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INTEGRATED DEEP LEARNING FRAMEWORK FOR
BREAST CANCER DETECTION

Cornelia Tonela BADOI !

Breast cancer is a leading cause of women mortality, requiring an early and
precise diagnostic. This study presents an integrated deep learning framework for
breast ultrasound image classification, leveraging nine empirical MobileNetV2-based
convolutional neural network models trained on a curated dataset with expert-
validated annotations. The optimal configuration, characterized by a low learning
rate, an optimal batch size, and incorporation of segmentation masks, achieves a
malignant class accuracy of 0.93 and a test loss across all classes below 0.2. Notably,
the framework requires training only a single hidden layer, enabling efficient
deployment on standard consumer computers, regardless of clinical setting size or
computational resources. These results highlight the critical importance of combining
classification and segmentation in a multi-task learning paradigm, and demonstrate
a practical, accessible approach that improves the reliability and scalability of breast
cancer detection using ultrasound imaging.
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1. Introduction

Breast cancer is a prevalent and life-threatening disease that affects a
significant proportion of the female global population, accounting for a
considerable number of cancer-related deaths. The early and accurate detection of
the disease is of paramount importance for improving survival rates and guiding
effective treatment strategies. Among the various imaging modalities available,
ultrasound has become a staple in clinical practice due to its non-invasive nature,
accessibility, and ability to distinguish between different types of breast lesions [1].

Notwithstanding the aforementioned advantages, the interpretation of breast
ultrasound images poses considerable challenges [2]. Visual distinctions amongst
normal, benign, and malignant tissues can be subtle, often resulting in diagnostic
uncertainty [3]. Furthermore, the distribution of cases in clinical datasets is typically
imbalanced, with benign lesions occurring more frequently than malignant or
normal findings. This imbalance has the potential to introduce bias to machine
learning (ML) models, consequently reducing their effectiveness in identifying the
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minority class, often the malignant class, whose identification is of the most critical
importance [3].

However, recent years brought significant progress in applying DL to breast
ultrasound image analysis, with the goal of improving early and accurate detection
of breast cancer [4]. Several studies have explored CNN-based classification for
breast ultrasound. Yap et al. demonstrated that CNNs outperform traditional ML
approaches in distinguishing benign from malignant (i.e., cancerous) lesions [5].
However, this method did not address class imbalance, resulting in models biased
toward the majority class, and did not utilize segmentation data, missing important
spatial context for lesion boundaries [5]. In a similar manner, the study referenced
in [6] investigated transfer learning and lesion segmentation but treated
segmentation and classification as separate tasks. This limited the potential synergy
between spatial and semantic features, and their relatively small dataset size
restricted generalizability of the results.

Furthermore, recent research has also introduced advanced techniques such
as attention mechanisms and self-supervised learning [7]. Specifically, attention
modules have been integrated to augment detection performance; however, the
associated models tend to be computationally demanding, thereby limiting their
applicability in real-time or resource-constrained clinical environments [8]. In this
context, Zhang et al. applied contrastive learning to exploit unlabeled datasets, yet
their framework required extensive post-training fine-tuning and was relatively
harder to interpret, which is a critical factor in making medical decision [9].

In summary, despite the evident demonstrated benefits, several critical
challenges persist [10]. Notably, numerous previous studies have not effectively
harnessed the synergistic potential of combining classification and segmentation
approaches, nor have they systematically tackled the issue of class imbalance,
which is commonly encountered in clinical datasets. Furthermore, the optimization
of hyperparameters has frequently been insufficiently investigated, despite its
substantial impact on model convergence and generalization performance.

The current study aims to address these limitations by introducing an
integrated framework that synergistically combines classification and segmentation
information through a multi-task learning (MTL) paradigm. MTL involves training
a single model to perform multiple related tasks simultaneously by sharing
underlying representations, thereby promoting improved generalization ability and
enhanced predictive performance [11]. By systematically optimizing
hyperparameters and utilizing segmentation masks, the proposed method
effectively alleviates class imbalance and improves the accuracy and recall of
malignant lesion detection. This approach offers a reproducible and clinically
pertinent solution, thereby facilitating the advancement of more precise and
dependable diagnostic tools for breast ultrasound analysis.
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The paper is structured as follows:

Section 1 reviews recent DL approaches for breast ultrasound analysis, with a
focus on advances like CNNs, attention mechanisms, and self-supervised
learning, while also discussing persistent challenges such as class imbalance
and limited integration of segmentation data for breast ultrasound analysis.

Section 2 describes the dataset, detailing the class distribution, image
characteristics, preprocessing steps, and the use of segmentation masks.

