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THE EXPRESSIVE POWER OF THE TEMPORAL QUERY LANGUAGE LH

Matei Popovici1,2, Lorina Negreanu3

The paper investigates the expressive power of the temporal query language
LH. We show that First-Order Logic is unable to formulate queries such as temporal con-
nectivity, which can be naturally expressed by LH. The paper describes in detail our ap-
plication of the Ehrenfeucht-Fraı̈ssé method, which is used to examine limitations in the
expressive power of First-Order Logic.
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1. Introduction

Temporal knowledge representation and reasoning methods require expressive power
— which ensures usefulness in non-trivial applications as well as reasonable complexity,
which guarantees efficient implementation. The temporal language LH [7, 4, 8, 5] is an
attempt to find a balance between expressive power and complexity. LH serves as a means
for expressing temporal constraints over the properties of a domain, such as:’x is a device
which has been operating during the same time device y was operating“.

In this paper, we show that LH is expressive enough to allow defining temporal con-
nectivity queries, which in turn cannot be defined in First-Order Logic (FOL). The method-
ology which we use relies on Ehrenfeucht-Fraı̈ssé-games. This formal result is of practical
interest, because it shows that LH cannot be embedded in a relational database schema
relying on FOL.

The rest of the paper is structured as follows: in Section 2 we introduce temporal
graphs and in Section 3 — the language LH. In Section 4 we examine the expressive
power of LH. To this end, we show that LH is expressive enough to capture connectivity
constraints. In contrast, in Section 5 we show FOL is unable to express such constraints.
Finally, in Section 6, we conclude.
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2. Temporal graphs

2.1. Introduction

The language LH and it’s models — temporal graphs, have been extensively de-
scribed in previous work [4, 8, 5, 7]. In what follows, we present them in brief. Temporal
graphs are structures encoding the evolution of a domain. They encode temporal moments
(formally denoted hypernodes), system actions (action nodes) and time-dependent proper-
ties (or qualify edges).

2.2. Formal definition

A temporal graph (short t-graph) is a triple H = (V, E,H) where (V, E) is a directed
graph: (i) a ∈ V are action nodes and (ii) (a, b) ∈ E are quality edges; H is a partition
over the set V . The elements h ∈ H are called hypernodes. We say two action nodes a, b
are simultaneous iff a, b ∈ h. We occasionally write h ∈ H, a ∈ H, (a, b) ∈ H instead of
h ∈ H, a ∈ V, (a, b) ∈ E.

A trace in a t-graph is a finite sequence a1, . . . , an of action nodes, such that, for each
two consecutive action nodes ai ai+1, exactly one of the following cases holds: (i) ai ∈ h and
ai+1 ∈ h, for some hypernode h (i.e. ai and ai+1 occur at the same time); (ii) (ai, ai+1) ∈ E
(there exists a quality edge from ai to ai+1). A trace is said to be compact iff, for no sequence
aiai+1ai+2, we have ai, ai+1, ai+2 ∈ h. The length of a trace t, denoted |t|, is the number of
action nodes containing it. If t and t′ are two traces, we denote their concatenation by tt′.
We write [a, b] to refer to the trace starting in a and ending b. In Figure 1a, a1a3a6 and
a1a2a3a6 are compact traces in a temporal graph.

A labelled temporal graph is a temporal graph together with a labelling L, which
assigns for each action node a, and each quality edge (a, b) the label L(a) and L(a, b),
respectively. A label (for both action nodes and quality edges) is a relation instance of the
form Q(i1, . . . , in), where Q is a relation of arity n and i1, . . . , in are individuals. Figure 1a
illustrates a labelled temporal graph, encoding the evolution of a time-dependent domain
consisting of devices a and b, a sensor-equipped window win, and the outside environment,
encoded by e.

a1

a2

h1

a3

OpenedBy(f,win)

h2

a5

h3

a6

CurrentAction(·)

h4

Operating(a)

