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ON THE EFFICIENCY OF GENOME-WIDE SCANS: A
MULTIPLE HYPOTHESIS TESTING PERSPECTIVE

Lei Sun1

Una din caracteristicile studiilor genetice pentru ı̂ntregul genom este in-

tensitatea slabă a efectelor genetice precum şi raritatea lor. Aceasta conduce la

serioase dificultăţi legate de testarea ipotezelor statistice pentru efectele diferitelor

gene considerate ı̂n cadrul studiului. În această lucrare găsim frontierele regiunilor

care definesc descoperiri reale atât pentru intensitatea semnalului genetic, cât şi a

funcţiei sale de densitate. Demonstrăm că aplicarea obişnuită a analizei genetice

pentru ı̂ntregul genom nu produce analize cu putere statistică mare, iar semnalele

autentice nu pot fi detectate cu precizie. În ı̂ncheiere, discutăm câteva strategii

moderne pentru a ı̂mbunătăţi puterea statistică cu ajutorul metodei de prioritizare

a genomului.

A main characteristic of the current high-throughput genome-wide studies is

that the signals to be detected are weak in strength and low in density. This leads

to statistical challenges in the context of high-dimensional hypothesis testing. We

first show the boundaries for signal strength and density that allow for efficient

true discoveries. We then demonstrate why the agnostic approach to the genome

is not powerful, in that most of the underlying signals cannot be detected with good

precision. Lastly, we discuss some emerging methods developed to improve power

via prioritization of the genome.
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1. Introduction

Due to the recent advance in high-throughput genotyping technology, most
current association studies rely on genome-wide scans, in particular the genome-
wide association study (GWAS) design. The high-throughput scans simultaneously
investigate many genetic variants (i.e. SNPs) to identify the ones that are truly
associated with complex human diseases or traits.

Briefly, for a phenotype of interest Y (e.g. a quantitative trait such as height,
or a binary disease outcome such as being diabetic or not), genotype data of 100K or
more SNPs, scattered more or less randomly across the human genome, are collected
for a large number (typically 2K-5K) of subjects. The association between the
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Declared Declared Total
non-significant significant counts

Truth: H0 U V m0

Truth: H1 T S m1

Total m−R R m

Table 1. Summary of events for multiple hypothesis testing

phenotype and any given SNP is typically investigated via linear or logistic regression
of Y on X, where X denotes the number of copies of the mutation allele of the SNP
(X = 0, 1 or 2), with or without adjusting for environmental factors. The statistical
evidence for significant association must be adjusted for the fact that 100K or more
hypotheses (one for each SNP) have been performed in a single genome-wide scan.
Although this approach has lead to many successful findings, there is no shortage
of skepticism or debate about its efficiency, particularly in light of the hundreds of
millions of dollars spent. For example, the New England Journal of Medicine recently
published a series of commentaries on the utilities of GWAS with conflicting views
[5, 6, 7].

Here we address the efficiency issue of the GWAS design from the multiple
hypothesis testing point of view, in the context of false discovery rate (FDR) control
[1]. We choose FDR instead of the traditional family-wise error rate (FWER) con-
trol, because a conclusion of low power with FDR control could be easily extended
to the situation when the more stringent FWER was used to control the type 1
error rate. In Section 2 we show the level of FDR and power as a function of the
signal strength and density, where power is measured by (1 - the non-discovery rate)
(NDR) [2]. Applications to several published GWAS data in Section 3 demonstrate
that most of the underlying signals cannot be detected with good precision. In Sec-
tion 4, we discuss a couple of recent methods proposed to improve power of GWAS
by prioritization of the genome, and make concluding remarks.

2. Boundaries for Efficient Signal Discovery

When a large number of hypotheses tests are carried out simultaneously, the
resulting true/false positives/negatives can be summarized in Table 1. Using the
notations in Table 1, FDR = E[V/R] [1] and NDR = E[T ]/m1 [2].