Section 3 outlines the DL models, detailing the base MobileNetV2-based
architecture, the key hyperparameters, and the integration of segmentation
information.

Section 4 presents the results and the performance assessment of the trained
models, focusing on accuracy, convergence, and the impact of segmentation
and hyperparameter choices.

Finally, Section 5 concludes the paper by summarizing the main findings and
discussing their clinical relevance and potential directions for future research.

2. Dataset

The dataset employed in this study, as documented in reference [12], consists
of a total of 780 breast ultrasound images. These images are systematically
categorized into three clinically relevant classes: normal, benign, and malignant,
providing a comprehensive basis for multi-class classification tasks.

2.1 Data features
All images are provided in Portable Network Graphics (PNG) format, with
corresponding segmentation masks available for the benign and malignant
categories. Furthermore, the dataset is curated to reflect clinically relevant features,
with images preprocessed to remove extraneous boundaries. The ground truth
annotations are validated by expert radiologists, ensuring high-quality labels for
both classification and segmentation tasks [12].

The images capture various tumor characteristics such as shape, margin, and
intensity, which are critical for breast cancer diagnosis. On a visual inspection, the
following can be noted [12, 13]:

e  Normal images show uniform breast tissue without any noticeable masses
or irregularities. The texture appears smooth, and there are no distinct shapes and/or
shadows that suggest abnormalities. The overall appearance is consistent and
homogeneous.

e  Benign images display well-defined, round or oval-shaped masses with
smooth edges. The lesions tend to have clear boundaries and a more regular shape,
which usually indicates non-cancerous growths. These masses might appear
brighter or darker than the surrounding tissue, but generally lack invasive
characteristics.
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e  Malignant images are visually more complex. They often show irregular or
blurred edges, indicating invasive growth into surrounding tissues. The shapes tend
to be asymmetric and less defined compared to benign masses. These images may
also display heterogeneous texture and varying intensity, reflecting the aggressive
nature of cancerous tumors.

2.2 Label distribution

The distribution of image samples per class is as follows [12]: 133 normal
cases, 437 benign cases, and 210 malignant cases. It is noted that the dataset is
imbalanced, by having an uneven distribution of samples across the three classes.
More exactly, the benign class has more than three times the number of samples
compared to the normal class, and more than twice the number compared to the
malignant class. Such disparity in class sizes can lead to biased model training,
where the model may perform better on the majority class (benign) and
underperform on the minority classes (normal and malignant), unless appropriate
techniques like class weighting, resampling, or data augmentation are applied.

In this study, for one of the trained DL models (see Section 3.3 below), both
the benign and malignant classes are under-sampled to approximately 150 samples
each, aligning their sizes closely with the normal class, and addressing thus the
class imbalance. Thus, the dataset becomes more balanced, which helps mitigate
the risk of the model becoming biased toward the majority class, i.e., the benign
class. This approach ensures that each class contributes more equally during
training, thereby improving the model's ability to generalize across all categories
[14].

2.3 Data quality considerations

The quality of the dataset is essential for model performance and reliability
throughout the DL pipeline. As described in Section 2.1, this study utilizes a dataset
with clinically verified classification labels and segmentation masks for benign and
malignant cases, ensuring both high labeling accuracy and clinical relevance [12].
The data preparation steps, including removal of extraneous boundaries and
intensity normalization, further enhance image consistency [12]. These steps are
critical for enabling the extraction of relevant tumor features, and for effective
differentiation between normal tissue, benign lesions, and malignant tumors [12].

However, as mentioned in Section 2.2, some dataset challenges affect how
well the DL model learns and performs along the DL processing path. In particular,
the large difference in the number of images between classes can cause the DL
model to mainly focus on features from the majority class, i.e., the benign class.
This can reduce the model’s ability to accurately detect malignant lesions. If this
issue is not addressed, it may lead to slower learning, overfitting to the common
benign patterns, and poorer performance on the less represented classes. To address
this, the study reduces the number of benign and malignant samples to closely



Integrated deep learning framework for breast cancer detection 409

match the number of normal cases, which helps the model learn more balanced and
meaningful features across all classes [14].

Additionally, the lack of the segmentation masks for the normal class limits
the full potential of MTL framework that integrates classification and spatial
information, potentially impacting the precision of tissue differentiation. Together,
these data challenges propagate through the training process, affecting the DL
model accuracy, convergence stability, and diagnostic reliability. In this context,
the dataset size has been chosen to balance (i) the need for sufficient variability in
tumor characteristics (such as shape, margin, and texture) and (ii) the practical
challenges involved in acquiring and annotating medical images by expert
radiologists [12]. Despite its moderate size (780 images), the dataset is well-
designed. Specifically, the careful data curation, thorough preprocessing, and class
balancing strategies applied to this dataset provide a strong foundation for
developing a reliable and clinically relevant breast cancer detection model.

