U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 4, 2011 ISSN 1454-234x

A STUDY ON LEXICAL CHAIN IDENTIFICATION AND
WORD SENSE DISAMBIGUATION

Stefan Daniel DUMITRESCU', Ana GAINARU?, Stefan TRAUSAN-MATU?

Lucrarea de fata investigheaza problema lanturilor lexicale si a
dezambiguizarii de sens a cuvintelor precum si conexiunea intre aceste doud
subiecte. Este propus un sistem care extrage cuvinte dintr-un text nestructurat §i
genereaza un set de lanturi lexicale precum si dezambiguizarea cuvintelor bazata pe
sinseturi WordNet. Sunt testati trei algoritmi nesupervizati, fiecare dintre acestia cu
cdte trei mdsuri de similaritate bazate pe conceptul de Continut Informational.
Pentru evaluarea sistemului comparam rezultatele obtinute cu fisiere adnotate
manual ce contin cuvinte dezambiguizate.

The present paper investigates the issues of lexical chains and word sense
disambiguation and the strong connection between them. We propose a system that
extracts words from unstructured text and provides sets of lexical chains and also
words and their disambiguation based on WordNet’s synsets. We test three
unsupervised algorithms, each with three similarity measures based on the concept
of Information Content. To evaluate the system we compare the results against
manually annotated files containing disambiguated words.

Keywords: word sense disambiguation, lexical chains, semantic distance,
clustering algorithms

1. Introduction

The article investigates two major tasks in the Natural Language
Processing domain, with strong implications in many other fields like Information
Retrieval, Information Extraction and up to Artificial Intelligence. We investigate
the methods and results of extracting lexical chains and of disambiguating words
(WSD).

We aim to build a system that takes natural text as input and outputs sets
of lexical chains and disambiguated words. As lexical chains are directly
connected to the problem of sense disambiguation, we will focus our attention at
both of these basic but very difficult issues.

! PhD student, Computer Science Department, University POLITEHNICA of Bucharest, Romania,
e-mail: dumitrescu.stefan@gmail.com

? Eng., Computer Science Department, University POLITEHNICA of Bucharest, Romania

? Prof., Computer Science Department, University POLITEHNICA of Bucharest, Romania

198 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

Lexical chains are the result of connecting semantically related words in
portions of text. The obtained set of chains represents cohesion threads throughout
the text. This set of chains is used in natural language processing sub-tasks like
automatic summarizing, information retrieval and information extraction, spell
checking, topic segmentation and others.

Word sense disambiguation is the task of assigning senses to words. A
word is polysemous, meaning that depending on the context, it can have multiple
meanings. Disambiguating its correct sense is the first building block in many
NLP applications, from the same categories as lexical chains.

There is a direct, two-way connection between lexical chain identification
and word sense disambiguation. On one hand, lexical chaining could benefit from
WSD because knowing for certain (or at least with a good degree of confidence)
what sense a word has in a sentence, adding that word to a lexical chain is a much
simpler problem, as all the words in a chain gravitate along one idea (concept). On
the other hand, having correct lexical chains greatly simplifies the task of WSD,
because disambiguating a set of words is much easier if it is known that they point
to the same meaning. The two problems are interconnected [5], and each can be to
the other, if not a solution, at least a great method to improve accuracy.

We propose a system that tries to extract both lexical chains and to
disambiguate words in one step, using a set of unsupervised clustering algorithms.
In the clustering process itself, the choice of assigning a word to a cluster is based
on calculating a similarity measure which implies choosing a sense for that word.
In this way, we extract lexical chains as clusters as well as disambiguating the
senses of words in respect to WordNet synsets, as further described.

2. Related Work

The proposed system takes on the problems of word sense disambiguation
and lexical chain identification by method of clustering. This chapter looks at
each of these subjects and briefly discusses the supporting resources, currently
existing methods and approaches.

