish that a function is a Stieltjes transform than to verify complete
monotonicity”. Because the logarithmically completely monotonic functions must
be completely monotonic, in order to show some functions, especially the power-
exponential functions or the exponential functions, are completely monotonic, maybe
it is sufficient and much simpler to prove their logarithmically complete monotonicity
or to show that they are Stieltjes transforms, if possible. These techniques have
been used in [1, 2, 3, 5, 9, 10, 11, 12, 13, 14, 16, 22, 28, 29, 30, 31, 34, 37, 40, 41,
43, 44, 46, 50] and many other articles. It can be imagined that, if there would
not any inclusion relationship between the sets of completely monotonic functions,
logarithmically completely monotonic functions and Stieltjes transforms, it would be
very complex, difficult, even impossible, to verify some power-exponential functions
to be completely monotonic.

It is worthwhile to point out that, in most related papers before, although the
logarithmically completely monotonicities of some functions had been established es-
sentially, they were stated using the notion “completely monotonic function” instead
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of “logarithmically completely monotonic function”. Because a completely mono-
tonic function may be not logarithmically completely monotonic, in our opinion, it
should be better that many results or conclusions on completely monotonic func-
tions are rewritten or restated using the term “logarithmically completely monotonic
function”.

The main results of this paper are as follows.
Similar to the definition of the logarithmically completely monotonic function,

we would like to coin a notion “logarithmically absolutely monotonic functions”.

Definition 1. A positive function f is said to be logarithmically absolutely mono-
tonic on an interval I if it has derivatives of all orders and [ln f(t)](k) ≥ 0 for t ∈ I
and k ∈ N.

For our own convenience, the set of the logarithmically absolutely monotonic
functions on an interval I is denoted by AL[I].

Similar to the inclusion CL[I] ⊂ C[I] mentioned above, the logarithmically
absolutely monotonic functions have the following nontrivial property.

Theorem 1. A logarithmically absolutely monotonic function on an interval I is
also absolutely monotonic on I, but not conversely. Equivalently, AL[I] ⊂ A[I] and
A[I] \AL[I] 6= ∅.

This theorem hints us that, in order to show some functions, especially the
power-exponential functions or the exponential functions, are absolutely monotonic,
maybe it is much simpler or easier to prove the stronger statement that they are
logarithmically absolutely monotonic.

Let

Fα,β(x) =
(

1 +
α

x

)x+β

(6)

for α 6= 0 and either x > max{0,−α} or x < min{0,−α}. In [17, 18, 19, 23, 25,
32, 36, 39, 42, 49] (see also related content in [26, 27]), the sufficient and necessary
conditions such that the function Fα,β(x), its simplified forms, its variants and their
corresponding sequences are monotonic are obtained.

In [43, Theorem 1.2] and [50], it was proved that Fα,β(x) ∈ CL[(0,∞)] for
α > 0 and β ∈ R if and only if 2β ≥ α > 0. From CL[I] ⊂ C[I] it is deduced that the
function Fα,β(x) − eα ∈ C[(0,∞)] if and only if 0 < α ≤ 2β, which is a conclusion
obtained in [4].

Now it is natural to pose a problem: How about the logarithmically complete
or absolute monotonicity of the function Fα,β(x) for all real numbers α 6= 0 and β
on the interval (−∞, min{0,−α}) or (max{0,−α},∞)? The following Theorem 2
answers this problem.

Theorem 2. Let α 6= 0.
(1) For α < 0,

(a) Fα,β(x) ∈ CL[(−α,∞)] if and only if β ≤ α,

(b) and
1

Fα,β(x)
∈ CL[(−α,∞)] if and only if 2β ≥ α.

(2) For α > 0,
(a) Fα,β(x) ∈ CL[(0,∞)] if and only if 2β ≥ α,
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(b) and
1

Fα,β(x)
∈ CL[(0,∞)] if and only if β ≤ 0.