2.4 Train-test split

A portion of the dataset was reserved exclusively for testing purposes. In
this study, the data was partitioned such that 85% was allocated for training, and
15% for testing.

3. DL Models

3.1 DL base model

The used model is based on the Teachable Machine’s (TM) CNN pre-
trained architecture called MobileNet version 2 (V2), which represents the
convolutional base for the images to be classified [15, 16]. Specifically, the model
has around 52 layers in total, out of which are mentioned [15, 16]:

e 28 untrainable hidden layers with fixed weights, that are used for features
extraction, and that form the above mentioned MobileNetV2 convolutional
base. More exactly, the core building block of MobileNetV2 consists of a 1x1
convolution with ReLU®6 activation, followed by a 3x3 depthwise convolution,
and another 1x1 convolution without non-linearity. However, these hidden
layers are not trainable in TM, as they serve only as a fixed features extractor.

¢ 1 trainable hidden layer, that represents the custom classifier, and that is trained
using the breast ultrasound images.

e 1 output layer, that uses the SoftMax activation function to produce class
probabilities (normal, benign, and malignant).

3.2 Empirical DL models development and hyperparameter optimization

The following hyperparameters were employed during model fine-tuning
and selection to optimize the classification performance on the breast ultrasound
image dataset:
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e learning rate, that directly determines how much the model weights are
adjusted in response to the estimated error each time the model weights are
updated [16]. A high learning rate causes large weight updates and leads to
poor model convergence, whereas a low learning rate results in small weight
updates, making training slow and potentially causing the model to get stuck
in local minima. An optimal learning rate achieves a good balance between
fast convergence and stable training [17].

e number of epochs, that indicates the number of complete model’s transitions
through the training dataset [16]. Model training typically involves multiple
epochs, which allows the model to incrementally learn and improve. After
each epoch, the model updates weights based on the errors made, using
backpropagation [18]. As the number of epochs increases, the model typically
learns more from the training data. However, beyond a certain point,
continuing to increase the number of epochs can cause the model to overfit
the training data, and not to generalize well to unseen data [19].

e  batch size, that represents the number of training samples processed together
before the model updates its weights [16]. A large batch size (e.g., more than
64 samples) results in a faster training per epoch, which may lead to a poorer
generalization on unseen/test data. A small batch size (e.g., less than 8
samples) tends to improve model’s generalization and accuracy on unseen
data, but may lead to slightly slower convergence because updates are noisier
and more frequent [20].

In this study, the values considered and assigned to the aforementioned three
hyperparameters are:

e learning rate: 0.0001, 0.001;
e number of epochs: 30, 50, 70;
e Dbatch size: 16, 32.

These hyperparameters selection was guided by their fundamental influence
on the model’s learning process and generalization capability. The learning rates of
0.0001 and 0.001 were chosen to enable stable and gradual weight updates,
reducing the risk of overshooting optimal minima. This approach is especially
important in medical imaging tasks, where stable training supports better model
reliability [21-22]. Similarly, batch sizes of 16 and 32 were selected to balance
computational efficiency with the introduction of variability in gradient updates,
wherein smaller batch sizes often lead to better generalization, even if training
requires more time [22]. The range of epochs (30, 50, and 70) was set to allow the
model sufficient exposure to the training data, allowing incremental learning while
actively monitoring overfitting. By systematically exploring these hyperparameter
values, the study aimed to identify configurations that optimize classification recall,
especially for the malignant class, while ensuring robust generalization to unseen
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data. This methodical tuning process ultimately supports steady training, avoids
overfitting, and yields dependable results in breast ultrasound image classification.

3.3 Results and analysis of the empirical DL models

All nine experimental models presented in this study are empirical
variations built upon a common architectural foundation, namely the MobileNetV2
convolutional neural network described in Section 3.1. While each model maintains
the core MobileNetV2 architecture, they differ through systematic adjustments to
key training parameters such as learning rate, batch size, number of epochs, the
incorporation or omission of segmentation masks, and class balancing strategies.
These controlled modifications enable a detailed comparative analysis of the effect
these factors have on model performance in the classification of breast ultrasound
images. Particularly noteworthy is the integration of segmentation masks alongside
labeled images during the training of select empirical models, implemented as part
of an MTL framework. Their performance was primarily evaluated on accuracy of
the malignant class (i.e., the class of interest), test accuracy per number of epochs
across all classes, and test loss behavior across all classes (Table 1). Furthermore,
additional performance metrics were analyzed for the malignant class, including
recall, miss alarm rate (MAR), false alarm rate (FAR), and precision (Table 2).
These metrics provide a nuanced understanding of the models’ diagnostic strengths
and weaknesses, such as their sensitivity to true malignancies, tendency to overlook
malignant cases, and likelihood of misclassifying benign/normal instances as
malignant [23-24].