2.1. Word Sense Disambiguation

Entity disambiguation is the task of identifying which sense (meaning) of
an entity (a simple or composed word) is used in a sentence, given the fact that
words are affected by polysemy / homonymy problems.

Currently, there are three major directions for word sense disambiguation -
WSD:

- Knowledge-Based Disambiguation, where lexical resources like thesauri
and dictionaries are used;

A study on lexical chain identification and word sense disambiguation 199

- Supervised Disambiguation, where machine learning approaches are
used to train various classifiers; these systems encode custom features into
feature-vectors, and, based on the provided labeled training data build models
used to assign appropriate word senses;

- Unsupervised Disambiguation, where the learning system uses unlabeled
corpora.

In the present paper we investigate a Knowledge-Based approach to WSD.
We want to semantically differentiate between each word’s senses, and thus we
need to use an existing lexical resource that we can refer to when assigning a
certain sense to a word. The senses (meanings) usually come from thesaurus or
dictionaries, where, depending on the resource used, polysemy, hyper/hyponymy
relations, homonymy, etc. relations are represented. For the purposes of this
paper, we will use the WordNet lexical resource for the WSD task.

2.2. WordNet Lexical Resource

Princeton University’s WordNet® is a free electronic lexical resource
containing dictionaries of nouns, verbs, adjectives and adverbs. It provides not
only dictionaries but also organizes related concept from the individual categories
into synsets (synonym sets). Currently the latest version of WordNet is 3.0,
containing around 150000 words organized in around 115000 synsets.

The basic WordNet concepts are: synsets, glosses and lemmas. The gloss
is an explanation or definition of a word in a text, basically a sense-disambiguated
corpus. In addition to the definition itself, the gloss also contains additional
explanations and examples. Lemmas are the words that belong to a synset. They
represent the string text of the word from WordNet database.

The synset is the equivalent of a concept. A synset is, in essence, an
ordered list of synonyms. The synonyms themselves are words that are in the
same lexical category and are commonly used to express the same meaning.
Synsets as well and the synset hierarchy (created by relations like is-A, part-of,
etc.) represent the most used information in WordNet, bringing also semantic
value over the standard lexical value a dictionary provides.

WordNet is currently the most commonly used lexical resource for word
sense disambiguation. It encodes many senses for every word, and while this
seems at first a solid base to use for the diverse tasks, it has been argued that there
may be too many senses even for humans [7]. This issue might prevent WSD
systems from performing at their best. Solutions have been proposed, like
clustering methods that might be used to group similar senses together and reduce
the total number to only a few, more manageable and distinct senses [8]. For
English, accuracy is over 90% if we take coarse-grained senses (every word has

* http://wordnet.princeton.edu/

200 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

few, clearly defined and separate senses), and about 59.1% - 69.0% for fine-
grained senses (reported by Senseval-2°) (every word has a many senses covering
many possible meanings). We must note that for fine-grained senses, the baseline
algorithm is that of always choosing the first sense of every word, with accuracy
ranging from 51.5% to 57%. This fine-grained baseline accuracy is a problem for
most algorithms to even reach, let alone out-perform.

2.3. Semantic similarity measures

For semantic similarity we will use Information Content based measures.
Information Content (IC) is a specificity measure for concepts [2]. For example,
concepts that are more specific have a higher IC associated value than more
general concepts (ex: locomotive has a higher IC than device). The IC value is
calculated depending on the frequency of concepts from the text. The process is as
follows: the text (corpus) from which IC values are to be derived from is parsed,
and for every concept found, its frequency as well as the frequency count of its
ancestors is increased by one in WordNet. The ancestor hierarchy is a concept
hierarchy where links are WordNet relations (e.g.: for nouns we have is-A4 or part-
of relations).

After the frequency count is completed, for each concept in WordNet the
IC value is computed as the negative log of the probability (frequency count) of
the concept.

IC(s) = —log(P(s)) (1

For the purposes of this paper we have used IC information that was
extracted from the Brown and Semcor corpuses.