(3) For α < 0,
(a) Fα,β(x) ∈ AL[(−∞, 0)] if and only if β ≥ 0,
(b) and 1Fα,β(x) ∈ AL[(−∞, 0)] if and only if 2β ≤ α.

(4) For α > 0,
(a) Fα,β(x) ∈ AL[(−∞,−α)] if and only if 2β ≤ α,

(b) and
1

Fα,β(x)
∈ AL[(−∞,−α)] if and only if β ≥ α.

As an immediate consequence of combining Theorem 2 with the inclusion
CL[I] ⊂ C[I], the following complete monotonicity relating to the function Fα,β(x),
which extends the corresponding results in [4, 43, 50], can be obtained easily.

Theorem 3. Let α 6= 0.
(1) For α > 0,

(a) Fα,β(x)− eα ∈ C[(0,∞)] if and only if α ≤ 2β,

(b) and
1

Fα,β(x)
− e−α ∈ C[(0,∞)] if and only if β ≤ 0.

(2) For α < 0,
(a) Fα,β(x)− eα ∈ C[(−α,∞)] if and only if β ≤ α,

(b) and
1

Fα,β(x)
− e−α ∈ C[(−α,∞)] if and only if 2β ≥ α.

In [7] and [35, 38], two different proofs for the inclusion CL[I] ⊂ C[I] were
given. Now we would like to present a new proof for this inclusion by using Faá di
Bruno’s formula [15, 24, 47].

Theorem 4. A logarithmically completely monotonic function on an interval I is
also completely monotonic on I, but not conversely. Equivalently, CL[I] ⊂ C[I] and
C[I] \ CL[I] 6= ∅.

Now we are in a position to pose an open problem: How to characterize the
logarithmically completely monotonic functions and the logarithmically absolutely
monotonic functions, as we characterize the completely monotonic functions and the
absolutely monotonic functions by Bernstein-Widder’s Theorem?

2. Proofs of theorems

Proof of Theorem 1. The Faá di Bruno’s formula [15, 24, 47] gives an explicit for-
mula for the n-th derivative of the composition g(h(t)): If g(t) and h(t) are functions
for which all the necessary derivatives are defined, then

dn

dxn
[g(h(x))] =

∑

16i6n,ik>0∑n
k=1 ik=i∑n

k=1 kik=n

n!
n∏

k=1

ik!
g(i)(h(x))

n∏

k=1

[
h(k)(x)

k!

]ik

. (7)



A property of logarithmically absolutely monotonic functions and . . . 25

Applying (7) to g(x) = ex and h(x) = ln f(x) leads to

f (n)(x) =
[
eln f(x)

](n) = n!f(x)
∑

16i6n,ik>0∑n
k=1 ik=i∑n

k=1 kik=n

n∏

k=1

{
[ln f(x)](k)

}ik

[ik!(k!)ik ]
(8)

for n ∈ N. If f(x) ∈ AL[I], then [ln f(x)](k) ≥ 0 for k ∈ N, and then f (n)(x) ≥ 0 for
n ∈ N, that means f(x) ∈ A[I].

Conversely, it is clear that 0 ∈ A[I], but 0 6∈ AL[I]. Therefore A[I]\AL[I] 6= ∅.
The proof of Theorem 1 is complete. ¤
Proof of Theorem 2. Direct computations yield

ln Fα,β(x) = (x + β) ln
(
1 +

α

x

)
, (9)

[lnFα,β(x)]′ = ln
(
1 +

α

x

)
− α(x + β)

x(x + α)
, (10)

[ln Fα,β(x)]′′ =
α[(2β − α)x + αβ]

x2(x + α)2
, (11)

and
lim

x→±∞[lnFα,β(x)]′′ = 0, lim
x→±∞[lnFα,β(x)]′ = 0. (12)

For α < 0 and x > −α, in virtue of formula

di
1
xr

=
1

Γ(r)