To calculate the level of FDR and NDR, we use a simple model for which
analytical results can be derived and key issues can be better understood. We assume
that all tests are independent of each other and the test statistics are normally
distributed. For the m0 true null hypotheses, we assume Z|H0 ∼ N(0, 1), and
for the m1 true signals, Z|H1 ∼ N(µ, 1) with µ > 0. Note that µ measures the
strength of a signal which obviously depends on the sample size, and in genetic
association studies also on the effect size (e.g. relative risk) and the frequency of the
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N=2K N=5K N=10K
r = 1.2 pA = 1% 0.7 1.0 1.5

pA = 5% 1.4 2.3 3.2
pA = 50% 2.8 4.4 6.2
pA = 99% 0.5 0.7 1.1

r = 1.5 pA = 1% 1.7 2.6 3.7
pA = 5% 3.5 5.5 7.8
pA = 50% 5.5 8.8 12.4
pA = 99% 0.8 1.3 1.8

Table 2. Values of µ, the signal strength, for a SNP with a range
of relative risk r and mutation allele frequency pA, and detected in
a sample of size N for association with a disease with population
prevalence K = 5%.

mutation allele of a truly associated SNP. The proportion of the alternatives among
all hypotheses performed, π1 = m1/m, is a measure of signal density.

We consider µ ranging from 1 to 6, and π1 ranging from .001% to 10%. The
lower boundaries of µ = 1 and π1 = 0.001% are chosen to reflect the characteristics
of current GWAS. For example, for a SNP that is truly associated with a disease with
population prevalence of K = 5%, the corresponding association statistic based on
the Armitage trend test [10] has µ = 1.4, if this SNP has a relative risk of r = 1.2 and
mutation allele frequency of pA = 5%, and the sample used to detect the association
is N = 2K (1K cases and 1K controls). The signal strength is reduced to µ = 0.7
if pA = 1%. The low signal density is determined by the GWAS design in which
> 100K SNPs are selected to evenly cover the genome regardless of the phenotype
of interest. Therefore only a small proportion of these SNPs are expected to be
associated with any given phenotype as evident in the applications below. Table
2 shows the values of µ for different combinations of r, pA and N . The upper
boundaries of µ = 6 and π1 = 10% are unrealistic for high-throughput genome-wide
scans, but they were chosen to provide insights to the necessary signal strength and
density needed for efficient discoveries.

Using the above model the considering a fixed rejection region approach in
which we reject all hypotheses with test statistics Z ≤ t, we have

NDR = 1− Φ(µ− t),

FDR =
(1− π1) Φ(−t)

(1− π1) Φ(−t) + π1 Φ(µ− t)
,

where Φ is the cdf of standard normal distribution. Of particular importance is
the fact that NDR and FDR depend on µ and π, the signal strength and density,
but they do not directly depend on m, the total number of hypotheses. Figure 1
show NDR vs. FDR for different combinations of π1 and µ, left for π1 = 0.01% and
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Figure 1. NDR vs. FDR for different combinations of signal density
(π1) and strength (µ). Left: π1 = 0.01%; Right: π1 = 1%. Each
curve is for a signal strength level, µ = 1 (top right), µ = 3 (middle)
and µ = 5 (bottom left).
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Figure 2. min(NDR+ FDR) vs. −log(π1), signal sparsity, and µ,
signal strength.

right for π1 = 1% (results qualitatively similar for other π1 values). The trade of
between type 1 error rate as measured by FDR and type 2 error rate by NDR is as
expected and was discussed in detail in [2]. Clearly both π1 and µ are crucial factors
in determining the error rates.

Figure 2 summarizes the results more concisely. The 3D plot shows the small-
est combined error rate, min(FDR+NDR), achievable for each combination of signal
strength (µ) and sparsity (density on the −log10(π1) scale). It is painfully clear that
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Figure 3. Boundaries for signal sparsity and strength defined by
min(NDR) ≤ c, where c = 5% (top line), 30%, 70% or 95% (bottom
line), given FDR controlled at ≤ 50%.

if the signal density is less than 1% (−log10(π1) > 2 in sparsity), then it is difficult
to contain the combined error rate, unless the signal strength is extremely strong.

