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WEIGHTED GENERALIZATION OF SOME INTEGRAL 

INEQUALITIES FOR DIFFERENTIABLE CO-ORDINATED 

CONVEX FUNCTIONS 

M. A. LATIF1, S. S. DRAGOMIR2, E. MOMONIAT3 

 
In this paper, a new weighted identity for differentiable functions of two 

variables defined on a rectangle from the plane is established. By using the obtained 

identity and analysis, some new weighted integral inequalities for the classes of co-

ordinated convex, co-ordinated wright-convex and co-ordinated quasi-convex 

functions on the rectangle from the plane are established which provide weighted 

generalization of some recent results proved for co-ordinated convex functions. 
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1. Introduction 

 

A function RIf : , R I , is said to be convex on I  if the 

inequality 

         ,11 yfxfyxf    

holds for all x , Iy  and  0,1 . 

The most celebrated inequality for convex functions is the Hermite-

Hadamard's inequality (see for instance [7]). This double inequality is stated as: 
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where RIf : , R I  is a convex function, a , Ib  with ba < . The 

inequalities in (1) are reversed if f  is a concave function. 
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The inequalities (1) have various applications for generalized means, 

information measures, quadrature rules etc., and there is a growing literature 

providing its new proofs, extensions, refinements and generalizations, see for 

example [2, 4, 5, 6, 9, 21, 22] and the references therein. 

Let us consider now a bidimensional interval ],[],[ dcba   in 2R  with 

ba <  and dc < . A mapping R ],[],[: dcbaf  is said to be convex on 

],[],[ dcba   if the inequality  

 ),,()(1),())(1,)(1( wzfyxfwyzxf    

holds for all ],[],[),(),,( dcbawzyx   and   [0,1]  . 

A modification for convex functions on ],[],[ dcba  , which are also 

known as co-ordinated convex functions, was initiated by Dragomir [4, 6] as 

follows: 

A function R ],[],[: dcbaf  is said to be convex on co-ordinates on 

],[],[ dcba   if the partial mappings ),(=)(,],[: yufufbaf yy R  and 

),(=)(,],[: vxfvfdcf xx R  are convex where defined for all 

].,[],,[ dcybax   

A formal definition for co-ordinated convex functions may be stated as 

follows: 

 

Definition 1.1. [13] A function R ],[],[: dcbaf  is said to be convex on co-

ordinates on ],[],[ dcba   if the inequality 

 ))(1,)(1( wssuyttxf   

 ),,())(1(1),()(1),()(1),( wyfstuyftswxfstuxtsf   

 holds for all   0,1]0,1], st  and ],[],[),(),,( dcbawyux  .  

Clearly, every convex mapping R ],[],[: dcbaf  is convex on co-

ordinates. Furthermore, there exist co-ordinated convex functions which are not 

convex, (see for example [4, 6]). 

In a recent paper [20], Özdemir et al. give the notion of co-ordinated 

quasi-convex functions which generalize the notion of co-ordinated convex 

functions as follows: 

 

Definition 1.2. [20] A function     RR  2,,: dcbaf  is said to be quasi-

convex on    dcba ,,   if the inequality  

  ,),(),,(max))(1,)(1( wzfyxfwyzxf    

holds for all    dcbawzyx ,,),(),,(   and   [0,1] .  
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A function     R dcbaf ,,:  is said to be quasi-convex on co-ordinates 

on    dcba ,,   if the partial mappings ),(=)(,],[: yufufbaf yy R  and 

),(=)(,],[: vxfvfdcf xx R  are quasi-convex where defined for all 

].,[],,[ dcybax   

The definition of co-ordinated quasi-convex functions may be stated as 

follows. 

 

Definition 1.3. [16] A function     RR  2,,: dcbaf  is said to be quasi-

convex on co-ordinates on    dcba ,,   if  

         ,,,,,,,,max))(1,)(1( wzfyzfwxfyxfwssyzttxf   

for all    dcbawzyx ,,),(),,(   and  ts,  0,1][[0,1]   .  

The class of co-ordinated quasi-convex functions on    dcba ,,   is 

denoted by    ),,( dcbaQC  . It has also been proved in [20] that every quasi-

convex function on    dcba ,,   is quasi-convex on co-ordinates on    dcba ,,  . 

It is to be noted that there exist quasi-convex  functions on co-ordinates which are 

not quasi-convex, see for instance [16]. 

Another generalization of the notion of the co-ordinated convex functions 

is the concept of wright-convex functions which is given in the definition below. 

 

Definition 1.4. [20] A function     RR  2,,: dcbaf  is said to be wright-

convex on    dcba ,,   if the inequality  

 ))(1,)((1))(1,)(1( wyzxfwyzxf    

  ,),(),,(max wyfzxf  

 holds for all    dcbawyzx ,,),(),,(   and   [0,1]  .  

A function     R dcbaf ,,:  is said to be wright-convex on co-

ordinates on    dcba ,,   if the partial mappings ),(=)(,],[: yufufbaf yy R  

and ),(=)(,],[: vxfvfdcf xx R  are wright-convex where defined for all 

].,[],,[ dcybax   

 

Definition 1.5. [20] A function     RR  2,,: dcbaf  is said to be wright-

convex on co-ordinates on    dcba ,,   if 

 ))(1,)((1))(1,)(1( swystzxtfwssyzttxf   

        wzfwxfyzfyxf ,,,,   

 for all    dcbawyzx ,,),(),,(   and  ts,  0,1][[0,1]   .  
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The class of co-ordinated wright-convex functions on    dcba ,,   is 

represented by    ),,( dcbaW  . It has also been proved in [20] that every wright-

convex function on    dcba ,,   is wright-convex on co-ordinates on    dcba ,,  . 