We have implemented three different Information Content measures [1]:
Resnik’s measure res, Lin’s measure /in, Jiang and Conrath’s measure jcn. All
these measures take two synsets as inputs, and produce a floating point value that
represents the similarity between the two synsets. They are all based on the idea
of finding the least common ancestor (LCA), meaning finding the concept that
subsumes both of the synsets in WordNet’s synset Is-A (hypernym) hierarchy. If
there is more than one LCA, the least general LCA is taken (the lowest in the
hierarchy).

The Resnik measure (res) provides the basic metric that is used both for
lin and jcn measures. The similarity value is the IC value of the synset’s LCA.

SiM,.5(s1,s2) = IC(lcs(s1,s2)) 2)

> http://www.senseval.org/

A study on lexical chain identification and word sense disambiguation 201

The res measure may provide the same value for different synsets that
share the same LCA, and thus is not a very informative measure. Lin’s measure
attempts to improve the accuracy by incorporating information about the IC of
each of the synsets.

2 X SiMyes(s1,s2)
IC(s1) +IC(s2)

3)

simy,(s1,s2) =

Jiang and Conrath provide an alternate distance metric instead, using the
same elements as Lin:

distjc, (s1,52) = IC(s1) + IC(s2) — 2 X Sim,¢5(51,52) 4)

However, to transform jcn into a similarity measure, we can simply invert
the distance formula:

iMjon(s1,52) = ———————
Simjen(s1,52) distjcn(s1,52) ©)

While this formula provides a similarity measure instead of a distance
measure between synsets, it does alter the value differences between sets of
synsets due to the division.

These three measures types represent standard measures used for a long
time in NLP applications and other fields like WSD [6], with consistent results.
We have implemented Resnik’s measure because it provides a baseline for the
other measures.

2.4. Clustering methods

Cluster methods can be categorized into two major categories: supervised
learning techniques and unsupervised data mining methods. All supervised
algorithms need a training phase that is quite expensive since it requires all word
to be annotated manually. Unsupervised techniques are easier to use since they
require only a few input parameters and then everything is computed by the
algorithm automatically.

We chose only unsupervised algorithms for our study. The most used
methods in data mining are apriori which extract most frequent sets of words
from unstructured text, Latent Semantic Indexing that establishes associations
between words from similar patterns, K-means which cluster data points by using
k-centroids and reorganizing words around it until all clusters are stable, and
hierarchical clustering that iteratively divides clusters until they are good enough.

202 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

Our system aims to group words that have similar meaning into one group,
so that it can construct a context that describes the sequence of points. In order to
have an accurate context, the system needs to be able to disambiguate word
senses. The models that can be used for extracting lexical chains from
unstructured text are K-means and hierarchical clustering. A first computational
model of lexical chains was introduced by [9]. This algorithm suffers from
inaccurate WSD, since their greedy strategy immediately disambiguates a word
when it is first encountered. More recently, [10] proposed a system for lexical
chain extraction which models Barzilay’s approach that has good results, but has
inaccuracies in WSD. An even more recent approach is [4] based on the fact that
separating WSD from the actual chaining of words can increase the quality of
chains. Their results are better than the ones before but still under 65% accuracy.

3. System Implementation

3.1. System architecture

The system is built in Java, using a various set of wrappers and tools like
WordNet 3.0, JWNL - a java WordNet wrapper, Stanford’s POS tagger library.
The core functions, including the similarity metrics as well as the clustering
algorithms, have been manually implemented in Java. The system takes as input
text files containing free unstructured text to be analyzed.

Before starting file processing, initialization is performed. Synsets are
extracted into memory from WordNet, and then the Information Content data is
loaded and attached to the synsets.