Operating(b)

Opened(win)

Raining(e)

a1

a2

h1

a3

OpenedBy(f,win)

h2

a5

h3

a6

CurrentAction(·)

h4

Operating(a)

Operating(b)

Opened(win)

Raining(e)

a b

Figure 1. The labelled temporal graph H2
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3. The language LH

Definition 3.1 (Precedence). Let H be a temporal graph, h, h′ be hypernodes from H and
a ∈ h, a′ ∈ h′ be action nodes:

• h immediately precedes h′ iff there exists a quality edge (a, b) such that a ∈ h and
b ∈ h′. Informally, the condition expresses that there is a property that starts in h and
ends in h′.
• h precedes h′ (denoted h � h′) iff (i) h immediately precedes h′ or (ii) there exists h′′

such that h immediately precedes h′′ and h′′ precedes h′.
• a (immediately) precedes a′ iff h (immediately) precedes h′.

Definition 3.2 (LH syntax). Let Vars designate a set of variables, x ∈ Vars and R — a
relation of arity n. Terms — denoted t1, . . . , tn, are either variables or constants. The syntax
of LH is recursively defined as follows:

ϕ ::= R(t1, . . . , tn) | R(t1, . . . , tn) ∝ ϕ′ | ¬ϕ′ | ϕ′ ∧ ϕ′′

where ∝ designates any temporal precedence relation from Allen’s Interval Alge-
bra [1]. A formula of the form R(t1, . . . , tn) is called atomic. In this paper, we assume,
without loss of generality, that ∝∈ { b , a , m }, where b stands for before, a stands for
after and m stands for meets.The operator precedence order is: ¬,∝,∧.

Definition 3.3 (LH semantics). Let ϕ ∈ LH be an atomic formula, ψ, ψ′ ∈ LH be formulae
and H be a labelled temporal graph. We denote by ‖ψ‖

H
the set of quality edges which

satisfy ψ in H.

‖R(t1, . . . , tn)‖
H

= {(a, b) ∈ H | L(a, b) = R(t1, . . . , tn)}
‖ϕ b ψ‖

H
= {(a, b) ∈ ‖ϕ‖

H
| ∃(c, d) ∈ ‖ψ‖

H
such that b precedes c}

‖ϕ a ψ‖
H

= {(a, b) ∈ ‖ϕ‖
H
| ∃(c, d) ∈ ‖ψ‖

H
such that d precedes a}

‖¬ψ‖
H

= {(a, b) ∈ H | (a, b) < ‖ψ‖
H
}

‖ψ ∧ ψ′‖
H

= ‖ψ‖
H
∩ ‖ψ′‖

H

4. The expressive power of LH

In this section, we introduce the standard concept of query definability [6] and show
that the connectivity query is definable in LH.

A vocabulary is a set σ of symbols Ri, each having assigned a natural number ni,
called arity. A (σ-) structure, denoted R, contains a set U, and an assignment which maps:
(i) each symbol c in σ of arity 0 to an element of U, (ii) each symbol R of arity n > 0, to
a relation RR of arity n. We also refer to R as relational database. Given two relational
databases R1 and R2 over the same vocabulary, an isomorphism between R1 and R2 is a
function f : U1 → U2 such that: (i) f is bijective and (ii) if (u1, . . . , un) ∈ RR1

i , then
( f (u1), . . . , f (un)) ∈ RR2

i , for all relation symbols Ri. A class C is a set of databases which
is closed under isomorphisms, i.e. for any R ∈ C, if R′ is isomorphic to R, then R′ ∈ C. A
boolean query is a function F : C → {0, 1} that is preserved under isomorphisms, i.e. if R
and R′ are isomorphic, then F(R) = F(R′).
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If L is a logical language, then the boolean query F on C is L-definable iff there is a
sentence ϕ in L such that, for every R ∈ C, we have:

F(R) = 1 ⇐⇒ R |=L ϕ

Let CON be the boolean query which verifies the existence of t-graph connectivity
(mentioned above), more precisely, CON(H) = 1 iff, from each action node a, there exists
a trace to any other action node b from H.

