U.P.B. Sci. Bull., Series C, Vol. 68, No. 4, 2006

THE OPTIMIZATION OF DATA ACCESS USING “JOIN”
CLAUSE

. RUSU, C. ARITON, Mihaela CAPATOIU, Vlad GROSU"

In acest articol vom analiza cuplajele (join) din clasa 'asocierilor interne’,
folosite in mod curent de catre Oracle 9i, §i le vom urmdri comportamentul in
diferite situatii, cu ajutorul cheilor (hints) si a planurilor explicative (explain plan).
In mod normal, comportamentul constd din aceea cd optimizorul estimeazd un cost
al fiecarui plan de executie conform cu cdile de acces existente §i a tipurilor de
asocieri disponibile, bazdndu-se pe statisticile aplicate tabelelor, indecsilor sau
altor factori.

Urmdnd aceste consideratii teoretice, articolul de fatd prezintd cdteva
exemple de analiza originale, care conduc cdtre concluzii practice §i demne de
urmat.

In this article we will present an analysis of the 'inner type' of joins, used in
Oracle 9i, and also of their behavior in different cases, using hints and explain
plans. Generally, the behavior consists in that the optimizer estimates a cost for
each execution plan according to the available access paths and types of join
methods, using the statistics on tables, indexes or other factors.

Following these theoretical facts the present article shows several original
analysis examples, leading to practical and 'to be followed' conclusions.

Keywords: SQL, clause, join, hint, project plan, algorithm, efficiency.
Introduction

The relational databases have two types of operators: the set operators and
the specific operators. The operator that generates an extended amount of time for
a query is the join operator and it belongs to specific operators’ class.

Suppose 0 is an arithmetic operator, x an attribute of the relation 4 and y
an attribute of the relation B, where the attributes are defined on compatible
domains.

Definition. @ is called a join of the relations A4 and B by the attributes x, y.
It has the form:

A|X|B

x0y

" Prof,, Dept. of Electronic Technology and Reliability, Faculty of Electronics, University
“Politehnica” of Bucharest, Database Architect, Dept. Head of Billing, Crisoft, Assist., Assist.,
Dept. of Electronic Technology and Reliability, Faculty of Electronics, University “Politehnica” of
Bucharest, ROMANIA

14 I. Rusu, C. Ariton, Mihaela Capatoiu, V. Grosu

and represents a relation R that contains the tuples of the Cartesian product AXB5,
with the property that all the values of the attributes x and y respect the xfy
relation. The Cartesian product of the relations 4 and B represents a relation that
contains the tuples resulting from the concatenation of each tuple within relation 4
with each tuple within relation B.

Due to the high level of the relations’ Cartesian product, most of the time
we are wondering:
which of the used join methods offers more performance?,
which are the algorithms they are build upon,

- how can we choose the optimal algorithm,

- how can we affect the process of choosing a different algorithm than

the optimizer has already chosen, by default ?

This article will primarily focus on these issues, which will be clarified in

the following.

1. Comparison between different join methods in Oracle 9i using the
hints and the explain plan

We will make an analysis of the inner type of joins, used in Oracle 9i and
will follow their behavior in different cases using hints and explain plan.
Generally, the optimizer estimates a cost for each execution plan according to the
available access paths and types of join methods, using the statistics on tables,
indexes or other factors. The optimizer compares the costs of the explain plans
and chooses the one with the lowest cost. Other important factors in query
optimization are throughput (CPU, memory, physical blocks reads etc) and the
response time. To find which of the join methods is faster and more efficient, we
use the hints.

Provided as example, the following query suggests the relationship
between two tables, namely software table having the following structure:
soft_id, name_soft, version, size_soft, vendor_id, and vendor_table comprising on
vendor_id, name_vendor, country_vendor.

select name_soft, version,size_soft, name_vendor

from software_table a, vendor table b

where a.vendor _id=b.vendor_id;

The indexes in the two tables are soft id pk and vendor id pk,
respectively. The relation between the two tables is achieved through vendor id
column.