The first processing step is reading the text file, part-of-speech tagging it,
and extracting the nouns. After the file is processed, the list of nouns is passed to
the clustering engine. The clustering engine uses 3 algorithms in turn to process
the nouns and extract clusters of words with chosen synsets. All running
clustering algorithms use each of the three similarity metrics (res, /in and jcn) and
each of the methods of choosing words’ synsets (baseline first sense, random and
maximum similarity). The similarity metric functions are provided by the
Semantic Similarity module that in turn is directly linked to WordNet data files.

When searching for the right cluster for one data point, in the first phase,
we investigate different senses to try to fit the word into an existing lexical chain
or group. However, after the word belongs to a lexical chain or a group, the
algorithm identifies the most probable sense using the context created by the rest
of the words in the cluster. We use this last method to give the output for word
sense disambiguation. In this last step the algorithm uses the context created for
each group in order to extract a series of summary words or tags from each lexical
chain.

A study on lexical chain identification and word sense disambiguation 203

The resulting clusters then go into the evaluation module. The evaluation
module first evaluates the chosen senses for each word versus a manually
annotated file with correct sense ids.

3.2. The similarity metric module

The module contains the algorithms that provide the semantic similarity
metrics. Before being able to use such a metric, at system start, WordNet’s synsets
are all extracted as an in-memory array list. JWNLS, a java wrapper for WordNet
provides the necessary functions to parse synset by synset. Each synset is then
added new properties, the most important one being the Information Content
value. For each synset the IC is filled by using WordNet::Similarity’s” IC files.

The IC files contain all of WordNet’s synsets and their associated IC
values. Each line contains a synset ID and an IC value. The values are computed
by analyzing different corpuses. We have used the Brown and the Semcor corpus
annotated files for IC values.

The module exports a function taking as input two words as strings, the
type of similarity measure (either res, /in, of jcn) and a synset choice type. A
search in WordNet gives us for every word a set of possible senses (synsets). The
synset choice type is needed to select, given the two input words, which of the
word’s synsets to be used to calculate the similarity with.

We have implemented 3 types of choices. The first method is of always
choosing the first sense for each word. This is also the baseline for the system.
The second method is that of randomly choosing a sense (a synset). The third
method is that of choosing the synsets that maximize similarity. This means that
for any two words, their synsets are extracted and then each possible combination
of pairs of synsets are measures and the pair that scores the maximum similarity is
returned.

3.3. The clustering algorithms module

We implemented three clustering algorithms, all which use a semantic
distance metric between words for building the word groups. We use these
algorithms with each distance metric in order to compute clusters of words that
are related to each other. We use the groups for name entities disambiguation. For
each word in the group we compute the distance to each other word in the same
cluster and we select the sense (synset) of the word that has the highest similarity.
We identify the sense that occurs more frequent and assign it to the word in
question.

® http://sourceforge.net/projects/jwordnet/
7 http://wn-similarity sourceforge.net/

204 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

@ v
: ™ Search for centers
Semantic
distances Vi
[Splitthe cluster in two

Compute means for each
clusters

Semantic
distances

' COI’T'I[.JLIt.E cluster
Assign words to similarfty
clusters
Y,
Fig. 1. The k-means clustering Fig. 2. The hierarchical clustering method

In the following subsections we will describe the algorithms in more
detail.

K-means. The k-means clustering is a method of grouping similar words
into a specific number of clusters in which each observation word belongs to the
cluster with the nearest mean. The methodology is presented in Fig. 1.

Basically the algorithm uses two steps: in the first phase the algorithm
computes the means for all created clusters and in the second one redistributes
data points from one cluster to another according to the semantic distance between
all means and the point. The mean of a cluster is represented by one of the words
in the group that has the minimal distance towards all the other data points in the
cluster.

The process is recursive and keeps reorganizing the words form one
cluster to another until there are no more changes between two sequential loops.

The only input parameter for this method is the number of clusters used
for the initial division of words. In our experiments we tested the method with
different values for this parameter.

k-Nearest Neighbors. The k-Nearest Neighbors is a clustering technique
that classifies words based on closest point classes. Initially this technique was a
supervised data mining method where the closest point classes were computed
from a training set. In our implementation we used an unsupervised method that
has its basis in the k-nearest neighbor algorithm.