Proposition 4.1 (LH definability). CON is LH-definable.

Proof. We prove the complement of CON, denoted ¬CON, to be LH-definable. First, we in-
troduce the entailment relation |=LH

with respect to ‖ · ‖·, as follows: H |=LH
ϕ iff ‖ϕ‖H , ∅.

Without the loss of generality, we assume each quality edge (a, b) in H is also labelled
Q(gen), where gen is some arbitrary individual. This enables us to formulate a nicer for-
mula, which does not require a disjunction over all distinct quality labels. Then, it is clear
that ¬CON(H) = 1 iff H |=LH

¬ (A(gen) before A(gen) ∧ A(gen) after A(gen)), by the fol-
lowing argument. The (sub-)formula ψ =(A(gen) before A(gen) ∧ A(gen) after A(gen)) is
satisfied by a quality edge which is both before and after another some quality edge. Thus,
‖¬φ‖ is non-empty iff there exists some quality edge which is neither before nor after an-
other. Thus, ¬CON is definable in LH by ¬ψ. �

5. FOL undefinability of CON

In this section, we show that CON cannot be defined in First-Order Logic (FOL).
First, we introduce a relational representation of a temporal graph. For convenience,

use the term labelling domain to refer to σ-structures.
Let σ = (σA, σQ) designate the vocabulary of the represented domain, where σQ is

the vocabulary for qualities and σA, that for actions. Let Q be an arbitrary symbol from σQ,
of arity n. We denote by aug(Q), the augmentation of Q. aug(Q) is the same symbol Q but
with arity n + 2. Similarly, the augmentation aug(A) of the symbol A ∈ σA of arity n is the
symbol A with arity n + 1. We denote by aug(σ) the vocabulary obtained from σ where
all quality and action symbols have been augmented. Let D = (I,QD1 , . . . ,Q

D
n , A

D
1 , . . . , A

D
n )

designate a labelling domain over σ. A temporal graph H, labelled with relation instances
from D is a structure over vocabulary aug(σ) ∪ {RH}, and having the universe V ∪ I ∪ H:

HD = (I ∪ V ∪ H,RDH , aug(QD1 ), . . . , aug(QDn ), aug(AD1 ), . . . , aug(ADn ))

where: each subset h of A from H is seen as an atomic symbol; if a ∈ h in H, then (a, h) ∈
RDH; for each quality edge (a, b) ∈ E having the label L(a, b) = Q(i1, . . . , in), we have
(a, b, i1, . . . , in) ∈ aug(Q)D; for each action node a ∈ A having the label L(a) = A(i1, . . . , in),
we have (a, i1, . . . , in) ∈ aug(A)D. We write a ∈ HD iff a is part of the universe of HD.

HD can be interpreted as a relational database where the universe contains individ-
uals, hypernodes and action nodes, RDH is a table where each entry (a, h) assigns to each
action node a the hypernode h when a occurs, each entry (a, b, i1, . . . , in) from any table
QD where Q ∈ aug(σQ) indicates that individuals i1, . . . , in have been enrolled in a domain
relationship designated Q, and this relationship was initiated by action node a and ceased
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by action node b. Finally, each entry (a, i1, . . . , in) from any table AD where A ∈ aug(σA)
indicates that individuals i1, . . . , in are involved by an action designated A, and represented
as a in the temporal graph.

