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SPECTRAL PROFILES COMPARISON OF CANDIDA
GUILLIERMONDII AND CANDIDA KRUSEI YEASTS CELLS

Raluca D. NEGOITA?, Nicoleta A. MIN2*, Marcela POPA?,
Carmen M. CHIFIRIUC*#, Mona MIHAILESCU?

Hyperspectral imaging has emerged as a powerful tool enabling the analysis
of spectral signatures at cellular and subcellular levels. In this study, we applied
enhanced dark-field hyperspectral microscopy to compare two Candida species—C.
guilliermondii and C. krusei—using ascospore-stained smears. Spectral profiles (SPs)
were extracted for morphological compartments: cytoplasm, acospores, cell wall
boundary, bud scars, buds, and free spores. Each SP was analyzed both as an 1D
function and as a high-dimensional vector. We computed quantitative features
including areas under the curves and under their first derivatives, vector-based
metrics such as angles and distances. Statistical analysis revealed that features
derived from the SPs first derivative provided significant discrimination between the
species (p < 0.05), especially for the spore. Moreover, vector-based comparisons
showed highly significant differences (p < 0.0005) between the spore regions of the
two species. These results suggest that spores may exhibit species-specific optical
properties, making them strong candidates for automated classification. This work
demonstrates that simple, yet robust features extracted from hyperspectral profiles
can support the differentiation of Candida species and could serve as input for future
machine learning algorithms for microbial identification.

Keywords: Candida guillermondii, Candida krusei yeasts, hyperspectral images, spectral
profiles, free spores, vectors.

1. Introduction

In recent years, the taxonomy of pathogenic Candida species has been
complicated due to the description of new closely-related species, which are
difficult to discriminate in clinical diagnostic laboratories with currently available
phenotypic methods. These challenges have been partially overcome by the
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development of PCR-based and MALDI-TOF methods [1]. However, these
approaches are often sophisticated, requiring cultivation and isolation of the yeast
strains in pure culture and the utilization of toxic chemicals. Therefore, there is a
need for fast, reliable, and inexpensive methods with high specificity for the
identification and differentiation of pathogenic Candida species.

Hyperspectral images (HSI), by capturing both spatial morphology and rich
spectral profiles, enables distinguishing microbial species based on their unique
“optical fingerprints”. In addition to classical optical microscopy techniques,
hyperspectral dark field microscopy provides additional information, through
spectral profiles over a wide range of wavelengths, with pixel-level resolution,
allowing for more complex analysis. For example, the Staphylococcus aureus
strains were identified with 93.9% accuracy using SVM models using thirty-one
spectral bands extracted from HSI [2]. An early detection procedure for Salmonella
serotypes was proposed using principal component analysis and Mahalanobis
distance starting from HSI [3]. A comparative study investigated the foodborne
pathogens Salmonella spp, Escherichia coli and Listeria spp at 18, 21 and 24 hours
of growth, with HSI facilitating the finding of single-peak spectral profiles that can
be analyzed by simple computer methods, in contrast to conventional ones that
require spectral convolution [4]. Two Gram-positive bacteria were differentiated
from a mixture using HSI and machine learning based on the observation that there
is a difference in their pH, detectable by spectral profiles (SPs) [5].

A mid-infrared HSI system using quantum cascade lasers was introduced to
image microbial colonies (including fungi like Candida albicans) at multiple
wavelengths. This morpho-spectral approach correctly identified ~94% of colonies,
even discriminating closely related strains, all without staining or culturing beyond
colony formation [6]. Similarly, in sifu spectral analyses of microorganisms have
achieved high accuracy, near-infrared spectroscopy and HSI being able to classify
anaerobic gut fungi into three genera with >95% accuracy using discriminant
analysis[7]. These results underscore that different microbes exhibit characteristic
spectral signatures (due to variations in cell wall composition, pigments, etc.),
which HSI can exploit for identification. Notably, pathogenic yeasts of the genus
Candida have been a focus in some HSI applications. For instance, C. albicans and
C. tropicalis were successfully detected in a clinical context via HSI of urine
smears, alongside bacteria, demonstrating HSI’s potential in rapid fungal
diagnostics[8]. Overall, recent literature supports that HSI, when coupled with
appropriate analysis, offers a fast and non-destructive means to identify microbes
at early stages, addressing the long turnaround of culture-based methods [9,10].

Combination between HSI and machine learning allows automated analysis
using spectral criteria to: determine quality of food [11], to classify neurons and
glia in neural stem cell cultures [12], to classify irradiated nuclei [13], to detect
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bacterial, fungal and viral contaminants in food [14] or to compute distances
between three species [15].