Initially all points are distributed randomly into a specified number of
classes. The algorithm then iterates through all points in the dataset and inspects
the k closest neighbors to that point. The algorithm searches for the most frequent
class from the extracted set and assigns it to the data point in study.

The method has a recursive form; it iterates the dataset and reassigns
classes until there are no more modifications. The parameters that are needed for
this method are the number of initial classes and the number of neighbors to be

A study on lexical chain identification and word sense disambiguation 205

inspected. The k-nearest neighbor just assigns for each point the class of the word
that has the most semantic similarity.

Hierarchical clustering. All hierarchical clustering methods divide or
merge groups due to different criteria until a certain conditions are met. In our
implementation we use a top down hierarchical method by starting with the whole
dataset as a big cluster and then divide it constantly until all clusters have the
similarity between their components over a specific threshold. The methodology
for our top down implementation is presented in Fig. 2.

In each division step, the algorithm searches for two centers for each of the
remaining clusters. The centers must be as further away from one another but still
close to the other existing words in the group. The two centers are then used to
split the cluster in two depending on the semantic distances between them and the
two centers. For each new created cluster we compute the similarity between the
included words as the mean distance between each pair of points. If the value is
over a specified threshold then the cluster is good enough and the algorithm will
not inspect it again. The stop criterion in our case is when all clusters have the
similarity over the threshold.

The algorithm receives one input parameter, the threshold for the cluster
similarity. We could not chose a default value for the threshold since different
distance metrics have different ways and values when measuring similarities.

3.4. Lexical chains

In our previous work [3] we implemented an algorithm for lexical chain
identification that was specifically build for chat conversations. We adapted the
algorithm for structured text and compare the results with the ones obtained using
different clustering methods. In [3] we defined two metrics that measure semantic
closeness between words, one for strong connections, synonyms or much related
concepts, and one for medium connections. Medium connections are represented
by word that share related meanings in only some contexts. The difference
between a strong and medium connection between words is given by different
values obtain by the semantic distance. We use the same metrics in our adaptation
of the model.

The algorithm used has 3 basic steps. In the first phase we investigate each
word from the text and look for strong connections between it and all existing
chains. The first chain found will be linked to the new word since a strong
connection has the highest priority. We limit the search to 20 sentences in the past
since it is more computational efficient and also because as we search words that
are further away, the chances of finding a relevant lexical chain decreases.

206 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

The second step takes place only if no strong connection was found. In this
phase medium connections are investigated. The method searches each chain and
selects the one with the highest semantic closeness. For the same reasons as in the
previous step, the search is limited to 10 sentences in the past.

The last step deals with words that have no strong or medium connection
with any of the existing chains. If no relations are found then a new chain is
created containing only the inspected word.

4. Results

In our experiments we compare the results for different types of clustering
algorithms using different types of metrics for the measurement of similarity
closeness with the ones manually annotated. We used two input text files with
different specifics; one is a large report from computer science that tests the way
algorithms deal with technical terms having a formal language and the second file
is a news report that tests the accuracy of the implemented methods in an
everyday type of text.

We conducted two types of experiments. In the first experiment we tested
the accuracy of all methods in identifying the correct synset for each word in the
input text. For each input dataset we manually identified the nouns and then
searched in the WordNet taxonomy for the correct sense. Each of the 4 methods
presented in the previous paragraph are able to output the synset id and number
for all the grouped words. Finally, we compute the percentage of correctly
identified senses.

In the second experiment we tested the behavior of all methods in
identifying the lexical chains from input files. For all clustering algorithms, the
lexical chains are represented by the group of words that they output. We
manually extracted the clusters from the input text files as an array of the same
size as the number of nouns, where each value represents a group id that
corresponds to a word from the input dataset. All algorithms output the same
array type and finally compute the percentage of correctly classified words.