Specifically, recall measures the proportion of actual malignant cases that
are correctly identified by the model, reflecting its ability to detect true positive
(TP) instances (1). MAR represents the proportion of malignant cases that the
model fails to identify, effectively the rate of false negatives (FN), and is the
complement of recall (2). Conversely, FAR quantifies the proportion of benign or
normal cases incorrectly classified as malignant, calculated as the ratio of false
positives (FP) to the total actual benign or normal cases, i.e., both FP and true
negatives (TN) (3). Finally, precision measures the accuracy of positive predictions
by indicating the proportion of cases labeled as malignant that are truly malignant

(4).

TP

Recall = TPiFN (1),
MAR = — =1 — Recall Q),
TP+FN
FAR = = 3),
FP+TN
Precision = — (4),

TP+FP
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Wherein:

TP represents malignant cases correctly identified as malignant,

TN corresponds to benign or normal cases correctly identified as benign or
normal,

FP indicates benign or normal cases incorrectly classified as malignant, and

FN denotes malignant cases incorrectly classified as benign or normal.

The metrics values obtained in this study offer valuable perspectives on

model behavior with respect to convergence, overfitting, and generalization,
enabling a comprehensive evaluation of performance throughout the training and
testing phases. As illustrated in Table 1 and Table 2, the observed trends help
identify optimal convergence patterns and potential signs of overfitting, while also
providing critical evidence of the model’s generalization capacity, supporting thus
the robustness of the adopted analytical approach.

The subsequent observations are noted regarding the empirical model’s

performance:

e Model 1 (30 epochs, batch size 32, learning rate (0.001) achieved an accuracy

of 0.50 for the test malignant class. The test accuracy across all classes was
initially above 0.8, then declined. The loss for the test samples increased with
the number of epochs, reaching a maximum around 1 after 20 epochs, and a
minimum below 0.6 during the initial 1-2 epochs.

Model 1 also showed a moderate performance with a recall and MAR of 50%,
indicating that half of the malignant cases were correctly identified but half
were missed. Its precision was high at 94.1%, reflecting confidence in positive
malignant predictions. The model exhibited early overfitting, as indicated by
the rising loss despite the stable accuracy.

Model 2 (50 epochs, batch size 16, learning rate 0.001) provided an improved
accuracy of 0.72 for the malignant class. Test accuracy stabilized around 0.8.
Test loss peaked near 1 at 42—43 epochs, then decreased to 0.7 by epoch 50. It
is noted that a longer training with smaller batch size improved malignant
detection, though loss fluctuations suggest partial overfitting.

Model 3 (50 epochs, batch size 32, learning rate 0.001) matched the malignant
accuracy of Model 2 at 0.72. Test accuracy remained near 0.8. Loss increased
steadily, near 0.9 at epoch 50, with a minimum of 0.45 early on. It is noted that
both models 2 and 3 achieved a recall of approximately 72% and MAR of
28.1%, marking an improvement in malignant case detection compared to
model 1. Model 2 exhibited a higher FAR (7.0%) than model 3 (4.7%),
suggesting that model 2 produced more FN. Despite similar recall, increasing
batch size in model 3 slightly reduced false alarms but did not improve overall
accuracy. Increasing batch size did not improve accuracy, but it led to slightly
higher loss at later epochs, with persistent overfitting.
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Table 1
Performance Assessment — Accuracy and Loss

Accuracy
Empirical Model [o, . 1] — | Testaccuracy [0, 1] per | Test loss [0, 1] per epoch

malignant | epoch — all classes — all classes

class
Model 1 0.50 >0.80 early, then drops | Rises ~1 after 20 epochs
Model 2 0.72 ~0.80, stable Peaks ~1, then | to 0.70
Model 3 0.72 ~0.80, stable Rises to ~0.90
Model 4 0.81 0.80 after 10 epochs Fluctuates 0.50-0.80
Model 5 0.66 <0.80 <0.60 after 10 epochs
Model 6 0.81 0.90 after 15 epochs ~0.40 after 35 epochs
Model 6’ (Model 6 + | 0.81 0.90 after 10-15 epochs | <0.40
segmentation masks)
Model 7 0.84 0.80 after 20 epochs ~0.40 at 50 epochs
Model 7° (Model 7 + | 0.91 0.90 after 20 epochs <0.30 after 5 epochs
segmentation masks)
Model 77’ 0.93 0.95 after 8 epochs 0.93
(Model 7 + segmentation
masks + balanced
classes)
Model 8 0.59 0.80 at 70 epochs <0.50 at 70 epochs
Model 9 0.63 0.80 at 40 epochs <0.50 at 50 epochs