∫ ∞

0
tr−1e−xtdt (13)

for x > 0 and r > 0, equation (11) can be rewritten as

[ln Fα,β(x)]′′ =
1

x + α
− 1

x
− β − α

(x + α)2
+

β

x2

,
∫ ∞

0
[β − qα(t)]t

(
eαt − 1

)
e−(x+α)tdt,

(14)

where

qα(t) =
eαt − αt− 1
t
(
eαt − 1

) =
α(eu − u− 1)

u(eu − 1)
, αq(u) (15)

for t > 0 and u = αt < 0. Since q(u) is decreasing on (−∞, 0) with

lim
u→0−

q(u) =
1
2

and lim
u→−∞ q(u) = 1,

then

(1) when β ≤ α the function (−1)i[ln Fα,β(x)](i+2) ≥ 0, and
(2) when 2β ≥ α the function (−1)i[lnFα,β(x)](i+2) ≤ 0 on (−α,∞) for i ≥ 0.

Since [lnFα,β(x)]′ increases for β ≤ α and decreases for 2β ≥ α, considering one of
the limits in (12) shows that [lnFα,β(x)]′ ≤ 0 for β ≤ α and [lnFα,β(x)]′ ≥ 0 for
2β ≥ α. In conclusion, (−1)k[ln Fα,β(x)](k) ≥ 0 for β ≤ α and (−1)k[ln Fα,β(x)](k) ≤
0 for 2β ≥ α and k ∈ N. This means that Fα,β(x) ∈ CL[(−α,∞)] for β ≤ α < 0 and

1
Fα,β(x)

∈ CL[(−α,∞)] for both 2β ≥ α and α < 0.
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Conversely, if Fα,β(x) ∈ CL[(−α,∞)] for α < 0, then [lnFα,β(x)]′ ≤ 0 which
can be rearranged as

β ≤ x
[(

1 +
x

α

)
ln

(
1 +

α

x

)
− 1

]
, θα(x) (16)

and lim
x→(−α)+

θα(x) = α, thus β ≤ α. If
1

Fα,β(x)
∈ CL[(−α,∞)] for α < 0, then

[lnFα,β(x)]′ ≥ 0 which can be rearranged as β ≥ θα(x) → α

2
as x → ∞, hence

2β ≥ α holds.
If α > 0, the formulas (14) and (15) are valid for x > 0 and u > 0. Since q(u)

is decreasing on (0,∞) with

lim
u→0+

q(u) =
1
2

and lim
u→∞ q(u) = 0,

by the same argument as above, it follows easily that Fα,β(x) ∈ CL[(0,∞)] for 2β ≥ α

and
1

Fα,β(x)
∈ CL[(0,∞)] for β ≤ 0.

Conversely, if Fα,β(x) ∈ CL[(0,∞)] for α > 0, then [lnFα,β(x)]′ ≤ 0 which can

be rewritten as β ≥ θα(x) → α

2
as x tends to ∞; if

1
Fα,β(x)

∈ CL[(0,∞)] for α > 0,

then [lnFα,β(x)]′ ≥ 0 which can be rewritten as β ≤ θα(x) → 0 as x → 0.
For α < 0 and x < 0, it is easy to obtain

[ln Fα,β(x)]′′ = − 1
−(x + α)

+
1
−x

− β − α

[−(x + α)]2
+

β

(−x)2

,
∫ ∞

0
[β + pα(t)]t

(
1− eαt

)
extdt,

(17)

where

pα(t) =
1 + (αt− 1)eαt

t(1− eαt)
=

α[1 + (u− 1)eu]
u(1− eu)

, αp(u) (18)

for t > 0 and u = αt < 0 and p(u) is decreasing on (−∞, 0) with

lim
u→−∞ p(u) = 0 and lim

u→0−
p(u) = −1

2
.