The two experiments are used to inspect how well each algorithm is able
to identify lexical chains from different types of input text files and also to show
its accuracy of finding the correct sense for each noun.

4.1. Experiment 1

In the first experiment we test the accuracy of all algorithms in identifying
the correct synset for nouns in the input text. All results were compared against
the manually assigned senses for the nouns. The accuracy is computed as the total
number of correctly classified nouns divided by their total number.

A study on lexical chain identification and word sense disambiguation 207

In table 1 we show the results obtained using the k-means algorithm with
an input parameter value of 3, 4 and 5. The best results obtained for all similarity
measure choice and synset choice are for an initial number of classes of 4. The
same pattern is also observed for the second input text file.

Table 1
k-Means results with different input parameter value
k-means FIRSTSENSE MAXSIM RANDOM

3 classes
RES 55 64 57
JCN 58 68 61
LIN 55 65 59
4 classes
RES 55 66 59
JCN 61 70 65
LIN 58 68 61
5 classes
RES 51 58 57
JCN 55 63 58
LIN 51 63 55

Fig. 3 shows the charts for using k-means with the input parameter value
of 4 for all measuring units. Res was used as a base line and obtained the worst
results for almost all synset choices. For Fig. 5 the /in similarity measurement and
with RANDOM synset choice had worst results than res. Since the RANDOM
synset choice chooses the sense of a word without a prefixed algorithm is
expected its results to fluctuate. However the accuracy obtained by jcn has better
results than all other methods for all metrics considered.

80 70

70 - 60 e —

x -
&0 e ———. 4 & e

—— e 50

0 40

40
3o
i

RES /0 | ——RES
20 | = JCN
—=— N o
10 « LN [l
il

o T T
FIRSTSENSE MAXSIM g HANDOM FIRSTSENSE MAXSIM RANDOM

Fig. 3. Accuracy for k-means algorithm for the first and second input files

The results show that MAXSIM has better results than FIRSTSENSE and
RANDOM in almost all the cases. For the second input file, the res similarity has
the same value for RANDOM and MAXSIM. Since the RANDOM synset choice
function could return any sense for a word and since this is an isolated case, this
information is not very relevant for our analysis. FIRSTSENSE always returns the
first meaning for all nouns, and still using this method we obtain good results for

208 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

all metrics in both input files. If we use jcn for the first input file the algorithm
gave us an accuracy of 61%. This shows that more than 50% of the words used in
a regular text keep their implicit first meaning.

The second text file obtained worst results than the first one for all cases
under study. In the second text there are a lot of technical terms and not that many
discussion topics. One explanation for the worse results could be that each cluster
contains more words so the context for computing the senses is wider. Also the
discussion topics used in this second input file are further apart from each other
than in the first text (there is an analogy between hackers effects on the computing
systems and car racks). The algorithm had some problems relating the word
“person” to “hacker” or “driver” for example.

The next figure shows the results for k-nearest neighbor algorithm. We
computed the output results for different values for the number of neighbors to
inspect and we presented only the best result in the Fig. 4. The first chart is for the
first input file and is computed using 2 neighbors and the second one is for the
technical computer science text using 3 neighbors.

70 4 70 9

—
0 e — 60 1 —
,/‘\ T —
e -
50 =~ 50 4 - o o
P = e =
L3 = Y
40 4 > 40 4
k1] 30 4
—+—RES e
2 20 4 RES
—a— JCN —=—JCN
10 4 a— LIN 10 4 a—LIN
T T] o ¥ T
FIRSTSENSE MAXSIM RANDOM FIRSTSENSE MAXSIM RARDOM

Fig. 4. Accuracy for kNN algorithm for the first and the second input file

We obtained better results for the second input file using a higher number
of neighbors because of the specific characteristics of the second text, since it
needs fewer and larger clusters.