In what follows, we prove that CON (and equally ¬CON) are not definable in First-
Order Logic. This means that, there is no FOL-formula which is able to distinguish t-graphs
in the class C = {H | CON(H) = 1} from any other t-graph outside C. The methodology we
use is due Ehrenfeucht-Fraı̈ssé [2, 3]. Essentially, the method is comprised of the following
steps: (i) fix a natural number k; (ii) build two temporal graphs, such that one is connected,
while the other is not; (iii) show that no sentence from FO[k] (First-Order Logic with only
k nested quantifiers) can distinguish the structures: i.e. be true in one temporal graph and
false in the other. If this result holds for an arbitrarily chosen k, then it naturally extends to
FOL. Consider the sentence ϕ ∈ FO[k] for some k ∈ N, and assume it is given in prenex
normal form:

ϕ = Q1x1Q2x2 . . .Qnxkψ(x1, . . . , xk)

where each Qi is either ∀ or ∃. Checking if ϕ is true in some relational database,
in particular, in some t-graph, can be seen as a game, played between two opponents: the
Falsifier and the Duplicator. The game consists of k choices of elements from the universe
of the database. The objective of the Falsifier is to make ϕ false, while that of the Duplicator
is to make ϕ true, with each choice. Each existential quantifier (∃xi) amounts to a a choice
of the Duplicator of an element from the universe. Each universal quantifier (∀xi) amounts
for a similar choice of the Falsifier. If the Duplicator wins no matter how the Falsifier plays,
then ϕ is true. This is the standard FOL model-checking procedure [6].

Now, consider a different game, this time played on two t-graphs instead of just one,
where the objective of the Falsifier is: HA |= ϕ and HB 6|= ϕ i.e. make ϕ distinguish the
t-graphs, while that of the Duplicator is: HA |= ϕ and HB |= ϕ i.e. make the t-graphs the
same. Again, the game consists of k choices (or rounds). In each round, the Falsifier plays
first. He must: (i) first choose between HA and HB, and (ii) choose an element from it’s
universe. Next, the Duplicator must reply, by choosing another element from the opposite
t-graph. Unlike the former game, here both players each make k individual choices. Each
choice corresponds to a quantifier, and is irrelevant of it’s type. Thus, given ∃xiψ(xi), the
Falsifier must chose some ai from the universe, if possible, such that ψ(ai) is true in HA and
no matter how the Duplicator replies with some bi, the formula ψ(bi) is false in HB. This
means that ∃xiψ(xi) is also false in HB. The same observation holds for ∀xiψ(xi). On the
other hand, if no matter how the Falsifier plays, the Duplicator can respond, in each of the k
rounds, such that the formula is true in both t-graphs, then the t-graphs are indistinguishable.

More formally, given a relational database (in particular, a t-graph)R, a sub-database
of R = (U,Q1 . . . ,Qn) is R′ = (U′,Q′1, . . . ,Q

′
n) where U′ ⊆ U and each Q′i = {(a, b) | a, b ∈

U′, (a, b) ∈ Qi}. A partial isomorphism from R1 to R2 is an isomorphism between a sub-
database of R1 to one of R2.

A Ehrenfeucht-Fraı̈ssé-game is characterized by two relational databases, from which
the two players choose elements. We shall consider these databases to be t-graphs, namely:
HA and HB. A strategy in a Ehrenfeucht-Fraı̈ssé-game is a sequence S = I0, I1, . . . , Ik
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of non-empty sets of partial isomorphisms from HA to HB. A winning strategy for the
Duplicator is a strategy S such that: S has the forth property: for every i < k, every partial
isomorphism f ∈ Ii and every element α ∈ HA, there is a partial isomorphism g ∈ Ii+1 such
that α ∈ dom(g) and f ⊆ g; and S has the back property: for every i < k, every partial
isomorphism f ∈ Ii and every element β ∈ HB, there is a partial isomorphism g ∈ Ii+1 such
that β ∈ rng(g) and f ⊆ g.

