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A STUDY ON LEXICAL CHAIN IDENTIFICATION AND 
WORD SENSE DISAMBIGUATION  

Ştefan Daniel DUMITRESCU1, Ana GĂINARU2, Ştefan TRĂUŞAN-MATU3 

Lucrarea de faţă investighează problema lanţurilor lexicale şi a 
dezambiguizării de sens a cuvintelor precum şi conexiunea între aceste două 
subiecte. Este propus un sistem care extrage cuvinte dintr-un text nestructurat şi 
generează un set de lanţuri lexicale precum şi dezambiguizarea cuvintelor bazată pe 
sinseturi WordNet. Sunt testaţi trei algoritmi nesupervizaţi, fiecare dintre aceştia cu  
câte trei măsuri de similaritate bazate pe conceptul de Conţinut Informaţional. 
Pentru evaluarea sistemului comparăm rezultatele obţinute cu fişiere adnotate 
manual ce conţin cuvinte dezambiguizate. 

The present paper investigates the issues of lexical chains and word sense 
disambiguation and the strong connection between them. We propose a system that 
extracts words from unstructured text and provides sets of lexical chains and also 
words and their disambiguation based on WordNet’s synsets. We test three 
unsupervised algorithms, each with three similarity measures based on the concept 
of Information Content. To evaluate the system we compare the results against 
manually annotated files containing disambiguated words.  

Keywords: word sense disambiguation, lexical chains, semantic distance, 
clustering algorithms 

1. Introduction 

The article investigates two major tasks in the Natural Language 
Processing domain, with strong implications in many other fields like Information 
Retrieval, Information Extraction and up to Artificial Intelligence. We investigate 
the methods and results of extracting lexical chains and of disambiguating words 
(WSD).  

We aim to build a system that takes natural text as input and outputs sets 
of lexical chains and disambiguated words. As lexical chains are directly 
connected to the problem of sense disambiguation, we will focus our attention at 
both of these basic but very difficult issues. 
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Lexical chains are the result of connecting semantically related words in 
portions of text. The obtained set of chains represents cohesion threads throughout 
the text. This set of chains is used in natural language processing sub-tasks like 
automatic summarizing, information retrieval and information extraction, spell 
checking, topic segmentation and others.  

Word sense disambiguation is the task of assigning senses to words. A 
word is polysemous, meaning that depending on the context, it can have multiple 
meanings. Disambiguating its correct sense is the first building block in many 
NLP applications, from the same categories as lexical chains. 

There is a direct, two-way connection between lexical chain identification 
and word sense disambiguation. On one hand, lexical chaining could benefit from 
WSD because knowing for certain (or at least with a good degree of confidence) 
what sense a word has in a sentence, adding that word to a lexical chain is a much 
simpler problem, as all the words in a chain gravitate along one idea (concept). On 
the other hand, having correct lexical chains greatly simplifies the task of WSD, 
because disambiguating a set of words is much easier if it is known that they point 
to the same meaning. The two problems are interconnected [5], and each can be to 
the other, if not a solution, at least a great method to improve accuracy. 

We propose a system that tries to extract both lexical chains and to 
disambiguate words in one step, using a set of unsupervised clustering algorithms. 
In the clustering process itself, the choice of assigning a word to a cluster is based 
on calculating a similarity measure which implies choosing a sense for that word. 
In this way, we extract lexical chains as clusters as well as disambiguating the 
senses of words in respect to WordNet synsets, as further described.  

2. Related Work 

The proposed system takes on the problems of word sense disambiguation 
and lexical chain identification by method of clustering. This chapter looks at 
each of these subjects and briefly discusses the supporting resources, currently 
existing methods and approaches. 

 
2.1. Word Sense Disambiguation 
 
Entity disambiguation is the task of identifying which sense (meaning) of 

an entity (a simple or composed word) is used in a sentence, given the fact that 
words are affected by polysemy / homonymy problems.   