This algorithm, as the previous one, has the best results for jcn and for
MAXSIM. There is a greater distance between the results obtained using
FIRSTSENSE and MASIM than in the previous algorithm. The explanation for
this is that this algorithm uses just a small number of neighbors for deciding how
to classify a word so it does not have the whole context. If the algorithm searches
for the sense that maximizes the similarity between words (like MAXSIM does)
that the context is no longer necessary. However due to this problem, in the case
of FIRSTSENSE the method has problems in clustering words. Fig. 5 shows the
results obtained by the hierarchical clustering method.

A study on lexical chain identification and word sense disambiguation

209

80 4

60 4

30 4

20 4

—+—RES
—a— JCN
a— UN

FIRSTSENSE

MAXSIM

RANDOM

——RES
—s— ICN
#— LN

FIRSTSENSE

MAXSIM

RANDOM

Fig. 5. Accuracy of hierarchical clustering for the first and second input file

The results are much closer to each other than with the rest of algorithms.
However the overall curves of the graphs are the same. Jcn with MAXSIM is still
the leader and in general /in is better than res. The distance between the values
returned by MAXSIM and FIRSTSENSE are once again close to each other since
this method, as the first one, compares each pair of words is the context is
complete when splitting a cluster.

W Hier achicsl

First file Second file

Fig. 6. Comparison between results obtained with different clustering methods

Fig. 6 compares the best results for each of the three methods: k-means,
kNN and hierarchical. The k-nearest neighbor algorithm has the worst results.
However between k-means and the hierarchical clustering method it is not clear.
While for the first input text k-means has a better accuracy, for the second input
file the hierarchical clustering algorithm is much more precise.

Since all results are obtained using jcn and MAXSIM, the difference is
given by the methodology used by each algorithm. K-means depends on the initial
number of classes. The hierarchical method divides clusters until all of them have
messages with the similarity over a threshold. The threshold depends only on the
measuring unit used and not on the input text.

210 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

Another difference is given by the way the hierarchical method chooses
the two centers in the dividing process. If the text has many words that could
belong in one group if we inspect one meaning and in another if we look at
another sense, then the hierarchical method could choose the centers wrong. Once
the splitting is finished there is no way back so the error will propagate until the
final clusters. K-means reorganizes all clusters in each iteration so it won’t have
that problem. On the other hand if the text has no difficulties of that kind the
hierarchical method should behave better than k-means.

4.2. Experiment 2

In the second experiment scenario we tested the behavior of all methods in
identifying the lexical chains from input files. For better comparison, we manually
extracted the clusters from the input text files. The output is represented by an
array list where each value represents a group id that corresponds to a word from
the input text file.

We implemented all algorithms to output the same type of array and then
we computed the percentage of correctly classified words. Fig. 7 gives the results
obtained for each method using jecn and MAXSIM. We use only jcrn and
MAXSIM since those are the metrics that give the best results for all clustering
methods.

80 -
70 4
60 4
50 4 m k-means
@ kNN
40 4
m hierarc hical
30 4 m lexical chains
20
10 4
Q4

firstinput file second text

Fig. 7. Percentage of correctly classified words for different clustering methods

As we expected, since lexical chains and word sense disambiguation are
closely related, the results follow the same curves. This was to be expected since
if a word is in a wrong group it is likely that its meaning will be misclassified;
similarly, this is valid the other way around. However all methods obtained a
better value for the accuracy when inspecting the classification process and not
WSD.

A study on lexical chain identification and word sense disambiguation 211

A misclassified word in a cluster influences the context for all other data
points from the group. The higher the number of words that were not supposed to
be in one cluster, the more it will negatively influence the context of other words.
The conclusion is that the chance of finding the correct sense for all other words
that are correctly put in a group will decrease with the increase of the
misclassified data points from the same cluster.

We computed the percentage of correctly classified word using the lexical
chain algorithm that we imported from the chat analyzer. The results are not better
than the k-means or the hierarchical method, but very close. Basically this
happens because the method was implemented for chat structure and not text. The
other two methods consider the whole context created for a word and not just
inspecting the previous sentences.

