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APPLYING LEM TO DÜFFING’S OSCILLATOR  

Petre P. TEODORESCU1, Ileana TOMA2 

Metoda echivalenţei lineare (LEM) a fost creată de Toma în scopul 
determinării şi studiului numeric şi calitativ al soluţiilor sistemelor  dinamice 
nelineare într-un cadru clasic linear. LEM se aplică aici ecuaţiei Düfing. 
Reprezentarea LEM normală generală posedă avantajul de a evidenţia dependenţa 
de parametri a soluţiilor, fiind eficientă cu precădere pentru studiul pe termen lung 
al acestora. Stabilim în această lucrare reprezentarea LEM normală pentru un 
oscilator Düffing de tip Ueda. Soluţiile LEM sunt apoi testate numeric folosind 
metoda Runge-Kutta. 

 
The linear equivalence method (LEM) was previously introduced by Toma to 

for getting and studying - both numerically and qualitatively - the solutions of 
nonlinear dynamical systems. LEM is applied here to Düffing equation. The normal 
LEM representations emphasize the dependence on parameters and are particularly 
fitted for the study of long term behaviour of the solution. We established it in the 
case of a damped Düffing oscillator of Ueda type. The LEM solutions are then 
numerically tested by using the Runge-Kutta method. 

Keywords: Düffing oscillator, linear equivalence method, normal LEM  
                   representation. 

1. Introduction 

The Düffing oscillator is mathematically modelled as [1] 

tAxxxx ωαβδ cos3 =+++ ��� , (1)
with a positive damping constant δ. For positive values of β , this can be 
physically interpreted as a forced oscillator with a spring of non-linear restoring 
force; for positive α, one has a hardening, while for negative α – a softening 
spring. For 0<β , it can be regarded as describing the dynamics of a point mass 
in a double well potential [2[5]. 

Let us also note that Düffing model is an algebraically simple equation 
involving time-dependent acceleration (jerks) that have chaotic solutions, as 
previously  shown by Ueda [6]. 
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In what follows, we take 0,0,0 ≥≥> δβα . 
Gottlieb pointed out [7] that the simplest ODE in a single variable 

exhibiting chaos is of third order, following Poincaré-Bendixson theorem; 
Düffing equation with 1=ω=α  may be written as a fourth order homogeneous 
polynomial equation depending on an unique parameter, δ [8]. The fourth 
derivative is, in fact, the time derivative of  the jerk; it is also called spasm, jounce 
or sprite, because of its behaviour [8]. Sprott deduced numerically polynomial 
jerks allowing chaotic solutions [8] and simple first order polynomial ODS with 
three equations and three unknown functions allowing solutions with chaotic 
behaviour; among them, one can recognize Lorenz’s system and Rössler type 
ODSs, both with the corresponding chaotic attractors [9]. 

In this paper, we treat Düffing equation by using LEM – the linear 
equivalence method – previously introduced by Toma (see [10] and the first LEM 
monograph [11]) for the qualitative and numerical study of the solutions of non-
linear ODEs depending on parameters. The method was successfully applied to 
various nonlinear dynamical systems modelling various physical and mechanical 
phenomena (e.g. [12-[18]); some of them were also included in [19]. 

More precisely, we use here the normal LEM representations [19] [22], 
establishing the parametric LEM solutions emphasizing third order effects; a 
numerical comparison with the Runge-Kutta method is then provided. For wide 
ranges of the involved parameters it is shown that the LEM formulae can be 
applied on large time intervals, thus emphasizing qualitatively the long term 
behaviour of the solution.  

2. The normal LEM representations 

While LEM can be applied to more general ODSs, as the involved model 
studied  here is polynomial and with constant coefficients, we will restrict to this 
case. Consider therefore the polynomial ODS 

( ) ( )[ ] ,,
d
d

,1 njjP
t =

==−≡ yP0yPyyP   ( ) ∑
≤η

η
η≡

jp
jj aP yy ,  

njpnja jj ,1,,,1, =≤μ=ℜ∈μ . 
(2) 

As it was mentioned – firstly in [10] – the LEM mapping is  

( ) yξξ ,e, =tv , ( ) n
n ℜ∈= ξξξ ,...,, 21ξ , (3)

where ξ are newly introduced parameters. This mapping associates to the 
nonlinear ODS two linear equivalents [10], [11]: 

• a linear PDE, always of first order with respect to t 
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( ) ( ) 0,, =−
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≡ vD
t
vtv PξξL , (4)

and 
• a linear, while infinite, first order ODS, that may be also written in matrix 

form 
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The second LEM equivalent, the system (5), is obtained from the first one, 
by searching the unknown function v in the class of analytic in ξ functions 

( ) ( )
!