Currently, there are three major directions for word sense disambiguation - 
WSD: 

- Knowledge-Based Disambiguation, where lexical resources like thesauri 
and dictionaries are used; 
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- Supervised Disambiguation, where machine learning approaches are 
used to train various classifiers; these systems encode custom features into 
feature-vectors, and, based on the provided labeled training data build models 
used to assign appropriate word senses; 

- Unsupervised Disambiguation, where the learning system uses unlabeled 
corpora. 

In the present paper we investigate a Knowledge-Based approach to WSD. 
We want to semantically differentiate between each word’s senses, and thus we 
need to use an existing lexical resource that we can refer to when assigning a 
certain sense to a word. The senses (meanings) usually come from thesaurus or 
dictionaries, where, depending on the resource used, polysemy, hyper/hyponymy 
relations, homonymy, etc. relations are represented. For the purposes of this 
paper, we will use the WordNet lexical resource for the WSD task. 

 
2.2. WordNet Lexical Resource  
 
Princeton University’s WordNet4 is a free electronic lexical resource 

containing dictionaries of nouns, verbs, adjectives and adverbs. It provides not 
only dictionaries but also organizes related concept from the individual categories 
into synsets (synonym sets). Currently the latest version of WordNet is 3.0, 
containing around 150000 words organized in around 115000 synsets. 

The basic WordNet concepts are: synsets, glosses and lemmas. The gloss 
is an explanation or definition of a word in a text, basically a sense-disambiguated 
corpus. In addition to the definition itself, the gloss also contains additional 
explanations and examples. Lemmas are the words that belong to a synset. They 
represent the string text of the word from WordNet database. 

The synset is the equivalent of a concept. A synset is, in essence, an 
ordered list of synonyms. The synonyms themselves are words that are in the 
same lexical category and are commonly used to express the same meaning. 
Synsets as well and the synset hierarchy (created by relations like is-A, part-of, 
etc.) represent the most used information in WordNet, bringing also semantic 
value over the standard lexical value a dictionary provides. 

WordNet is currently the most commonly used lexical resource for word 
sense disambiguation. It encodes many senses for every word, and while this 
seems at first a solid base to use for the diverse tasks, it has been argued that there 
may be too many senses even for humans [7]. This issue might prevent WSD 
systems from performing at their best. Solutions have been proposed, like 
clustering methods that might be used to group similar senses together and reduce 
the total number to only a few, more manageable and distinct senses [8]. For 
English, accuracy is over 90% if we take coarse-grained senses (every word has 
                                                            
4 http://wordnet.princeton.edu/ 
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few, clearly defined and separate senses), and about 59.1% - 69.0% for fine-
grained senses (reported by Senseval-25) (every word has a many senses covering 
many possible meanings). We must note that for fine-grained senses, the baseline 
algorithm is that of always choosing the first sense of every word, with accuracy 
ranging from 51.5% to 57%. This fine-grained baseline accuracy is a problem for 
most algorithms to even reach, let alone out-perform. 

 
2.3. Semantic similarity measures  
 
For semantic similarity we will use Information Content based measures. 

Information Content (IC) is a specificity measure for concepts [2]. For example, 
concepts that are more specific have a higher IC associated value than more 
general concepts (ex: locomotive has a higher IC than device). The IC value is 
calculated depending on the frequency of concepts from the text. The process is as 
follows: the text (corpus) from which IC values are to be derived from is parsed, 
and for every concept found, its frequency as well as the frequency count of its 
ancestors is increased by one in WordNet. The ancestor hierarchy is a concept 
hierarchy where links are WordNet relations (e.g.: for nouns we have is-A or part-
of relations). 

After the frequency count is completed, for each concept in WordNet the 
IC value is computed as the negative log of the probability (frequency count) of 
the concept. 