The objective of our study was to test the hypothesis that HSI can provide
useful information regarding the characteristics of two Candida species allowing to
differentiate them and thus improve their automatic classification. For this, we
recorded hyperspectral images for C. guillermondii (CGY) and C. krusei (CKY)
yeasts smears stained by the specific ascospores staining.

For both types of yeasts, we selected separate spectral profiles (SP) for
morphological components: cytoplasm (C), ascospores (A), cell wall boundary
(CWB), bud scars (BS), buds (B), and free spores (FS). These components are
essential to characterize and compare these cell types.

In our analysis, SPs were viewed both as I(A), 1D functions (intensity in
each spectral band) and also as vectors with 468 elements (corresponding to each
band between 400 nm and 1000 nm). For SPs functions, we computed areas under
curves and their derivatives; in vector space, the computation of angles and
distances between vectors was performed. These features were computed both
between components of a single species and between species. We chose to test the
significance of these types of features because the standard ones (texture,
roughness) are not possible here due to the very small areas occupied by each
component in the image.

2. Experimental procedures
2.1 Samples preparation

To induce sporulation, yeast strains from the collection of the University of
Bucharest, Faculty of Biology, Microbiology Department were subcultured through
three successive passages on malt extract agar, incubated at 28°C, with transfers
performed at 24-hour intervals. Following the final incubation, the supernatant was
carefully removed using a sterile Pasteur pipette, and the resulting dense cellular
sediment was collected. Using a sterile Pasteur pipette, aliquots of the sediment
were deposited in small spots onto the surface of sterile Petri dishes containing
sporulation medium. The inoculated plates were then incubated at room
temperature (22—28°C), in the dark, for a period ranging from 2 to 7 days to promote
ascospore formation. For microscopic examination, smears were prepared from the
sporulated spots by gently spreading a small amount of material onto clean glass
slides. The smears were allowed to dry air at room temperature and were
subsequently heat-fixed by briefly passing the slides through a flame. Staining was
performed using a modified ascospore staining technique. The heat-fixed smears
were stained with a 1:10 dilution of basic fuchsin solution, applied under gentle
heating for 2—3 minutes (with 2—3 steam emissions to enhance penetration). Slides
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were then rinsed thoroughly with tap water and decolorized using a mixture of 0.1N
hydrochloric acid and ethanol in a 2:1 (v/v) ratio for 30 seconds. After another rinse
with tap water, counterstaining was performed using 1% methylene blue solution
for 1-2 minutes. A final rinse with tap water was followed by air drying at room
temperature [16].

2.2 Images acquisition and preprocessing

Hyperspectral images under enhanced darkfield microscopy were recorded
using CytoViva® commercial system which allows obtaining images with a very
dark background thanks to an oil-immersed condenser that ensures illumination of
the sample at a very oblique angle. Hyperspectral images containing in each pixel
information about intensity on 468 spectral bands between 400 nm and 1000 nm
wavelengths were obtained by scanning the sample in the XY plane with a
motorized stage (NanoScanZ, Prior Scientific Instruments Ltd, UK, 10 nm step size,
114 x 75 mm travel range). From this reason, each image is considered as a spectral
data cube (X, y, 1) (696x696x468).

The system is equipped with a spectrophotometer (ImSpectrum VIO0E,
Specim Finland) containing a transmission diffraction grating inserted between the
objective and a hyperspectral camera (Pixelfly 1392 x 1040-pixel resolution, 6.45
X 6.45 um pixel size, 7.3 to 13.5 fps, 5 us-60 s exposure time range, 62% quantum
efficiency). Other constructive and operational details are in [17].

Hyperspectral images for each of the studied yeast species are recorded with
100x microscope objective and are presented in Fig. 1.

b) ' .
Fig. 1. Experimental hyperspectral images for a) CGY and b) CKY.

Using the specialized software ENVI [18], spectral profiles (SPs) can be
viewed at the pixel level, averages over 3x3 neighboring pixels or averages over a
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region of interest chosen by the user. We saved in the spectral library specific SPs
for all morphological components of the two yeast species (cytoplasm, ascospores,
cell wall boundary, bud scars, buds, and free spores).

3. Results and discussions

3.1. Spectral profiles
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Fig. 2. Spectral profiles for each compartment from a) CGY, b) CKY.

In our study we used SPs displayed in ENVI as averages on 3x3 pixels. In
the Fig. 2 are represented separately SPs for each analized yeast (CGY and CKY)
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on morphological compartments: cytoplasm (C), ascospores (A), cell wall boundary
(CWB), bud scars (BS), buds (B), and free spores (FS).