1,
1 j

tvtv
jξ

+= ∑
∞

=γ
γξ . (6)

The LEM matrix A is row and column-finite, as the differential operator is 
polynomial. It has a cell-diagonal structure. 

The involved cells skk +,A  are generated by those μjf  with  1+=μ s only; 
for instance, 11A  is the linear part of the operator. This special form of A allows 
the calculus by block partitioning. 

Let us associate to (2) the initial conditions 

( ) I, 000 ∈= tt yy . (7)

By LEM, they are transferred to 

( ) ntv ℜ∈= ξξ yξ ,e, 0,
0 , (8)

a condition that must be associated to (4), and 

( ) ( ) N∈γ
γ= 00 yV t , (9)

indicating an initial condition for the second LEM equivalent (5). 
The linear equivalents are consistent on Exp-type spaces [11][19]. 
The following result holds true 

Theorem 1. [10][11][19] The solution of the nonlinear initial problem 
((1), (7) 

i) coincides with the first n components of the infinite vector 

( ) ( ) ( )0
0e tt tt VV A −= , (10)

where the exponential matrix, defined as for finite matrices, can be computed by 
block partitioning, each step involving finite sums; 
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ii) coincides with the series 
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∞
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00 ,1,

l l
jjj njytuyty , (11)

where ( )tu jγ  satisfy the finite linear ODSs 
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and the Cauchy conditions 

( ) [ ] ( ) lstt j
sni

j
i

n
j

j ,2,, 0,101 ==≡= = 0UeU δ , (13)

T standing for transpose matrix and j
iδ  – for the Kronecker delta. 

The representation (11) was called normal by analogy with the linear case 
[11]. The eigenvalues of the diagonal cells kkA  are always known [11][19]. It was 
used in many applications requiring the qualitative behavior of the solution and in 
stability problems, in general (see e.g. [[10-[23], where it was used along with 
other LEM representations). 

3. Normal LEM solutions for Düffing oscillator 

We establish here the normal LEM solutions for Düffing oscillator in two 
different cases: a) free undamped and b) forced damped. 

a) FREE UNDAMPED OSCILLATOR 

Let us note that in this case, the Düffing equation becomes 

03 =++ xxx αβ�� ,        (14)

and coincides with the intrinsic equation, found as a mathematical hard core of 
several physical and mechanical phenomena, completely distinct, both 
mathematically and physically: the Bernoulli-Euler bar deflection, non-linear rigid 
pendulum’s oscillations, the deflection of the non-linear two bar frame, modelled 
by Teodorescu [25], and Troesch’s plasma model. The intrinsic equation was 
found and studied in [19][25]  

( ) 2,1,1 3 =′′′−=′′′′′−′ jzzzzzz jj
j

jjj
IV
j  ; (15) 

its coefficients do not depend on the physical data, thus it was called intrinsic 
[19][23][25]. Consequently, solving the intrinsic equation led to the solutions of 
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each of the above problems. We apply LEM to get the normal LEM 
representations for jz , allowing both quantitative and qualitative interpretations. 

Equation (15) may be integrated once, to give 

( ) 3
2
1

j
j

jj zzz ′−
+′−=′′′ β , (16) 

with β constant. Putting jj xz =′ , this equation becomes 
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therefore a particular free undamped Düffing’s oscillator. 
According to [25], we get, with the arbitrary Cauchy data 

( ) ( ) 00 0,0 xxxx �� == , 

1. for 2a=β , the following formulae 
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where 
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and 
2. for 2a−=β , similar formulae, where the trigonometric functions are 

replaced with corresponding hyperbolic functions. 

Commentary. Voinea, [26], emphasized a very interesting analogy between 
two completely different physical phenomena: the rectilinear displacement in the 
relativistic frame under a constant force and the large deformations of a straight 
bar for a constant bending moment and constant rigidity. He showed that the 
corresponding governing equations differ by a sign and both the solutions for null 
Cauchy data may be put under a common form of a conic depending on a 
parameter a. The case 0<a  yields a hyperbola and represents the implicit 
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solution of the relativistic Cauchy problem, while 0>a  corresponds to an ellipse 
(or circle) and gives the implicit solution of the standard cantilever bar problem. 