 
ሻݏሺܥܫ ൌ െlogሺܲሺݏሻሻ (1)

 
For the purposes of this paper we have used IC information that was 

extracted from the Brown and Semcor corpuses. 
We have implemented three different Information Content measures [1]: 

Resnik’s measure res, Lin’s measure lin, Jiang and Conrath’s measure jcn. All 
these measures take two synsets as inputs, and produce a floating point value that 
represents the similarity between the two synsets. They are all based on the idea 
of finding the least common ancestor (LCA), meaning finding the concept that 
subsumes both of the synsets in WordNet’s synset Is-A (hypernym) hierarchy. If 
there is more than one LCA, the least general LCA is taken (the lowest in the 
hierarchy). 

The Resnik measure (res) provides the basic metric that is used both for 
lin and jcn measures. The similarity value is the IC value of the synset’s LCA. 

 
,1ݏ௥௘௦ሺ݉݅ݏ 2ሻݏ ൌ ,1ݏሺݏሺ݈ܿܥܫ 2ሻሻ (2)ݏ

 
                                                            
5 http://www.senseval.org/ 
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The res measure may provide the same value for different synsets that 
share the same LCA, and thus is not a very informative measure. Lin’s measure 
attempts to improve the accuracy by incorporating information about the IC of 
each of the synsets. 

 

,1ݏ௟௜௡ሺ݉݅ݏ 2ሻݏ ൌ
2 ൈ ,1ݏ௥௘௦ሺ݉݅ݏ 2ሻݏ

1ሻݏሺܥܫ ൅ 2ሻݏሺܥܫ  (3)

 
Jiang and Conrath provide an alternate distance metric instead, using the 

same elements as Lin: 
 

,1ݏ௝௖௡ሺݐݏ݅݀ 2ሻݏ ൌ 1ሻݏሺܥܫ ൅ 2ሻݏሺܥܫ െ 2 ൈ ,1ݏ௥௘௦ሺ݉݅ݏ 2ሻ (4)ݏ
 
However, to transform jcn into a similarity measure, we can simply invert 

the distance formula: 
 

݅ݏ ௝݉௖௡ሺ1ݏ, 2ሻݏ ൌ
1

,1ݏ௝௖௡ሺݐݏ݅݀ 2ሻ (5)ݏ

 
While this formula provides a similarity measure instead of a distance 

measure between synsets, it does alter the value differences between sets of 
synsets due to the division. 

These three measures types represent standard measures used for a long 
time in NLP applications and other fields like WSD [6], with consistent results. 
We have implemented Resnik’s measure because it provides a baseline for the 
other measures. 

 
2.4. Clustering methods  
 
Cluster methods can be categorized into two major categories: supervised 

learning techniques and unsupervised data mining methods. All supervised 
algorithms need a training phase that is quite expensive since it requires all word 
to be annotated manually. Unsupervised techniques are easier to use since they 
require only a few input parameters and then everything is computed by the 
algorithm automatically. 

We chose only unsupervised algorithms for our study. The most used 
methods in data mining are apriori which extract most frequent sets of words 
from unstructured text, Latent Semantic Indexing that establishes associations 
between words from similar patterns, K-means which cluster data points by using 
k-centroids and reorganizing words around it until all clusters are stable, and 
hierarchical clustering that iteratively divides clusters until they are good enough. 
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Our system aims to group words that have similar meaning into one group, 
so that it can construct a context that describes the sequence of points. In order to 
have an accurate context, the system needs to be able to disambiguate word 
senses. The models that can be used for extracting lexical chains from 
unstructured text are K-means and hierarchical clustering. A first computational 
model of lexical chains was introduced by [9]. This algorithm suffers from 
inaccurate WSD, since their greedy strategy immediately disambiguates a word 
when it is first encountered. More recently, [10] proposed a system for lexical 
chain extraction which models Barzilay’s approach that has good results, but has 
inaccuracies in WSD. An even more recent approach is [4] based on the fact that 
separating WSD from the actual chaining of words can increase the quality of 
chains. Their results are better than the ones before but still under 65% accuracy. 