o Model 4 (70 epochs, batch size 32, learning rate 0.001) achieved a

malignant accuracy of 0.81. Test accuracy per epoch reached 0.8 after
several epochs. Test loss per epoch peaked around 0.8 at 25 epochs,
decreased below 0.7 at 30 epochs, then stabilized near 0.7 through 70
epochs, with a minimum of 0.5 early in training.
Model 4 further enhanced recall to 81.25%, reducing MAR to 18.75%.
However, its FAR rose to 8.14%, indicating a trade-off between detecting
more malignant cases and increasing FN. The precision of 78.79% reflected
reasonable reliability in positive predictions but suggested room for
improvement. Extended training improved malignant accuracy, but test loss
oscillated, suggesting some instability and possible late-stage overfitting.
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Table 2
Performance Assessment — MAR, Recall, FAR and Precision
Empirical Model | MAR (%) |Recall (%)[ FAR (%) | Precision (%)
Model 1 50.00% | 50.00% 1.20% 94.10%
Model 2 28.10% | 71.90% 7.00% 79.30%
Model 3 28.10% | 71.90% 4.70% 80.60%
Model 4 18.75% | 81.25% 8.14% 78.79%
Model 5 34.40% | 65.60% 7.00% 77.80%
Model 6 18.80% | 81.30% 5.90% 83.90%
Model 6’ 18.80% | 81.30% 1.70% 94.50%
Model 7 15.60% | 84.40% 5.80% 84.40%
Model 7° 10.30% | 89.70% 3.20% 87.90%
Model 7 4.40% 95.60% 3.40% 95.60%
Model 8 40.63 59.38 4.65 82.61
Model 9 37.50 62.50 8.14 74.10

e Model 5 (30 epochs, batch size 32, learning rate 0.0001) provided a malignant
accuracy of 0.66. Test accuracy per epoch remained below 0.8, while test loss
dropped below 0.6 after 10 epochs.

It also reached 65.6% recall and a MAR of 34.4%, demonstrating slower
convergence and moderate performance. Lower learning rate slowed
convergence, resulting in moderate accuracy and stable loss.

e Model 6 (50 epochs, batch size 16, learning rate 0.0001) reached a malignant
accuracy of 0.81. Test accuracy rose to 0.9 after 15 epochs, while test loss
decreased to approximately 0.4 after 35 epochs.

In contrast to model 5, the empirical model 6 improved recall to 81.3%, decreased
MAR to 18.8%, and lowered FAR to 5.9%, indicating better generalization and
less overfitting. Reduced learning rate with a smaller batch size enhanced
accuracy and reduced loss significantly, indicating better generalization and
convergence.
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o Model 6° (50 epochs, batch size 16, learning rate 0.0001, incorporation of
segmentation masks), same as model 6 and additionally considering the
segmentation masks available for benign and malignant cases in the training
phase, provided a malignant accuracy of 0.81. Test accuracy reached 0.9
earlier, after 10-15 epochs, and test loss dropped below 0.4. Furthermore,
Model 6’ slightly improved FAR to 1.7% and precision to 94.5%, while
maintaining the same recall and MAR as model 6. It is noted that the
incorporation of masks accelerated convergence and improved loss metrics,
suggesting enhanced feature learning.

o Model 7 (50 epochs, batch size 32, learning rate 0.0001) achieved a malignant
accuracy of 0.84. Test accuracy reached 0.8 after 20 epochs, and the test loss
was around 0.4 at epoch 50. The combination of larger batch size and low
learning rate improved malignant accuracy and maintained low loss.

o Model 7° (50 epochs, batch size 32, learning rate 0.0001, incorporation of
segmentation masks) increased the malignant accuracy at 0.91. Furthermore,
the test accuracy reached 0.9 after 20 epochs, and test loss dropped below 0.3
after 4-5 epochs. It is noted that masking substantially enhanced both accuracy
and loss, indicating improved model generalization.

o Model 77" (50 epochs, batch size 32, learning rate 0.0001, incorporation of
segmentation masks, balanced training classes) further improved performance
metrics. The malignant accuracy increased and stabilized around 0.95 after 8
epochs (Fig. 1). Test loss significantly dropped 0.2 after 16 epochs (Fig. 2). For
this model, the malignant and benign classes were under-sampled as indicated
in section 2.2. It is noted that the combination of masking and class balancing
substantially enhanced both accuracy and loss, indicating improved model
generalization and a more equitable performance across all classes.