All these spectral profiles have a steep maximum in the spectral range 700-

750nm, shifted towards the lower border for the spore and cell wall boundary and
towards the upper border of the range for the ascospore. For the spore compartment,
for both yeast species investigated, the secondary maximum appears more
pronounced around 625 nm. For budding scars, the third maximum is also visible
around the spectral band of 550nm (more evident for CKY). By simple visual
observation, these SPs are hard to be differentiated and for this reason, we computed
features based on mathematical rules from functions and vectors. We collected ten
SPs from each category from Fig. 2 and computed the features from SPs function
(areas under curve and its first derivative) and SPs vector (angles, distances).
All these SPs are normalized and considered as inputs for our home-made code in
MATLAB. From an SP we consider three entities: SP, its first derivative, SP-vector
with 468 elements to compute spectral features: areas under curves, angles,
distances. Normalization was performed in respect to intensity values from the
spectral profiles, computing the rations between each intensity value (at each
spectral band) and the maximum value in that SP. In this king, each SP will have
intensity values between 0 and 1 to compensate for any artifacts that may appear in
the experimental procedures: non-uniform staining with chromatographic marker,
different illumination from image to image or from sample to sample during
experimental image recording.

3.2. SP functions

SPs were saved from ENVI software and imported in MATLAB. They are
1D functions: I(A), the intensity values for each spectral band between 400-1000
nm. A home-made code computed the values of the areas under the curve and its
first derivative (Fig. 3) for each morphological component of the two Candida
species. We worked with normalized values for SPs. The areas under spectral
curves (or spectral curves derived) are considered as cumulated sums of intensity
values (or derived intensities) on the whole spectral interval 400 - 1000 nm. We
selected to analyze the first derivative of the SPs because it emphasizes significant
spectral intensity variations, effectively highlighting the wavelengths where sharp
spectral changes occur.
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Fig. 3. Areas under a) SPs and b) derived SPs considered as curves.

An ANOVA test was performed on two datasets: the area under the original
SP curves and the area under their first derivatives. The analysis yielded a p-value
of < 0.5 for the original curves, indicating no statistically significant difference
between C. guilliermondii (CGY) and C. krusei (CKY). In contrast, the derivative-
based curves produced a p-value < 0.05, suggesting a statistically significant
distinction between the two species.

These findings support the general observation that the original spectral
profiles exhibit similar overall trends for CGY and CKY, whereas their derivatives
reveal more distinct patterns. Based on this result, we propose that the area under
the derivative of the SP curve may serve as a discriminative feature for
distinguishing between the two yeast species, particularly when analyzing the cell
wall boundaries, bud, and free spore compartments.

3.3. SP vectors

The SP values in each spectral band between 400 and 1000 nm can be
considered as forming a vector with 468 values. In this way, we will have ten
vectors that characterize each component of the two Candida species of candida
yeasts. The in-house developed MATLAB code computed four features to
characterize the differences/similarities between the components of the species: 1/
angles between SP vectors associated with the same type of component from the
two species, 2/ angles between SP vectors associated with components of different
types from the same species, 3/ distances between SP vectors associated with the
same type of component from the two species, 4/ distances between SP vectors
associated with components of different types from the same species. Figs. 4 and 5
represent the analysis of all these features. The larger the values of the angles and
distances, the more dissimilar the two species/compartments are.
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From the Fig. 4 a) we can observe that angles above 0.2 rad between the
same compartment from the two species, are only for cytoplasm and free spores.
From the Fig. 4 b) and ¢) we can observe that the spores have the largest values for
angles computed besides all other compartments for the same species. The same
observation also from the Fig. 5 b) and c): the free spores have the highest distances
computed against all other compartments belonging to the same species.
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Fig. 4. Angles between SP vectors associated with a) the same type of component from the two
species, b) components of different types, from CGY, ¢) components of different types, from
CKY.

The ANOVA tests performed on the data presented in Fig. 4 yielded highly
significant results (p < 0.0005) when comparing the angles between spectral profile
(SP) vectors of the free spore compartment and those of other compartments, as
opposed to comparisons between non-spore compartments. A similar level of
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significance (p < 0.0005) was observed for the distances represented in Fig. 5.
These findings suggest that the spore compartment exhibits distinctly different
spectral behavior relative to other cellular structures. Biologically, this supports the
hypothesis that the spore region may contain species-specific biochemical or
structural features —such as variations in wall composition or pigment
accumulation— which result in differentiable spectral signatures. Therefore,
spectral features derived from the spore compartment may serve as valuable
discriminative markers for automated species identification between C.
guilliermondii and C. krusei.
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Fig. 5. Distances between SP vectors associated with a) the same type of component from the two
species, b) components of different types, from CGY, c) components of different types, from CKY.