Each partial isomorphism Ii describes a possible evolution of the first i moves from
the game. The forth property ensures the Duplicator can respond validly to any possible
play Ii of i moves which are at most k, and to any choice α which the Falsifier may make in
the current round, provided that α is chosen from HA. Similarly, the back property ensures
the existence of a valid response to any possible play, when the Falsifier plays an element
from HB. The Duplicator wins the k-round Ehrenfeucht-Fraı̈ssé-game iff he has a winning
strategy in every round k of the game. We build two t-graphs HA and HB, and show that the
Duplicator wins the k-round Ehrenfeucht-Fraı̈ssé-game on these two structures. Without
loss of generality, we assume the Duplicator and the Falsifier choose action nodes only. The
following line of reasoning will still hold in the general case. The construction is as follows:
let k > 0 be a natural number and let n = 2 ∗ 2k. We build H

(k)
A and H

(k)
B as follows:

UA = {hA
1 , . . . , h

A
n } ∪ {a1, . . . , a2n} UB = {hB

1 , . . . , h
B
n } ∪ {a1, . . . , a2n}

RA
H =
⋃

1≤i≤n{(a2i−1, hi), (a2i, hi)} RB
H =
⋃

1≤i≤n{(a2i−1, hi), (a2i, hi)}

EA =
⋃

1≤i≤n−1

{(a2i, a2i+1)} ∪ {(a2n, a1)}

EB =
⋃

1≤i≤n−1/2

{(a2i, a2i+1)} ∪
⋃

n/2≤i≤n−1

{(a2i, a2i+1)} ∪ {(an, a1), (a2n, an)}

Figure 2. The temporal graphs H(k)
A and H

(k)
B for k = 3

Proposition 5.1. At any round 1 ≤ i < k from a k-round Ehrenfeucht-Fraı̈ssé-game played
on H(k)A and H(k)B, there exists a trace [xl, xr], both in HA or HB, such that: (i) |[xl, xr]| ≥
2k−1 and (ii) [xl, xr] does not contain other previously-chosen elements.

Proof. The proof is done by induction on i.
Basis: Without the loss of generality, assume x0 is chosen in HA and y0 in HB. The

case when x0 is chosen in HB is symmetric. Assume the Spoiler plays x1 in HA. No matter
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how the choice is done, we have :|[x1, x0]| + |[x0, x1]| = 2 ∗ 2k, thus one of [x1, x0], [x0, x1],
must be of length at least 2k−1.

Induction step: Assume [xl, xr] is the trace guaranteed to exist by the induction hy-
pothesis. Let xi+1 be an element chosen in current round. If xi+1 does not belong in the trace
[xl, xr], then the property trivially holds, since |[xl, xr]| > 2k−i > 2k−(i+1). If xi+1 is in [xl, xr],
then we have |[xl, xi+1]| + |[xi+1, xr]| ≥ 2k−i = 2 ∗ 2k−(i+1). Thus, at least one of the intervals
has a length larger than 2k−(i+1). �

Proposition 5.2. Let x0, . . . , xi be the elements chosen in H
(k)
A , and y0, . . . , yi be the elements

chosen in H
(k)
B , in the first i ≥ 1 rounds of a k-round Ehrenfeucht-Fraı̈ssé game. Then, for

any 0 ≤ j, l ≤ i, the following holds:

• if |[y j, yl]| < 2k−i then |[x j, xl]| = |[y j, yl]|;
• if |[y j, yl]| ≥ 2k−i then |[x j, xl]| ≥ 2k−i;

Proof. The induction is done on i. Assume the Falsifier chooses from H
(k)
B . The case when

the choice is done in H
(k)
A is symmetric.

Basis. The initial choice pair is x0, y0. y1 is the choice of the Falsifier. If |[y0, y1]| <
2k−1 (i.e. y0 and y1 are in the same ”ring“ in H

(1)
B ), the Duplicator can chose x1 in H

(1)
A such

that |[x0, x1]| = |[y0, y1]|, since the unique ”ring“ in H
(1)
A is big enough.