Regarding the results shown in Table 2, it is observed that model 7 improved
recall to 84.4% with a 15.6% MAR, while model 7’ significantly increased recall
to 89.7% and reduced MAR to 10.3%, along with a reduced FAR of 3.2% and an
improved precision of 87.9%. Model 7°’, leveraging class balancing in addition to
masking, achieved the highest recall of 93.5%, the lowest MAR of 6.5%, a minimal
FAR of 2.3%, and exceptional precision of 95.6%.
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Fig. 2. Loss per epoch across all classes for empirical Model 7°” — train and test data
(TM generated graph)

e  Model 8 (70 epochs, batch size 32, learning rate 0.0001) decreased the
malignant accuracy at 0.59. Test accuracy was 0.8 at epoch 70. Test loss
remained below 0.5 at the end of training (i.e., at 70 epochs). It also showed
a high MAR (40.63%) and relatively low recall (59.38%).

Despite extended training, the model underperformed in malignant
classification, possibly due to overfitting or suboptimal hyperparameters.

e  Model 9 (50 epochs, batch size 32, learning rate (0.00005) provided a test
malignant accuracy of 0.63. Test accuracy reached 0.8 at 40 epochs, and test
loss remained below 0.5 at epoch 50. Also, model 9 had slightly better recall
(62.5%) but a higher FAR (8.14%) and a lower precision (74.1%) compared
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to model 8. It is observed that a very low learning rate yielded moderate
accuracy with stable loss, indicating slow but steady learning.

3.4 Computational efficiency and deployment

The DL framework was evaluated on a consumer laptop with an Intel Core
17-11370H CPU (4 cores, 8 threads, 3.3 GHz) and 16 GB RAM, operating without
a dedicated GPU. As detailed in Section 3.1 above, the model architecture is based
on MobileNetV2, comprising 28 untrainable convolutional layers and a single
trainable hidden layer. The training was conducted on approximately 663 images
(85% of the dataset, as described in Section 2.3) for up to 70 epochs, using batch
sizes of 16 or 32.

Under these conditions, particularly with only one trainable layer, the total
training time remained under one hour. In contrast, the inference phase is
significantly more efficient, requiring well under one second per image, thereby
supporting near real-time application in clinical environments.

This evaluation confirms the feasibility of deploying the framework on
widely accessible hardware, enabling broader clinical adoption without the need for
specialized acceleration. However, for faster training or larger datasets, GPU or
cloud-based resources could be leveraged.

3.5 Hyperparameter sensitivity to dataset size

To evaluate how hyperparameter sensitivity varies with dataset size, the
following randomly selected subsets of the dataset were used: 100% (633 images),
75% (497 images), 50% (316 images), and 25% (158 images). In this study, the first
two subsets are considered moderate to large, while the last two are classified as
small. The following observations illustrate the impact of dataset size on key
hyperparameters presented in Section 3.2.

e Learning rate sensitivity; Using a lower learning rate of 0.0001 led to better
results not only with smaller datasets, but also with larger ones of 633 and
497 images. This indicates that making smaller, more careful adjustments
to the model’s parameters during training helps the DL model learn more
steadily and avoid overshooting the optimal solution. Therefore, even when
sufficient training data is available, a conservative learning rate proves to be
the best choice.

e Number of epochs sensitivity; For larger dataset sizes, fewer epochs (30 or
50) are proved to be sufficient, because the DL model sees a wide range of
examples within each pass. Alternatively, smaller datasets typically require
more epochs (up to 70) to allow the model to learn from scarce samples.
Nonetheless, prolonged training on small datasets increases overfitting risk,
so early stopping is essential to avoid diminishing returns.

e Batch size sensitivity; A larger batch size of 32 tends to give more stable
and consistent updates during training because it averages the learning over
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more examples. This stability works well when there is more data, such as
with the 633 or (even) 497 image subsets. However, for smaller subsets like
the 316 or 158 images, using a smaller batch size of 16 is better because it
allows the model to learn more from each update and can help prevent the
model from overfitting to the limited data.