3. System Implementation 

3.1. System architecture 
 
The system is built in Java, using a various set of wrappers and tools like 

WordNet 3.0, JWNL - a java WordNet wrapper, Stanford’s POS tagger library. 
The core functions, including the similarity metrics as well as the clustering 
algorithms, have been manually implemented in Java. The system takes as input 
text files containing free unstructured text to be analyzed. 

Before starting file processing, initialization is performed. Synsets are 
extracted into memory from WordNet, and then the Information Content data is 
loaded and attached to the synsets.  

The first processing step is reading the text file, part-of-speech tagging it, 
and extracting the nouns. After the file is processed, the list of nouns is passed to 
the clustering engine. The clustering engine uses 3 algorithms in turn to process 
the nouns and extract clusters of words with chosen synsets. All running 
clustering algorithms use each of the three similarity metrics (res, lin and jcn) and 
each of the methods of choosing words’ synsets (baseline first sense, random and 
maximum similarity). The similarity metric functions are provided by the 
Semantic Similarity module that in turn is directly linked to WordNet data files.  

When searching for the right cluster for one data point, in the first phase, 
we investigate different senses to try to fit the word into an existing lexical chain 
or group. However, after the word belongs to a lexical chain or a group, the 
algorithm identifies the most probable sense using the context created by the rest 
of the words in the cluster. We use this last method to give the output for word 
sense disambiguation. In this last step the algorithm uses the context created for 
each group in order to extract a series of summary words or tags from each lexical 
chain. 
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The resulting clusters then go into the evaluation module. The evaluation 
module first evaluates the chosen senses for each word versus a manually 
annotated file with correct sense ids.  

 
3.2. The similarity metric module 
 
The module contains the algorithms that provide the semantic similarity 

metrics. Before being able to use such a metric, at system start, WordNet’s synsets 
are all extracted as an in-memory array list. JWNL6, a java wrapper for WordNet 
provides the necessary functions to parse synset by synset. Each synset is then 
added new properties, the most important one being the Information Content 
value. For each synset the IC is filled by using WordNet::Similarity’s7  IC files. 

The IC files contain all of WordNet’s synsets and their associated IC 
values. Each line contains a synset ID and an IC value. The values are computed 
by analyzing different corpuses. We have used the Brown and the Semcor corpus 
annotated files for IC values. 

The module exports a function taking as input two words as strings, the 
type of similarity measure (either res, lin, of jcn) and a synset choice type. A 
search in WordNet gives us for every word a set of possible senses (synsets). The 
synset choice type is needed to select, given the two input words, which of the 
word’s synsets to be used to calculate the similarity with. 

We have implemented 3 types of choices. The first method is of always 
choosing the first sense for each word. This is also the baseline for the system. 
The second method is that of randomly choosing a sense (a synset). The third 
method is that of choosing the synsets that maximize similarity. This means that 
for any two words, their synsets are extracted and then each possible combination 
of pairs of synsets are measures and the pair that scores the maximum similarity is 
returned. 

 
3.3. The clustering algorithms module 
 
We implemented three clustering algorithms, all which use a semantic 

distance metric between words for building the word groups. We use these 
algorithms with each distance metric in order to compute clusters of words that 
are related to each other. We use the groups for name entities disambiguation. For 
each word in the group we compute the distance to each other word in the same 
cluster and we select the sense (synset) of the word that has the highest similarity. 
We identify the sense that occurs more frequent and assign it to the word in 
question.  
                                                            
6 http://sourceforge.net/projects/jwordnet/ 
7 http://wn-similarity.sourceforge.net/ 
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In the following subsections we will describe the algorithms in more 
detail. 

K-means. The k-means clustering is a method of grouping similar words 
into a specific number of clusters in which each observation word belongs to the 
cluster with the nearest mean. The methodology is presented in Fig. 1. 

Basically the algorithm uses two steps: in the first phase the algorithm 
computes the means for all created clusters and in the second one redistributes 
data points from one cluster to another according to the semantic distance between 
all means and the point. The mean of a cluster is represented by one of the words 
in the group that has the minimal distance towards all the other data points in the 
cluster. 