Accordingly, for i ≥ 0 and on (−∞, 0), if β − α

2
≤ 0 then [lnFα,β(x)](i+2) ≤ 0,

if β ≥ 0 then [lnFα,β(x)](i+2) ≥ 0. By virtue of (12), it is deduced immediately
that [lnFα,β(x)](k) ≤ 0 for 2β ≤ α and [lnFα,β(x)](k) ≥ 0 for β ≥ 0 and k ∈ N on
(−∞, 0).

Conversely, if Fα,β(x) is logarithmically absolutely monotonic on (−∞, 0),
then [lnFα,β(x)]′ ≥ 0 which can be rewritten as β ≥ θα(x) for x ∈ (−∞, 0). From

lim
x→0−

θα(x) = 0, it follows that β ≥ 0; if
1

Fα,β(x)
is logarithmically absolutely

monotonic on (−∞, 0), then [lnFα,β(x)]′ ≤ 0 which can be rearranged as β ≤ θα(x)
for x ∈ (−∞, 0). From lim

x→−∞ θα(x) =
α

2
, it concludes that 2β ≤ α.
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For α > 0 and x < −α, the formulas (17) and (18) hold for x ∈ (−∞,−α)
and u > 0. The function p(u) is negative and decreasing on (0,∞) with

lim
u→0+

p(u) = −1
2

and lim
u→∞ p(u) = −1.

Consequently, if β − 1
2
α ≤ 0 then [lnFα,β(x)](i+2) ≥ 0 for i ≥ 0 on (−∞,−α), if

β − α ≥ 0 then [lnFα,β(x)](i+2) ≤ 0 for i ≥ 0 on (−∞,−α). In virtue of (12), it
is readily concluded that [lnFα,β(x)](k) ≥ 0 for 2β ≤ α and [lnFα,β(x)](k) ≤ 0 for
β ≥ α and k ∈ N on (−∞,−α).

Conversely, if Fα,β(x) is logarithmically absolutely monotonic on (−∞,−α),
then [lnFα,β(x)]′ ≥ 0 which can be rewritten as β ≤ θα(x) for x ∈ (−∞,−α). From

the fact that lim
x→−∞ θα(x) =

α

2
, it follows that 2β ≤ α; if

1
Fα,β(x)

is logarithmically

absolutely monotonic on (−∞,−α), then [lnFα,β(x)]′ ≤ 0 which can be rearranged
as β ≥ θα(x) for x ∈ (−∞,−α). From the fact that lim

x→(−α)−
θα(x) = α, it concludes

that β ≥ α. The proof of Theorem 2 is complete. ¤

Proof of Theorem 3. This follows from taking limits by L’Hôspital rule, considering
the inclusion CL[I] ⊂ C[I] and using Theorem 2. ¤

Proof of Theorem 4. If f(x) ∈ CL[I], then (−1)k[ln f(x)](k) ≥ 0 for k ∈ N and
n∏

k=1

{
[ln f(x)](k)

}ik =
n∏

k=1

(−1)kik
{
(−1)k[ln f(x)](k)

}ik

=
n∏

k=1

(−1)kik

n∏

k=1

{
(−1)k[ln f(x)](k)

}ik

= (−1)
∑n

k=1 kik

n∏

k=1

{
(−1)k[ln f(x)](k)

}ik

(19)

for n ∈ N. Substituting (19) into (8) yields

(−1)nf (n)(x) = n!f(x)
∑

16i6n,ik>0∑n
k=1 ik=i∑n

k=1 kik=n

n∏

k=1

{
(−1)k[ln f(x)](k)

}ik

[ik!(k!)ik ]
≥ 0 (20)

for n ∈ N. This means that f(x) ∈ C[I].
Conversely, it is clear that 0 ∈ C[I] for any interval I, but 0 6∈ CL[I]. Therefore

C[I] \ CL[I] 6= ∅. The proof of Theorem 4 is complete. ¤
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