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APPLYING LEM TO DUFFING’S OSCILLATOR

Petre P. TEODORESCU', Ileana TOMA?

Metoda echivalentei lineare (LEM) a fost creatd de Toma in scopul
determinarii §i studiului numeric si calitativ al solutiilor sistemelor dinamice
nelineare intr-un cadru clasic linear. LEM se aplicd aici ecuatiei Diifing.
Reprezentarea LEM normala generald poseda avantajul de a evidentia dependenta
de parametri a solutiilor, fiind eficienta cu precddere pentru studiul pe termen lung
al acestora. Stabilim in aceastd lucrare reprezentarea LEM normald pentru un
oscilator Diiffing de tip Ueda. Solutiile LEM sunt apoi testate numeric folosind
metoda Runge-Kutta.

The linear equivalence method (LEM) was previously introduced by Toma to
for getting and studying - both numerically and qualitatively - the solutions of
nonlinear dynamical systems. LEM is applied here to Diiffing equation. The normal
LEM representations emphasize the dependence on parameters and are particularly
fitted for the study of long term behaviour of the solution. We established it in the
case of a damped Diiffing oscillator of Ueda type. The LEM solutions are then
numerically tested by using the Runge-Kutta method.

Keywords: Diiffing oscillator, linear equivalence method, normal LEM
representation.

1. Introduction
The Diiffing oscillator is mathematically modelled as [1]
5é+&+,8x+ax3=Acosa)t, (1)

with a positive damping constant 5. For positive values of P, this can be
physically interpreted as a forced oscillator with a spring of non-linear restoring
force; for positive o, one has a hardening, while for negative o — a softening
spring. For <0, it can be regarded as describing the dynamics of a point mass
in a double well potential [2[5].

Let us also note that Diiffing model is an algebraically simple equation
involving time-dependent acceleration (jerks) that have chaotic solutions, as
previously shown by Ueda [6].
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In what follows, we take & >0, > 0,0 20.

Gottlieb pointed out [7] that the simplest ODE in a single variable
exhibiting chaos is of third order, following Poincaré-Bendixson theorem;
Diiffing equation with o = ® =1 may be written as a fourth order homogeneous
polynomial equation depending on an unique parameter, 6 [8]. The fourth
derivative is, in fact, the time derivative of the jerk; it is also called spasm, jounce
or sprite, because of its behaviour [8]. Sprott deduced numerically polynomial
jerks allowing chaotic solutions [8] and simple first order polynomial ODS with
three equations and three unknown functions allowing solutions with chaotic
behaviour; among them, one can recognize Lorenz’s system and Rossler type
ODSs, both with the corresponding chaotic attractors [9].

In this paper, we treat Diiffing equation by using LEM — the linear
equivalence method — previously introduced by Toma (see [10] and the first LEM
monograph [11]) for the qualitative and numerical study of the solutions of non-
linear ODEs depending on parameters. The method was successfully applied to
various nonlinear dynamical systems modelling various physical and mechanical
phenomena (e.g. [12-[78]); some of them were also included in [19].

More precisely, we use here the normal LEM representations [19] [22],
establishing the parametric LEM solutions emphasizing third order effects; a
numerical comparison with the Runge-Kutta method is then provided. For wide
ranges of the involved parameters it is shown that the LEM formulae can be
applied on large time intervals, thus emphasizing qualitatively the long term
behaviour of the solution.

2. The normal LEM representations

While LEM can be applied to more general ODSs, as the involved model
studied here is polynomial and with constant coefficients, we will restrict to this
case. Consider therefore the polynomial ODS

d
ay=""-k()=0. P=[R0)] . A= Tauy.
t ' o nl<p; (2)
M| < D;» j=Ln.

aju € SR, ,] = 15_”5
As it was mentioned — firstly in [10] — the LEM mapping is

W,8) =&Y £ =(&,85,8,) e R, 3)

where & are newly introduced parameters. This mapping associates to the
nonlinear ODS two linear equivalents [10], [11]:
e alinear PDE, always of first order with respect to ¢
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ov
V(€)== ~(EP(D)v =0, )
and
e alinear, while infinite, first order ODS, that may be also written in matrix
form
SV = av_ AV =0,
dr (5)

V=V ) Vo=l
The second LEM equivalent, the system (5), is obtained from the first one,
by searching the unknown function v in the class of analytic in & functions

o) =1+ 3w, ()% ©

J
FERA

The LEM matrix A is row and column-finite, as the differential operator is
polynomial. It has a cell-diagonal structure.