The process is recursive and keeps reorganizing the words form one 
cluster to another until there are no more changes between two sequential loops.  

The only input parameter for this method is the number of clusters used 
for the initial division of words. In our experiments we tested the method with 
different values for this parameter. 

 
k-Nearest Neighbors. The k-Nearest Neighbors is a clustering technique 

that classifies words based on closest point classes. Initially this technique was a 
supervised data mining method where the closest point classes were computed 
from a training set. In our implementation we used an unsupervised method that 
has its basis in the k-nearest neighbor algorithm. 

Initially all points are distributed randomly into a specified number of 
classes. The algorithm then iterates through all points in the dataset and inspects 
the k closest neighbors to that point. The algorithm searches for the most frequent 
class from the extracted set and assigns it to the data point in study.  

The method has a recursive form; it iterates the dataset and reassigns 
classes until there are no more modifications. The parameters that are needed for 
this method are the number of initial classes and the number of neighbors to be 

 
Fig. 1. The k-means clustering 

 
Fig. 2. The hierarchical clustering method 
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inspected. The k-nearest neighbor just assigns for each point the class of the word 
that has the most semantic similarity. 

 
Hierarchical clustering. All hierarchical clustering methods divide or 

merge groups due to different criteria until a certain conditions are met. In our 
implementation we use a top down hierarchical method by starting with the whole 
dataset as a big cluster and then divide it constantly until all clusters have the 
similarity between their components over a specific threshold. The methodology 
for our top down implementation is presented in Fig. 2. 

In each division step, the algorithm searches for two centers for each of the 
remaining clusters. The centers must be as further away from one another but still 
close to the other existing words in the group. The two centers are then used to 
split the cluster in two depending on the semantic distances between them and the 
two centers. For each new created cluster we compute the similarity between the 
included words as the mean distance between each pair of points. If the value is 
over a specified threshold then the cluster is good enough and the algorithm will 
not inspect it again. The stop criterion in our case is when all clusters have the 
similarity over the threshold.  

The algorithm receives one input parameter, the threshold for the cluster 
similarity. We could not chose a default value for the threshold since different 
distance metrics have different ways and values when measuring similarities. 

 
3.4. Lexical chains 
 
In our previous work [3] we implemented an algorithm for lexical chain 

identification that was specifically build for chat conversations. We adapted the 
algorithm for structured text and compare the results with the ones obtained using 
different clustering methods. In [3] we defined two metrics that measure semantic 
closeness between words, one for strong connections, synonyms or much related 
concepts, and one for medium connections. Medium connections are represented 
by word that share related meanings in only some contexts. The difference 
between a strong and medium connection between words is given by different 
values obtain by the semantic distance. We use the same metrics in our adaptation 
of the model.  

The algorithm used has 3 basic steps. In the first phase we investigate each 
word from the text and look for strong connections between it and all existing 
chains. The first chain found will be linked to the new word since a strong 
connection has the highest priority. We limit the search to 20 sentences in the past 
since it is more computational efficient and also because as we search words that 
are further away, the chances of finding a relevant lexical chain decreases. 
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The second step takes place only if no strong connection was found. In this 
phase medium connections are investigated. The method searches each chain and 
selects the one with the highest semantic closeness. For the same reasons as in the 
previous step, the search is limited to 10 sentences in the past. 

The last step deals with words that have no strong or medium connection 
with any of the existing chains. If no relations are found then a new chain is 
created containing only the inspected word. 

4. Results 

In our experiments we compare the results for different types of clustering 
algorithms using different types of metrics for the measurement of similarity 
closeness with the ones manually annotated. We used two input text files with 
different specifics; one is a large report from computer science that tests the way 
algorithms deal with technical terms having a formal language and the second file 
is a news report that tests the accuracy of the implemented methods in an 
everyday type of text.  