In conclusion, the following observations were made with respect to
hyperparameter sensitivity: a lower learning rate of 0.0001 enhances performance
across all dataset sizes; larger datasets benefit from fewer training epochs (30, 50),
while smaller datasets require more epochs (in this case 70) but face a higher risk
of overfitting; a batch size of 32 provides more stable training for larger datasets,
whereas a batch size of 16 is better suited for smaller datasets to mitigate overfitting.
Therefore, fine-tuning hyperparameters according to dataset size is a crucial
consideration for effective model training.

4. Comprehensive performance assessment of the optimal DL model

4.1 Hyperparameters — optimal values

Based on the comparative analysis detailed above, it is concluded that
models trained with lower learning rates, in conjunction with masking techniques,
demonstrated enhanced performance and improved generalization. In contrast,
models utilizing higher learning rates and extended training durations, without
masking, exhibited tendencies toward overfitting, as evidenced by increased loss
values and diminished classification accuracy.Specifically, regarding each
hyperparameter mentioned above (see Section IV), the following conclusions are
drawn:

o Learning rate: A lower learning rate (i.e., 0.0001) results in improved accuracy
and reduced loss, particularly when combined with masking.

o Number of epochs: Increasing the number of epochs improves accuracy up to
a point, but excessive training can lead to overfitting, as seen in fluctuating or
rising loss curves.

e Batch size: A batch size of 32 generally supports better convergence, though a
batch size of 16 can further enhance learning, when paired with a low learning
rate.

o [Including masking in the training set: The application of masking techniques
yields the most significant performance gains, with Model 7’ (with improved
training set) achieving a malignant accuracy of 0.91 and test loss <0.3.

o Under-sampling the malignant and benign classes: Under-sampling the
malignant classes to correspond to the normal class slightly improved the
performance of Model 7, reaching the best malignant accuracy (0.93) and the
lowest test loss (below 0.2).
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4.2 Classification outcomes: confusion matrix of the best-performing

empirical model

As outlined in Section 4.1, empirical model 7>’ combines the advantages of
an optimized training duration (50 epochs), a moderate batch size (32), a low
learning rate (0.0001), and key training enhancements including segmentation mask
incorporation and class balancing.

This enhanced configuration enables model 7’ to outperform all other
evaluated empirical models. Notably, it achieves an optimal balance between
classification accuracy and loss, highlighting the critical importance of both
meticulous hyperparameter optimization and advanced preprocessing techniques in
medical image analysis.

The confusion matrix (Fig. 3) for the improved model 7 also offers a
comprehensive assessment of the model’s predictive capability across all classes:
benign, malignant, and normal. In particular, in this study, the minimization of the
FN number is of utmost significance, as it directly mitigates the risk of overlooking
malignant cases. Misclassifying a malignant case as normal or benign carries
substantial implications, potentially compromising the timely diagnosis and
treatment of breast cancer patients.

Confusion Matrix
scale
Normal. 0 1 I40
Benign 0 . 2
20
Malignant - 2 1 ‘.
N

Prediction

Class

Narmal
Benign
Malignant

Fig. 3. Confusion matrix of improved Model 7’ — test data
(TM generated graph)

The recall metric is the key metric in this case, as it measures the ability of
the model to identify the malignant cases. A reduction in the number of FN
corresponds to an increase in recall, which serves as a critical metric for assessing
model performance in cancer detection. By considering the values for the test
dataset in the confusion matrix of Model 7°° (Fig. 3), the recall for the malignant
class is 0.956, indicating that Model 7°° successfully identifies 95.6% of all actual
malignant cases. The superior recall demonstrates the model's capability to detect
the vast majority of malignant cases, significantly reducing the risk of missed
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diagnoses (low MAR of 4.4%). It is noted that the model also maintains a strong
equilibrium between minimizing the misclassification of malignant cases and
accurately detecting malignant cases (i.e., accuracy of malignant class 0.93). The
low FAR (3.4%) indicates a minimal rate of false positives, crucial for avoiding
unnecessary interventions. Furthermore, the precision of 95.6% reflects high
confidence in malignant predictions, ensuring clinical decision-making reliability.

Overall, model 7°’ not only achieved the highest diagnostic accuracy for the
malignant class but also demonstrated robustness, generalization, and balanced
performance, making it the most suitable candidate for clinical application. The
combined effects of masking and class balancing, as reflected in this model’s
metrics, underscore the importance of leveraging domain knowledge and dataset
characteristics in training DL models for medical image analysis. Such performance
is critical for ensuring timely intervention and treatment for patients with malignant
conditions.