The involved cells A, ;. are generated by those £, with |u|=s+1only;

for instance, A, is the linear part of the operator. This special form of A allows

the calculus by block partitioning.
Let us associate to (2) the initial conditions

}’(t())z)’o; ty el. (7)
By LEM, they are transferred to

Wrp.8) =", gew, ®)
a condition that must be associated to (4), and
V(i) =(3), o - )

indicating an initial condition for the second LEM equivalent (5).
The linear equivalents are consistent on Exp-type spaces [11][19].
The following result holds true

Theorem 1. [10][11][19] The solution of the nonlinear initial problem
(1), (7)

i) coincides with the first n components of the infinite vector
V()= A0 (z,), (10)

where the exponential matrix, defined as for finite matrices, can be computed by
block partitioning, each step involving finite sums,
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ii) coincides with the series
y,(t)=v5 +lizlu,-y(t)y$, j=Ln, (11)
21 y=
where u (t) satisfy the finite linear ODSs
du

T:AlTkuijLAgkU,f{'+...+A,ka,f{', k=11, Ug(z)=[uj7(t)]7zs, (12)

and the Cauchy conditions

()= =/ | i Ullio)=0.5=21, (13)

T standing for transpose matrix and 5l-j — for the Kronecker delta.

The representation (11) was called normal by analogy with the linear case
[11]. The eigenvalues of the diagonal cells A, are always known [11][19]. It was

used in many applications requiring the qualitative behavior of the solution and in
stability problems, in general (see e.g. [[10-[23], where it was used along with
other LEM representations).

3. Normal LEM solutions for Diiffing oscillator

We establish here the normal LEM solutions for Diiffing oscillator in two
different cases: a) free undamped and b) forced damped.

a) FREE UNDAMPED OSCILLATOR

Let us note that in this case, the Diiffing equation becomes
5c'+ﬂx+ax3:0, (14)

and coincides with the intrinsic equation, found as a mathematical hard core of
several physical and mechanical phenomena, completely distinct, both
mathematically and physically: the Bernoulli-Euler bar deflection, non-linear rigid
pendulum’s oscillations, the deflection of the non-linear two bar frame, modelled
by Teodorescu [25], and Troesch’s plasma model. The intrinsic equation was
found and studied in [19][25]

v _ m_n n_13 .
zj 2y =22y = (-1 2527, j=12; (15)

its coefficients do not depend on the physical data, thus it was called intrinsic
[19]]23][25]. Consequently, solving the intrinsic equation led to the solutions of
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each of the above problems. We apply LEM to get the normal LEM
representations for z,, allowing both quantitative and qualitative interpretations.

Equation (15) may be integrated once, to give
m ' (_ I)J 3
Zj :—ﬂZj+—2 Zj, (16)
with S constant. Putting Z’j =xj, this equation becomes
, 1 j+l1
vy e+ EY 0 2o, a7)

therefore a particular free undamped Diiffing’s oscillator.
According to [25], we get, with the arbitrary Cauchy data

x(0) = xg, £(0) = %o,

1. for g = a’ , the following formulae

u(x)= ,Bcosax+zsin ax +

s a 2. .2 3 (%)
Lo ) - 00atan)+ s (an) ¢ o)
where
azgol(r)z cos3r —cos7 —12zsinv,
a3(p2(r): +3sin37 —21sinz +127cos 7,
a4g03(7)=3cosr—3cos3r—12rsinr, (19
a5g04(r)= —sin37 - 9sinz +12zcos7,
and

2. for p= —az, similar formulae, where the trigonometric functions are
replaced with corresponding hyperbolic functions.

Commentary. Voinea, [26], emphasized a very interesting analogy between
two completely different physical phenomena: the rectilinear displacement in the
relativistic frame under a constant force and the large deformations of a straight
bar for a constant bending moment and constant rigidity. He showed that the
corresponding governing equations differ by a sign and both the solutions for null
Cauchy data may be put under a common form of a conic depending on a
parameter a. The case a < 0 yields a hyperbola and represents the implicit
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solution of the relativistic Cauchy problem, while a > 0 corresponds to an ellipse
(or circle) and gives the implicit solution of the standard cantilever bar problem.

Taking into account this analogy, we considered the relativistic model for
time-dependent forces on the one hand, and the Bernoulli-Euler bar loaded with
variable bending moments and rigidities on the other hand. We firstly reduced
each model class to an intrinsic equation, which does not depend on the physical
data, and then found the corresponding solutions for associated Cauchy problems
with arbitrary data. A third term of comparison was also emphasized: the
deflection of a relativistic electron beam (REB) under a magnetic field, previously
associated to the Bernoulli-Euler bar deflection [27].

b) FORCED DAMPED OSCILLATOR

Let us take B =0 with Ueda. Introducing three auxiliary functions
y=X,u=cosat,v=sinwt, Diffing’s equation may be written in the form of a
homogeneous polynomial first order ODS

X=y,
. e 3
y=—0—-ax” + Au, (20)
u=-wv,
V= ou.
The transposed of the associated LEM matrix is then
A, 0 0 0
A_|AB An 00 @0
0 Aj; A5 O
where
0 0 0 0
1 -6 0 O
T _
ATl 4 0 ’A‘T3:[af"]ij’i°’ @ =—ody. (22)
0 0 -o 0

If we stick to third order effects, then we truncate the LEM matrix to

T
Ay = [AITI OT } (23)
A13 A33
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The eigenvalues of A, are
0,6, tim; (24)
according to the general LEM results [11][19], the eigenvalues of A; will be