We conducted two types of experiments. In the first experiment we tested 
the accuracy of all methods in identifying the correct synset for each word in the 
input text. For each input dataset we manually identified the nouns and then 
searched in the WordNet taxonomy for the correct sense. Each of the 4 methods 
presented in the previous paragraph are able to output the synset id and number 
for all the grouped words. Finally, we compute the percentage of correctly 
identified senses.  

In the second experiment we tested the behavior of all methods in 
identifying the lexical chains from input files. For all clustering algorithms, the 
lexical chains are represented by the group of words that they output. We 
manually extracted the clusters from the input text files as an array of the same 
size as the number of nouns, where each value represents a group id that 
corresponds to a word from the input dataset.  All algorithms output the same 
array type and finally compute the percentage of correctly classified words. 

The two experiments are used to inspect how well each algorithm is able 
to identify lexical chains from different types of input text files and also to show 
its accuracy of finding the correct sense for each noun. 

 
4.1. Experiment 1  
 
In the first experiment we test the accuracy of all algorithms in identifying 

the correct synset for nouns in the input text. All results were compared against 
the manually assigned senses for the nouns. The accuracy is computed as the total 
number of correctly classified nouns divided by their total number. 



A study on lexical chain identification and word sense disambiguation                  207 

 In table 1 we show the results obtained using the k-means algorithm with 
an input parameter value of 3, 4 and 5. The best results obtained for all similarity 
measure choice and synset choice are for an initial number of classes of 4. The 
same pattern is also observed for the second input text file. 

Table 1 
k-Means results with different input parameter value  

k-means  FIRSTSENSE MAXSIM RANDOM 
3 classes    

RES 55 64 57 
JCN 58 68 61 
LIN 55 65 59 

4 classes 
RES 55 66 59 
JCN 61 70 65
LIN 58 68 61

5 classes    
RES 51 58 57 
JCN 55 63 58
LIN 51 63 55 

 
Fig. 3 shows the charts for using k-means with the input parameter value 

of 4 for all measuring units. Res was used as a base line and obtained the worst 
results for almost all synset choices. For Fig. 5 the lin similarity measurement and 
with RANDOM synset choice had worst results than res. Since the RANDOM 
synset choice chooses the sense of a word without a prefixed algorithm is 
expected its results to fluctuate. However the accuracy obtained by jcn has better 
results than all other methods for all metrics considered. 

 

 
Fig. 3. Accuracy for k-means algorithm for the first and second input files 

 
The results show that MAXSIM has better results than FIRSTSENSE and 

RANDOM in almost all the cases. For the second input file, the res similarity has 
the same value for RANDOM and MAXSIM. Since the RANDOM synset choice 
function could return any sense for a word and since this is an isolated case, this 
information is not very relevant for our analysis.FIRSTSENSE always returns the 
first meaning for all nouns, and still using this method we obtain good results for 
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all metrics in both input files. If we use jcn for the first input file the algorithm 
gave us an accuracy of 61%. This shows that more than 50% of the words used in 
a regular text keep their implicit first meaning.  

The second text file obtained worst results than the first one for all cases 
under study. In the second text there are a lot of technical terms and not that many 
discussion topics. One explanation for the worse results could be that each cluster 
contains more words so the context for computing the senses is wider. Also the 
discussion topics used in this second input file are further apart from each other 
than in the first text (there is an analogy between hackers effects on the computing 
systems and car racks). The algorithm had some problems relating the word 
“person” to “hacker” or “driver” for example. 

The next figure shows the results for k-nearest neighbor algorithm. We 
computed the output results for different values for the number of neighbors to 
inspect and we presented only the best result in the Fig. 4. The first chart is for the 
first input file and is computed using 2 neighbors and the second one is for the 
technical computer science text using 3 neighbors.  

 

 
 

Fig. 4. Accuracy for kNN algorithm for the first and the second input file 
 
We obtained better results for the second input file using a higher number 

of neighbors because of the specific characteristics of the second text, since it 
needs fewer and larger clusters. 