4.3 Segmentation-classification synergy

In this study, the enhanced variants of model 7 utilize MTL by integrating
segmentation masks alongside classification during training. This allows the model
to concurrently learn lesion localization and diagnostic classification, thereby
enriching feature extraction through the combined use of spatial and semantic
information. The results demonstrate that the main benefit of employing MTL is a
substantial improvement in malignant lesion detection (see Tables 1 and 2).
Specifically, incorporating segmentation masks for the benign and malignant
classes increases the malignant class accuracy from 0.84 in Model 7 (without
masks) to 0.91 in Model 7° (with masks). Further enhancement is achieved in Model
7°’, which incorporates class balancing, reaching an accuracy of 0.93. These
findings show the MTL’s ability in directing learning toward clinically relevant
regions and mitigating the adverse effects of class imbalance, substantially
improving thus the model generalization [10, 25].

However, the success of MTL depends on the availability and quality of
segmentation masks, which, in this dataset, are restricted to benign and malignant
classes and do not include normal images (see also Section 2.3). This limitation
constrains the full benefits of MTL across all classes. Additionally, the extra steps
required in data preparation and training could make it more difficult to use this
approach on devices with limited computing power, such as consumer laptops, or
in clinical environments that need quick results.

4.4 Model consistency checks

To improve the reliability of this breast ultrasound classification framework,
automatic consistency checks can be used to compare the segmentation masks with
the classification results produced by the model [26]. Since the model learns both
tasks together, these outputs should agree. For example, if the model predicts a
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malignant tumor, the segmentation mask should highlight a corresponding lesion.
If there is no clear lesion or the lesion appears benign in the mask, this mismatch
can indicate a possible error. These consistency checks can automatically flag cases
where classification and segmentation do not match, allowing for a second review
or further analysis. By adding this simple verification step, the classification
approach can reduce mistakes and increase confidence in the results. Moreover, it
requires little extra computing power and is practical for real-time or low-resource
clinical settings.

Besides automatically checking, if the classification matches the
segmentation results, there are other ways to make the model correct its own errors.
One useful approach is to measure how confident the model is in its predictions
[27-28]. When the model is unsure or shows low confidence, these cases can be
flagged for a second look by a human expert or by using a different, more careful
analysis. Another method involves detecting unusual or suspicious patterns in the
images that might signal an error [28], triggering a review or additional processing.

Incorporating these auto-correction methods makes the overall system more
reliable and safer for clinical use. They help catch errors before decisions are made,
which is especially important in breast cancer detection. Future work should focus
on developing and integrating these kinds of correction features to build a stronger
and more trustworthy diagnostic tool.

6. Conclusions

This research highlights the value of combining advanced preprocessing
methods, notably segmentation masking, with rigorous hyperparameter tuning in
DL models designed for breast ultrasound image classification. Among the nine
assessed empirical models, the optimized Model 7°’, which integrates segmentation
masks with fine-tuned training parameters, consistently demonstrated a superior
performance. Specifically, it achieved an accuracy of 0.93 for the malignant class
and exhibited rapid, stable convergence with minimal signs of overfitting. The
model’s effectiveness was further supported by its confusion matrix, which
revealed a high recall across all classes. In particular, the model maintained a high
recall rate (0.956) for the malignant cases, a crucial factor for ensuring patient safety
in clinical cancer diagnostics. This equilibrium between accuracy and sensitivity
reinforces the model’s robustness, and its suitability for practical application within
medical imaging workflows.

The implications of these findings are multiple:

Firstly, the integration of classification and segmentation data effectively
mitigates challenges posed by class imbalance and enhances the detection of subtle
lesions in breast ultrasound images. This demonstrates the significant benefits of
applying an MTL approach in breast cancer detection.
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Secondly, the proposed framework offers a reproducible methodology that
can guide future research and clinical practice, facilitating the development of more
precise and reliable diagnostic tools.

Thirdly, and very importantly, the DL framework leverages transfer
learning, requiring training of only a single additional layer atop the MobileNetV2
robust pre-trained convolutional base. This design choice makes training
exceptionally efficient and lightweight, enabling implementation on standard
consumer computers with modest computational resources.

Consequently, it promotes wider accessibility and practical adoption across
diverse clinical settings, regardless of the size and/or resource availability of the
medical practice. This ease-of-use, combined with strong diagnostic performance
demonstrated in the study, addresses common barriers to scaling advanced Al tools
in healthcare. By minimizing computational demands without compromising
reliability, the framework offers a user-friendly and scalable solution to support
earlier and more accurate breast cancer diagnosis.

Future investigations will aim to explore additional neural network
architectures and MTL paradigms, alongside efforts to expand the dataset with
more diverse, multi-institutional samples. Moreover, further research into
explainable Al techniques will be pursued to enhance the transparency and clinical
acceptance of DL-based diagnostic systems.
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