Taking into account this analogy, we considered the relativistic model for 
time-dependent forces on the one hand, and the Bernoulli-Euler bar loaded with 
variable bending moments and rigidities on the other hand. We firstly reduced 
each model class to an intrinsic equation, which does not depend on the physical 
data, and then found the corresponding solutions for associated Cauchy problems 
with arbitrary data. A third term of comparison was also emphasized: the 
deflection of a relativistic electron beam (REB) under a magnetic field, previously 
associated to the Bernoulli-Euler bar deflection [27]. 

b) FORCED DAMPED OSCILLATOR 
Let us take 0=β  with Ueda. Introducing three auxiliary functions 

tvtuxy ωω sin,cos, === � , Düffing’s equation may be written in the form of a 
homogeneous polynomial first order ODS 
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The transposed of the associated LEM matrix is then 
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If we stick to third order effects, then we truncate the LEM matrix to 
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The eigenvalues of T
11A  are 

ωδ i,,0 ± ; (24)  

according to the general LEM results [11][19], the eigenvalues of T
33A  will be 

.i2,i2,i,i3
,i2,i,i,3,2,,,0,0

ωδωδωδω
ωωωδδδδ
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 (25)  

The associated LEM ODS for up to third order effects will have two 
blocks; solving it by using the Laplace transformation [21], we find the normal 
LEM solution for null Cauchy data in the form 
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where, with the notation 222 ωδσ += , the coefficients 10,1, =jc j , have the 
following expressions 
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4. Numerical comparison 

We compared the values given by the two above LEM formulae  with the 
corresponding numerical solutions obtained by using the Runge-Kutta method, for 
various ranges of the involved parameters, also establishing  the intervals of 
concordance (denoted by I) of both solutions. Let us note that, immaterial the 
previously established intervals of convergence of the LEM representations, such 
a comparison is more realistic, as it can show significant enlargements of the 
domain of validity of  the LEM solutions.  

 Tables 1 and 2 show this comparison for the free undamped Düffing 
oscillator (formula (18)) and for the damped forced oscillator (formula (26)) 
accordingly. 

Table 1 
Comparison between the LEM formula (18) and the numerical solution 

β 0x  0x�  relative 
error/step 

Interval of 
concordance (I) 

1 0.1 0.1 0.0354 [0,100] 
5 0.1 0.1 0.0871 [0, 500] 

10 0.1 0.1 0.0867 [0,700] 
100 0.1 0.1 0.0710 [0,2300] 

1 0.01 0.01 0.0108 [0, 4000] 
5 0.01 0.01 0.0584 [0,10000] 

10 0.01 0.01 0.0240 [0, 30000] 
100 0.01 0.01 0.0543 [0, 1000] 

Table 2 
Comparison between the LEM formula (26) and the numerical solution 

δ ω A α relative 
error/step 

Interval of 
concordance 

0.05 1 7.5 1 0.0883 [0, 1.25] 
0.05 5 7.5 0.05 0.0833 [0, 10] 
0.05 5 7.5 0.5 0.0727 [0, 3] 
0.05 10 7.5 0.5 0.0855 [0, 15] 
0.05 10 7.5 1 0.0401 [0,7] 
0.05 50 7.5 1 0.0546 [0, 6000] 
0.05 100 7.5 1 0.0274 [0, 9000] 
0.05 1 5 1 0.0183 [0, 1.3] 
0.05 1 1 1 0.0468 [0, 2.5] 
0.05 10 1 1 0.08869 [0, 150] 
0.05 100 1 1 0.0284 [0, 10000] → 
0.5 5 7.5 1 0.0686 [0, 1.3] 
0.5 10 7.5 1 0.0725 [0, 40] 
0.5 100 1 1 0.0436 [0, 100000] → 
10 1 7.5 1 0.0051 [0, 3] 
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In table 1, the initial values 00 , xx � ; are also considered they are taken 
around the equilibrium point (0,0) in the phase space. We observe that the greater 
the value of β  , the larger the interval of concordance; yet for large β we note that 
I is smaller, because the influence of secular terms in the LEM formula is 
significantly larger in this case. However, one cannot yet speak of long term 
concordance, because of the secular terms in the LEM formula (18).  

Table 2 contains on its first row the Ueda values of the parameters [6]; we 
see that I is small, even if it contains around 1500 Runge-Kutta steps. For large ω, 
I is large enough to yield long term concordance; note that, unlike (18), formula 
(26) contains only terms bounded at infinity; the arrows on the right mean that I 
can still be larger. Larger damping coefficients seem to have less effect on I. The 
relative error per step was taken to be no greater that %9  , while in many of the 
cases it does not exceed %5 . 

5. Conclusions 

In this paper, we applied the linear equivalence method (LEM), previously 
introduced by Toma, to Düffing oscillator. We chose the normal LEM 
representations because they are, in fact, good analytic approximates depending 
on the involved parameters of the exact solution. Here, we got the normal LEM 
solution for a particular free undamped and for the forced damped oscillator. The 
comparison with the numerical solutions obtained by using the Runge-Kutta 
method showed that the two solutions are concordant on large time intervals for 
certain ranges of the parameters. This emphasizes the normal LEM solution for 
Düffing’s oscillator as a qualitative tool for studying the long term behaviour of 
the phenomenon. 
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