This algorithm, as the previous one, has the best results for jcn and for 
MAXSIM. There is a greater distance between the results obtained using 
FIRSTSENSE and MASIM than in the previous algorithm. The explanation for 
this is that this algorithm uses just a small number of neighbors for deciding how 
to classify a word so it does not have the whole context. If the algorithm searches 
for the sense that maximizes the similarity between words (like MAXSIM does) 
that the context is no longer necessary. However due to this problem, in the case 
of FIRSTSENSE the method has problems in clustering words. Fig. 5 shows the 
results obtained by the hierarchical clustering method.  
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Fig. 5. Accuracy of hierarchical clustering for the first and second input file 
 
The results are much closer to each other than with the rest of algorithms. 

However the overall curves of the graphs are the same. Jcn with MAXSIM is still 
the leader and in general lin is better than res. The distance between the values 
returned by MAXSIM and FIRSTSENSE are once again close to each other since 
this method, as the first one, compares each pair of words is the context is 
complete when splitting a cluster.  

 
 

Fig. 6. Comparison between results obtained with different clustering methods 
 
Fig. 6 compares the best results for each of the three methods: k-means, 

kNN and hierarchical. The k-nearest neighbor algorithm has the worst results. 
However between k-means and the hierarchical clustering method it is not clear. 
While for the first input text k-means has a better accuracy, for the second input 
file the hierarchical clustering algorithm is much more precise. 

Since all results are obtained using jcn and MAXSIM, the difference is 
given by the methodology used by each algorithm. K-means depends on the initial 
number of classes. The hierarchical method divides clusters until all of them have 
messages with the similarity over a threshold. The threshold depends only on the 
measuring unit used and not on the input text. 
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Another difference is given by the way the hierarchical method chooses 
the two centers in the dividing process. If the text has many words that could 
belong in one group if we inspect one meaning and in another if we look at 
another sense, then the hierarchical method could choose the centers wrong. Once 
the splitting is finished there is no way back so the error will propagate until the 
final clusters. K-means reorganizes all clusters in each iteration so it won’t have 
that problem. On the other hand if the text has no difficulties of that kind the 
hierarchical method should behave better than k-means. 

 
4.2. Experiment 2 
 
In the second experiment scenario we tested the behavior of all methods in 

identifying the lexical chains from input files. For better comparison, we manually 
extracted the clusters from the input text files. The output is represented by an 
array list where each value represents a group id that corresponds to a word from 
the input text file.  

We implemented all algorithms to output the same type of array and then 
we computed the percentage of correctly classified words. Fig. 7 gives the results 
obtained for each method using jcn and MAXSIM. We use only jcn and 
MAXSIM since those are the metrics that give the best results for all clustering 
methods. 

 
 

Fig. 7. Percentage of correctly classified words for different clustering methods 
 

As we expected, since lexical chains and word sense disambiguation are 
closely related, the results follow the same curves. This was to be expected since 
if a word is in a wrong group it is likely that its meaning will be misclassified; 
similarly, this is valid the other way around. However all methods obtained a 
better value for the accuracy when inspecting the classification process and not 
WSD.  
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A misclassified word in a cluster influences the context for all other data 
points from the group. The higher the number of words that were not supposed to 
be in one cluster, the more it will negatively influence the context of other words. 
The conclusion is that the chance of finding the correct sense for all other words 
that are correctly put in a group will decrease with the increase of the 
misclassified data points from the same cluster.    

We computed the percentage of correctly classified word using the lexical 
chain algorithm that we imported from the chat analyzer. The results are not better 
than the k-means or the hierarchical method, but very close. Basically this 
happens because the method was implemented for chat structure and not text. The 
other two methods consider the whole context created for a word and not just 
inspecting the previous sentences. 