Starting from the first derivate of the SP functions, we associated the vectors
and computed the same features: 1/ angles between SP vectors associated with the
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same type of component from the two species, 2/ angles between SP vectors
associated with components of different types from the same species, 3/ distances
between SP vectors associated with the same type of component from the two
species, 4/ distances between SP vectors associated with components of different
types from the same species (Figs. 6 and 7).
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Fig. 6. Angles between SP derivative vectors associated with a) the same type of component from
the two species, b) components of different types from CGY, c) components of different types
from CKY.

We can observe in Fig. 6 a) that there is no angle above 0.2 radians, so this
feature cannot be used to highlight the differences between yeast species. The same
behavior is observed in Fig. 6 b) and c) for the angles computed between different
compartments of the same species. For distances, the one computed between the
vectors from the derivative of the SP function, corresponding to the edges CGY and
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CKY is 1.5 times greater than those calculated for cytoplasm, ascospores, bud and
free spore. Distances computed between vectors from the SP derivative function
associated with components of different types from CGY and from CKY have very
close values; they do not represent features that differentiate between the
investigated yeasts species.
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Fig. 7. Distances between SP derivative vectors associated with a) the same type of component
from the two species, b) components of different types, from CGY, ¢) components of different
types, from CKY.

The findings from our spectral comparisons of C. guilliermondii and C.
krusei can be contextualized by recent HSI studies on microbial identification. High
accuracy rates reported in the literature bolster the significance of any spectral
differences we observed between these two Candida species. For instance, our work
resonates with the 2024 report of Neurauter et al., who achieved >95% accuracy
differentiating fungal genera via HSI [7]. While their study dealt with anaerobic gut
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fungi, the principle is similar — microbial taxa can be robustly distinguished by their
spectral “fingerprint,” supporting our approach. Moreover, the successful
identification of C. albicans in mixed samples by mid-IR HSI and in clinical smears
suggests that Candida yeasts have discernible spectral signatures [6]; our results
extend this knowledge to C. guilliermondii and C. krusei, two non-albicans species
of clinical interest. On the other hand, if the spectral differences we found are subtle,
literature still offers strategies to amplify or interpret them. For example, Liu ef al.
(2023) improved fungal classification by moving to the SWIR range and applying
advanced preprocessing, implying that certain spectral ranges or normalization
techniques might enhance species distinctions [19].

The success of deep learning models (94-99% accuracy) in classifying
single bacterial cells from HSI suggests that even higher accuracy might be
achievable for yeast identification as more data are gathered. Indeed, Tao et al. [10]
demonstrated a genus-level bacteria classifier with 94.9% accuracy by training on
130,000+ spectral images and deploying a custom CNN (“Buffer Net”). While our
dataset is smaller, our results contribute to this growing evidence that HSI combined
with automated features computation is a viable path for rapid yeast identification
and a starting point for ML classification. We note that unlike some colony-based
HSI methods that still require growth on plates, our dark-field microscopic HSI can
potentially identify Candida at the single-cell level, reducing the time to result. This
advantage is frequently cited as crucial for timely antifungal therapy. Finally, we
consider how our findings could be applied or extended. The literature points
toward integrating HSI with clinical workflows. In light of this, the spectral
differences we document between C. guilliermondii and C. krusei could be used to
train detection algorithms in similar diagnostic HSI systems.

2. Conclusions

We computed features to evaluate the differences/similarities among the
properties of two Candida species starting from SP. First, we considered SP as
functions and computed the areas under the curves and its first derivative for each
component from both species of candida yeasts. Then, we associated vectors with
the two functions and computed angles and distances between the vectors of each
component from the two species and between each component of the same species.
Our goal was to find those features, simple to be computed, that would allow further
automated identification of the two species based on single-cell analysis.

Among the features investigated, those that are significant in highlighting
the differences between the compartments of the two species are: 1/ the area under
the SP derivative curve, 2/ the angles between SP vectors and 3/ the distances
between SP vectors. Significant statistical distinctions between the optical
properties of two species are observed in the case of areas under derivative curves
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(p<0.05), and when comparing the angles and distances between SP-vectors of the
free spore compartment and those of other compartments (p < 0.0005).

Finding relevant features is a challenge in automatic classification, as it has
been proven that the values of the evaluation metrics of the supervised machine
learning algorithms change depending on the input data. For the task of automated
pathogen identification, hyperspectral images have proven to be a powerful tool
that contain information about the chemical composition of samples, and spectral
profiles are easy to use in features computation. In conclusion, the technique has
potential for future use in combination with machine learning and deep learning
algorithms.
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