In practice, one may not want to treat the two types of error equally. Stratified
plots similar to those in Figure 2 could be drawn, stratified by a desirable level of
FDR. The splicing of the surface at min(NDR) = c provides the boundaries for
signal detection at a pre-specified error rate which is shown in Figure 3 for FDR
≤ 50%. (Pattens for other FDR levels are characteristically similar.) Specifically,
area above each line defines the range for π1 and µ that could control min(NDR)
at a c level, where c = 5%, 30%, 70% or 95%, conditional on FDR being controlled
at 50% or less. Results show that if signal is sparse (π1 < 1%) and weak (µ < 1.5),
then one cannot identify a mere 5% of the signals (NDR > 95%) even allowing half
of the positives to be false (FDR = 50%).

3. GWAS Applications

We applied the method to several published GWAS data, including studies
of Parkinson disease by [8] and seven common diseases by [12]. Table 3 shows the
phenotype of interest, the sample size, the number of SNPs tested, the estimated
proportion of the signals, and the minimal achievable combined error rate in each
of the studies. In all cases, the signal density is extremely low which in turn results
in high error rate. Figure 4 provides a representative NDR vs. FDR curve using
the WTCCC Coronary Artery Disease data. The figure clearly demonstrates the
inefficiency of the GWAS design, because more than 95% of the underlying signals
will be missed (NDR > 95%) even we allow half of the discoveries to be false (FDR
= 50%).
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Study (N) Phenotype m π̂1 min(FDR+NDR)
Maraganore
(≈ 500+500) Parkinson Disease 197,222 2.4% 0.974

WTCCC
(≈ 3K+2K) Bipolar Disorder 360,971 5.7% 0.939

Coronary Artery Disease 360,971 3.8% 0.959
Crohn’s Disease 360,971 5.4% 0.940
Hypertension 360,971 3.0% 0.960

Rheumatoid Arthritis 360,971 2.4% 0.973
Type 1 Diabetes 360,971 3.0% 0.951
Type 2 Diabetes 360,971 5.4% 0.944

Table 3. GWAS application results. N is the sample size (con-
trols+cases), m is the total number of SNPs, i.e. the number of hy-
potheses performed in each study, π̂1 is the estimated signal density,
and min (FDR+NDR) is the minimal achievable combined error rate.
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Figure 4. NDR vs. FDR for the application to the WTCCC Coro-
nary Artery Disease GWAS data.

4. Discussion and Conclusion

Our analytical results were derived under the assumptions of independence and
equal signal strength. The independence assumption is not a particular concern here
because GWAS SNPs are typically selected to have small correlation among them
so that the information provided by these SNPs do not overlap. We also considered
the situation when the underlying signals have different signal strength, e.g. signal
strength, µ, uniformly distributed between 1 and 6, or more signals with low signal
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strength. Results are characteristically similar to those presented above. Observa-
tions from real data application also support what we concluded from the theoretical
model. The boundaries shown in Figure 3 have potential connection with the work
of [3] in which classifiable regions are given under a different parameterization of the
signal density and strength. This is the subject of on-going research.

Both analytic and application results show that current GWAS are in fact
underpowered even with a sample size of 2K or more. The root of the problem is
that the statistical significance for each single SNP must be adjusted by a factor
of 100K or more at the genome-wide level. Instead of this agnostic approach to
the genome which leads to the same multiple hypothesis testing penalty for all
SNPs, alternative methods have been proposed to improve power by giving different
priorities to different parts of the genome. For example, [11] and [13] considered a
stratified approach, and [4] and [9] a weighted method, both in the context of FDR
control. The essence of these two methods is to prioritize the genome and maintain
power to interrogate candidate regions within the GWAS design. These candidate
regions are defined by available prior information such as linkage or gene-expression
results, or biological knowledge, and they have higher prior odds to be associated
with the phenotype of interests.

The multiple hypothesis testing issue will be more severe when we move for-
ward from GWAS to the whole-genome sequencing design. In the latter, data of more
than ten million SNPs are collected, providing a better coverage of the genome. Re-
sults in this report however show that the increased penalty associated with multiple
hypothesis testing could potentially outstrip the benefits provided by the sequencing
data. Therefore, it is critical to consider alternative methods to improve power of
high-throughput genome-wide scans.
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