For recent results on co-ordinated convex, co-ordinated quasi-convex, co-

ordinated m -convex, co-ordinated ( m, )-convex and co-ordinated s -convex 

functions on a rectangle    dcba ,,   from the plane 2R , we refer the readers to 

[1, 4, 5, 8], [10]-[20]. 

In the present paper, we establish a new weighted identity for 

differentiable mappings defined on a rectangle    dcba ,,   from the plane 2R  

and by using the obtained identity and analysis, some new weighted integral 

inequalities for differentiable co-ordinated convex, co-ordinated wright-convex 

and co-ordinated quasi convex functions are proved. The results proved in the 

paper provide a weighted generalization of the results given in [15]. 

 

2.  Main Results 

 

The following notions will be used throughout this section for our 

convenience 
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 The following lemma is the key result to establish the results in this section. 

 

Lemma 2.1.  Let RR  2:f  be a twice partially differentiable mapping on 

  and       0,,,: dcbap  be continuous and symmetric about 
2

ba 
 and 

2

dc 
 for      dcba ,,  with ba < , dc < . If     dcbaLfts ,,  , then  
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 Now by integration by parts and by using the symmetry of  yxp ,  about 
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 Adding (3)-(6), we get the desired result.  

Remark 2.1.  If we take  
  cdab

yxp


1
=,  for all      dcbayx ,,,   in 

Lemma 2.1, we get Lemma 1 in [15, page 3]. Moreover, for 
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Now by using lemma 2.1, we present the main results of this section. 

 

Theorem 2.1. Let RR  2:f  be a twice differentiable mapping on   and 

      0,,,: dcbap  be continuous and symmetric about 
2

ba 
 and 

2

dc 
 for 

     dcba ,,  with ba < , dc < . If     dcbaLfts ,,   and 
q

tsf  is convex on 

co-ordinates on    dcba ,,   for 1q , then 
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 By the power-mean inequality ( rrrrrr aaaaaaaa )(4 4321
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4321    for 
1a , 

2a , 3a , 0>4a  and 1<r ) and using the convexity of 
q

tsf  on co-ordinates on 

   dcba ,,   for 1q , we have 
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 A usage of (9) in (8) yields the desired result.  

Remark 2.2.  If we take  
  cdab

yxp


1
=,  for all      dcbayx ,,,   in 

Theorem 2.1, we get Theorem 4 in [15, page 8]. 

A different approach leads to the following result. 

Theorem 2.2.   Let RR  2:f  be a twice differentiable mapping on   and 

      0,,,: dcbap  be continuous and symmetric about 
2

ba 
 and 

2

dc 
 for 

     dcba ,,  with ba < , dc < . If     dcbaLfts ,,   and 
q

tsf  is convex on 
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co-ordinates on    dcba ,,   for 1>q , then 
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Proof. From Lemma 2.1 and the Hölder inequality, we have  
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 By the power-mean inequality ( rrrrrr aaaaaaaa )(4 4321
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2a , 3a , 0>4a  and 1<r ) and using the convexity of 
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 Using (12) in (11), we get (10).  
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Remark 2.3.  If we take  
  cdab

yxp


1
=,  for all      dcbayx ,,,   in 

Theorem 2.2, we get Theorem 3 in [15, page 6].  

Remark 2.4. Theorem 2.1 and Theorem 2.2 continue to hold true if in their 

statements we replace the condition “ convex on the co-ordinates” with the 

condition “ wright-convex on co-ordinates”. However, the details are left to the 

interested reader.  

In what follows we give our results for the quasi-convex mappings on co-

ordinates on    dcba ,,  . 

Theorem 2.3. Suppose the assumptions of Theorem 2.1 are satisfied. If the 

mapping 
q

tsf  is quasi-convex on co-ordinates on    dcba ,,   for 1q , then the 

following inequality holds 
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Proof. We continue inequality (8) in the proof of Theorem 2.1. Now, by the quasi-

convexity on co-ordinates of 
q

tsf  on    dcba ,,   for 1q  and the power-mean 

inequality, we obtain 
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 for all   0,1][0,1][, st . Using (14)-(17) in (13) we get the desired result.  
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Corollary 2.1.  Suppose the assumptions of Theorem 2.3 are fulfilled and if 
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holds valid 
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Corollary 2.2.  Suppose the assumptions of Theorem 2.3 are satisfied and 

additionally 

1. If 
q

tsf  is non-decreasing on co-ordinates on    dcba ,,  , then 
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2. If 
q

tsf  is non-increasing on co-ordinates on    dcba ,,  , then 
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Corollary 2.3.  In Corollary 2.1 

1. If 
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64

b a d c
a b c d f

 
   

 
2 2 2 2

, , , , .
ts ts ts ts

a b c d a b c d
f a c f c f c f

         
         

      
      (22) 

 holds true.  

 

3. Conclusions 

 
 A new weighted identity involving a twice differentiable mapping defined 

on a rectangle from the plane and a continuous positive valued mapping which is 

symmetric on co-ordinates is established. The identity proved in this paper is 

more general than the results proved in earlier works. Some new weighted 

Hermite-Hadamard type inequalities are obtained using the achieved identity, 

analysis, the notion of convexity, quasi convexity and wright convexity on co-

ordinates on a rectangle from the plane. The results can be used to refine previous 

related results since the notion of qausi convexity and wright convexity on co-

ordinates are more general than notion of convexity on co-ordinates and hence the 

findings are believed to be very useful for further research in this filed.  
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