5. Conclusions

In this paper we presented a system that identifies groups of related words
or lexical chains from unstructured text. The lexical chains are further used to
assign the most appropriate sense for all nouns and to extract a series of summary
words that are used to represent the group. We implemented three unsupervised
clustering algorithms that have distinct methodologies and that use different
semantic metrics. All methods use two basic steps. The first phase extracts the
groups of words that are related to each other and the second one creates the
context for each cluster by disambiguating the nouns senses. The context of each
group of related words allows the system to extract tag words form the lexical
chains.

In the experiment phase we compared the results obtained with all
methods and for all semantic closeness measures against manually annotated
groups. We used two distinct types of files, one scientific and one common-style
text. We have two types of experiments: for the first one we test the
disambiguation process by computing the percentage of correctly identified senses
for all nouns; for the second type we test the lexical chain identification
techniques. The purpose of this article is to show the comparative performance of
different unsupervised methods in combination with different similarity measures
to perform WSD and construct lexical chains. The obtained results show that out
of all semantic similarity measures jcn performs consistently better, and between
the clustering algorithms implemented and tested, k-means and hierarchical
clustering obtain the highest results. Because both clustering algorithms have
relatively close results, the choice whether to use one or the other depends mostly
on the type of data to be clustered. Hierarchical clustering performs better on data
that can be split in a tree-like structure, with the property that when one data point
is added to a set it can no longer move to another set. K-means assumes no data

212 Stefan Daniel Dumitrescu, Ana Gainaru, Stefan Trausan-Matu

structure (which might often be the case), it is simply creating k clusters, without
guarantee that another run will provide the same results (with random
initialization). As there is no substantially “better” algorithm (although kNN
performs somewhat worse), we have presented both k-means and hierarchical
clustering as viable choices to perform word sense grouping.

REFERENCES

[1] A. Budanitsky, Semantic distance in Wordnet: An experimental, application-oriented evaluation
of five measures, 2001, Available: http://citeseerx.ist.psu.edu/viewdoc /summary?
doi=10.1.1.29.2985

[2] T. Pedersen, Information Content Measures of Semantic Similarity Perform Better Without
Sense-Tagged Text, in The 11th Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL HLT 2010), June 1-6, Los Angeles,
2010

[3] A. Gainaru, S. Dumitrescu, S.M. Trausan, Toolkit for automatic analysis of chat conversations,
in The 8th International Conference on COMMUNICATIONS, Bucharest, 2010

[4] M. Galley, K. McKeown, Improving Word Sense Disambiguation in Lexical Chaining, in The
18th international joint conference on Artificial intelligence, Acapulco, 2003, pp. 1486-
1488

[5] N. Rani, M. Stuart, Lexical Chaining and Word-Sense-Disambiguation, Technical report,
School of Engineering and Applied Sciences, TR-06-07, 2007

[6] S. Patwardhan, S. Banerjee,T. Pedersen, Using Measures of Semantic Relatedness for Word
Sense Disambiguation, in The 4th International Conference on Intelligent Text Processing
and Computational Linguistics, Mexico City, 2003, pp. 241-257

[7] R. Navigli, Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation
Performance, in The 44™ Annual Meeting of the Association for Computational Linguistics
joint with the 21st International Conference on Computational Linguistics, Sydney, 2006,
pp. 105-112

[8] R. Snow, S. Prakash, D. Jurafsky, Learning to Merge Word Senses, in Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pp. 1005-1014, Prague, 2007

[9]1 G. Hirst, D. St-Onge, Lexical chains as representations of context for the detection and
correction of malapropisms, in WordNet: An electronic lexical database. In: MIT Press,
1998

[10] G. Silber, K. McCoy, Efficiently computed lexical chains as an intermediate representation for
automatic text summarization, in Computational Linguistics, 2003, pp. 29(1).