5. Conclusions 

In this paper we presented a system that identifies groups of related words 
or lexical chains from unstructured text. The lexical chains are further used to 
assign the most appropriate sense for all nouns and to extract a series of summary 
words that are used to represent the group. We implemented three unsupervised 
clustering algorithms that have distinct methodologies and that use different 
semantic metrics. All methods use two basic steps. The first phase extracts the 
groups of words that are related to each other and the second one creates the 
context for each cluster by disambiguating the nouns senses. The context of each 
group of related words allows the system to extract tag words form the lexical 
chains.  

In the experiment phase we compared the results obtained with all 
methods and for all semantic closeness measures against manually annotated 
groups. We used two distinct types of files, one scientific and one common-style 
text. We have two types of experiments: for the first one we test the 
disambiguation process by computing the percentage of correctly identified senses 
for all nouns; for the second type we test the lexical chain identification 
techniques. The purpose of this article is to show the comparative performance of 
different unsupervised methods in combination with different similarity measures 
to perform WSD and construct lexical chains. The obtained results show that out 
of all semantic similarity measures jcn performs consistently better, and between 
the clustering algorithms implemented and tested, k-means and hierarchical 
clustering obtain the highest results. Because both clustering algorithms have 
relatively close results, the choice whether to use one or the other depends mostly 
on the type of data to be clustered. Hierarchical clustering performs better on data 
that can be split in a tree-like structure, with the property that when one data point 
is added to a set it can no longer move to another set. K-means assumes no data 
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structure (which might often be the case), it is simply creating k clusters, without 
guarantee that another run will provide the same results (with random 
initialization). As there is no substantially “better” algorithm (although kNN 
performs somewhat worse), we have presented both k-means and hierarchical 
clustering as viable choices to perform word sense grouping. 

R E F E R E N C E S 

[1] A. Budanitsky, Semantic distance in Wordnet: An experimental, application-oriented evaluation 
of five measures, 2001, Available: http://citeseerx.ist.psu.edu/viewdoc /summary? 
doi=10.1.1.29.2985 

[2] T. Pedersen, Information Content Measures of Semantic Similarity Perform Better Without 
Sense-Tagged Text, in The 11th Annual Conference of the North American Chapter of the 
Association for Computational Linguistics (NAACL HLT 2010), June 1-6, Los Angeles, 
2010 

[3] A. Gainaru, S. Dumitrescu, S.M. Trausan, Toolkit for automatic analysis of chat conversations, 
in The 8th International Conference on COMMUNICATIONS, Bucharest, 2010 

[4] M. Galley, K. McKeown, Improving Word Sense Disambiguation in Lexical Chaining, in The 
18th international joint conference on Artificial intelligence, Acapulco, 2003, pp. 1486-
1488 

[5] N. Rani, M. Stuart, Lexical Chaining and Word-Sense-Disambiguation, Technical report, 
School of Engineering and Applied Sciences, TR-06-07, 2007 

[6] S. Patwardhan, S. Banerjee,T. Pedersen, Using Measures of Semantic Relatedness for Word 
Sense Disambiguation, in The 4th International Conference on Intelligent Text Processing 
and Computational Linguistics, Mexico City, 2003, pp. 241-257   

[7] R. Navigli, Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation 
Performance, in The 44th Annual Meeting of the Association for Computational Linguistics 
joint with the 21st International Conference on Computational Linguistics, Sydney, 2006, 
pp. 105-112 

[8] R. Snow, S. Prakash, D. Jurafsky, Learning to Merge Word Senses, in Joint Conference on 
Empirical Methods in Natural Language Processing and Computational Natural Language 
Learning (EMNLP-CoNLL), pp. 1005-1014, Prague, 2007 

[9] G. Hirst, D. St-Onge, Lexical chains as representations of context for the detection and 
correction of malapropisms, in WordNet: An electronic lexical database. In: MIT Press, 
1998 

[10] G. Silber, K. McCoy, Efficiently computed lexical chains as an intermediate representation for 
automatic text summarization, in Computational Linguistics, 2003, pp. 29(1). 