If |[y0, y1]| ≥ 2k−1 then either the nodes are adjacent (|[y0, y1]| = 1), situation which
falls in the above category, or y0 and y1 are in different rings. If this is so, we can simply
chose x1 such that |[x0, x1]| = 2k−1+1. Since the number of action nodes in H

(1)
A is 2∗2k, and

no other nodes were previously selected, x1 can be indeed chosen. Moreover, |[x1, x0]| =

2 ∗ 2k − 2k−1 + 1 ≥ 2k−1.
Induction step. We distinguish three cases, depending on how yi+1 is positioned in

HB, w.r.t. the previous choices.
a) yi+1 is the first selected node from a ring of H(k)

B . Thus, for all previous choices y j

such that 0 ≥ j ≥ i, |[yi+1, y j]| = ∞. By Proposition 5.1, there exist xu and xv in H
(k)
A , such

that [xu, xv] has size greater or equal than 2k−i, and there are no previously-chosen elements
in the trace. Then, we can select xi+1 in the trace [xu, xv] such that |[xu, xi+1]| ≥ 2k−(i+1) and
|[xi+1, xv]| ≥ 2k−(i+1).

b) yi+1 is the second selected node from a ring of H(k)
B . Let y j designate the first

such node. We have that, for all 0 ≤ l ≤ i, and l , j, |[y j, yl]| ≥ 2k−i, thus, by induction
hypothesis, |[x j, xl]| ≥ 2k−i and also |[xl, x j]| ≥ 2k−i. Thus, we have enough space to choose
xi+1, such that the required condition holds.

c) yi+1 falls between some y j and yl, in H
(k)
B . Then:

(i) |[y j, yl]| < 2k−i. By the induction hypothesis, |[x j, xl]| = |[y j, yl]|. We can simply chose
xi+1 such that |[x j, xi+1]| = |[y j, yi+1]| and |[xi+1, xl]| = |[yi+1, yl]|.

(ii) if |[y j, yi+1]| < 2k−(i+1), then |[yi+1, yl]| ≥ 2k−(i+1). Thus, we can chose xi+1 such
that |[x j, xi+1]| = |[xi+1, xl]| ≥ 2k−(i+1). The case |[yi+1, yl]| < 2k−(i+1) is similar.
If |[y j, yi+1]| ≥ 2k−(i+1) and |[yi+1, yl]| ≥ 2k−(i+1), simply choose xi+1 at the middle
of |[x j, xl]|. The induction hypothesis guarantees there is enough space to ensure
|[x j, xi+1]| ≥ 2k−(i+1) and |[xi+1, xl]| ≥ 2k−(i+1).
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�

Theorem 5.1. The Duplicator wins the k-round game, played in H
(k)
A and H

(k)
B .

Proof. Suppose all k rounds have been played and the choices were x0, . . . , xn and y0, . . . , yn,
and that Ha, and Hb are the subgraphs of H(k)

A and H
(k)
B , containing only x0, . . . , xn and

y0, . . . , yn, respectively. Assume some yi and y j are adjacent. By Proposition 5.2, it follows
that xi and x j are also adjacent. Thus, Ha and Hb are isomorphic. Assume yi and y j are at
a distance larger than 1. Then xi and x j are also at a distance larger than 1. Again, Ha and
Hb are isomorphic. �

Theorem 5.2 (Ehrenfeucht-Fraı̈ssé [2, 3]). The following statements are equivalent:

• for any ϕ ∈ FO[k], ϕ |= RA iff ϕ |= RB;
• the Duplicator wins the k-round Ehrenfeucht-Fraı̈ssé-game, played on RA and RB.

Proposition 5.3 (Corrolary to 5.1,5.2). CON is not FOL-definable.

6. Conclusion

An immediate consequence of our result is that relational databases cannot be used
in order to perform temporal reasoning over temporal graphs.

We believe this result to be fundamental for the endeavours of [4, 8, 5, 7], since it
shows that the previously-mentioned approaches are not mere syntactic sugars for already
established (temporal) reasoning procedures.
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