0,0,—0,-06,-20,-30,tiw, 1w, + 2w,

+3iw, 0 tiw, 0 £ 2im, 20 Tiw. (25)

The associated LEM ODS for up to third order effects will have two
blocks; solving it by using the Laplace transformation [21], we find the normal
LEM solution for null Cauchy data in the form

A - o . _
x(t) = ﬁ[e F _ cos et +sin a)tj ~604° [CO +cre A
o0 +w @
ot =3t .
+epte @ +ese + ¢4 cost + c5 sin @t + c¢ cos 3wt (26)

+ c7 sin3wt + e ¥ (cg cos 2t + cg sin 2t )

+e 20 (¢10 cos @t + ¢y sin a)t)],

where, with the notation o2 =52 +a)2, the coefficients ¢ joJ= 1,10, have the

following expressions

¢y = 45% +110° e 3 ,

95%0* (5% + 40* J45° + 0?) 520452 +907)
€ == : » €3 = 1 > 042_52_602’ CSZ_ﬂa

460*c? 365200 oM oM

o - 5t -126%0° +30* e 2&0(352 —5a)2) | @7

72(040'6(52 +9a)2) 120%c° (52 +9a)2)
o - -1 L e 5(52 +3a)2) ’

455(57 + 407 80°00(5% + 40

1 S

€10 = > 11 = .
2061452 +a)2 ’ a)0'6(452 +a)2)
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4. Numerical comparison

We compared the values given by the two above LEM formulae with the
corresponding numerical solutions obtained by using the Runge-Kutta method, for
various ranges of the involved parameters, also establishing the intervals of
concordance (denoted by I) of both solutions. Let us note that, immaterial the
previously established intervals of convergence of the LEM representations, such
a comparison is more realistic, as it can show significant enlargements of the
domain of validity of the LEM solutions.

Tables 1 and 2 show this comparison for the free undamped Diiffing
oscillator (formula (18)) and for the damped forced oscillator (formula (26))
accordingly.

Table 1
Comparison between the LEM formula (18) and the numerical solution
i, ¥ ¥ relative Interval of
0 0 error/step concordance (I)
1 0.1 0.1 0.0354 [0,100]
5 0.1 0.1 0.0871 [0, 500]
10 0.1 0.1 0.0867 [0,700]
100 0.1 0.1 0.0710 [0,2300]
1 0.01 0.01 0.0108 [0, 4000]
5 0.01 0.01 0.0584 [0,10000]
10 0.01 0.01 0.0240 [0, 30000]
100 0.01 0.01 0.0543 [0, 1000]
Table 2
Comparison between the LEM formula (26) and the numerical solution
relative Interval of
o ® A a
error/step concordance
0.05 1 7.5 1 0.0883 [0,1.25]
0.05 5 7.5 0.05 0.0833 [0, 10]
0.05 5 7.5 0.5 0.0727 [0, 3]
0.05 10 7.5 0.5 0.0855 [0, 15]
0.05 10 7.5 1 0.0401 [0,7]
0.05 50 7.5 1 0.0546 [0, 6000]
0.05 100 7.5 1 0.0274 [0, 9000]
0.05 1 5 1 0.0183 [0, 1.3]
0.05 1 1 1 0.0468 [0,2.5]
0.05 10 1 1 0.08869 [0, 150]
0.05 100 1 1 0.0284 [0, 10000] —
0.5 5 7.5 1 0.0686 [0, 1.3]
0.5 10 7.5 1 0.0725 [0, 40]
0.5 100 1 1 0.0436 [0, 100000] —
10 1 7.5 1 0.0051 [0, 3]




Applying lem to Diiffing’s oscillator 11

In table 1, the initial valuesx(,X(; are also considered they are taken

around the equilibrium point (0,0) in the phase space. We observe that the greater
the value of £ , the larger the interval of concordance; yet for large f we note that

I is smaller, because the influence of secular terms in the LEM formula is
significantly larger in this case. However, one cannot yet speak of long term
concordance, because of the secular terms in the LEM formula (18).

Table 2 contains on its first row the Ueda values of the parameters [6]; we
see that I is small, even if it contains around 1500 Runge-Kutta steps. For large w,
I is large enough to yield long term concordance; note that, unlike (18), formula
(26) contains only terms bounded at infinity; the arrows on the right mean that I
can still be larger. Larger damping coefficients seem to have less effect on I. The
relative error per step was taken to be no greater that 9% , while in many of the
cases it does not exceed 5%.

5. Conclusions

In this paper, we applied the linear equivalence method (LEM), previously
introduced by Toma, to Diiffing oscillator. We chose the normal LEM
representations because they are, in fact, good analytic approximates depending
on the involved parameters of the exact solution. Here, we got the normal LEM
solution for a particular free undamped and for the forced damped oscillator. The
comparison with the numerical solutions obtained by using the Runge-Kutta
method showed that the two solutions are concordant on large time intervals for
certain ranges of the parameters. This emphasizes the normal LEM solution for
Diiffing’s oscillator as a qualitative tool for studying the long term behaviour of
the phenomenon.
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