The study will start with two cases in accordance with the number of
records in the tables. In the first case, the software table and vendor table tables
will be populated with 100,000 and 10,000 records, respectively, and in the

The optimization of data access using join clause 15

second case they will be populated with 1,000,000 and 100,000 records,
respectively.

In order to display the execution plan based on cost - referred to as cost
based optimization (CBO), we'll analyze the tables using the command analyze
table <name_table> compute statistics, set explain to “on” as in autotrace on and
then run the query above.

Before finding what join the optimizer has chosen by default, let us study
the fundamental types of algorithms that perform a join operation. There are three
main types of algorithms: nested-loops join, sort merge join and hash join.

1.1. The Nested-Loops algorithm used in join operation

Nested-Loops join is a preferred algorithm for simple queries. The
optimizer chooses one table and names it outer fable, the other one being the
inner table.

For each tuple in the outer join relation, the entire inner join relation is
scanned and any tuples that match the join condition are added to the result set.
Oracle combines the data for each tuple set that satisfies the join condition and it
will display the resulting tuples.

The pseudo code of this algorithm is:

For Each outer_tablerow in outer _table

For Each key in inner_table.primary key index

If outer_tablerow equals key
Fetch inner_tablerow from inner_table
Combine columns from outer_tablerow and inner_tablerow
Return combined row to client
Exit For
End If
End For,

In our case, the execution plan using the nested-loops join algorithm is
depicted in the Fig. 1.1.

16 I. Rusu, C. Ariton, Mihaela Capatoiu, V. Grosu

NESTED_LOOP

e —
TABLE ACCESS
TABLE ACCESS (BY ROWID)
(FULL) Vendor_table
Software_table
INDEX (UNIQUE SCAN)
"VENDOR_ID_PK'

Fig.1.1 - Nested-Loops

The optimization module based on cost of the explain plan for nested-
loops join is obtained using USE NL hint like below:
select /*+USE_NL(a,b)*/
name_soft, version,size_soft, name_vendor
from software_table a, vendor_table b
where a.vendor_id=b.vendor_id;

In the first case, we have the following execution plan:
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=100111
Card=100000 Bytes=12100000)

1 0 NESTED LOOPS (Cost=100111 Card=100000 Bytes=12100000)

2 1 TABLE ACCESS (FULL) OF 'SOFTWARE TABLE' (Cost=111
Card=100000 Bytes=6800000)

3 1 TABLE ACCESS (BY INDEX ROWID) OF 'VENDOR TABLE' (Cost=1
Card=1 Bytes=53)

4 3 INDEX (UNIQUE SCAN) OF 'VENDOR ID PK'(UNIQUE)
Statistics

0 recursive calls
0 db block gets
214405 consistent gets
273 physical reads
0 redo size
12690964 bytes sent via SOL*Net to client
73825 bytes received via SQL*Net from client
6668 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

The optimization of data access using join clause 17

100000 rows processed
Elapsed: 00:09:48

In the second case, the execution plan is:
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1001090 Card=1000000
Bytes=125993826)

1 0 NESTED LOOPS (Cost=1001090 Card=1000000 Bytes=125993826)

2 1 TABLE ACCESS (FULL) OF 'SOFTWARE TABLE' (Cost=1139
Card=1000000 Bytes=70996521)

3 1 TABLE ACCESS (BY INDEX ROWID) OF 'VENDOR TABLE' (Cost=1
Card=1 Bytes=55)

4 3 INDEX (UNIQUE SCAN) OF 'VENDOR ID PK'(UNIQUE)

Statistics

0 recursive calls
0 db block gets
2144301 consistent gets
11828 physical reads
0 redo size
130829865 bytes sent via SQL*Net to client
733792 bytes received via SOL*Net from client
66665 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1000000 rows processed
Elapsed: 01:09:52.01

Generally, Nested Loops Join is used where a small and large row sets are
joined but also where two small row sets are joined.

This algorithm is inefficient when the indexes from tables are missing or if
the indexed criteria are not very selective.

1.2. The Hash Join algorithm used in join operations

Hash Join is a faster method than Nested-Loops Join suitable for the
situations when the indexes are missing or when the criteria are not very selective,
being used only in the equijoin types. In the hash join, Oracle reads all the records
from the smaller table, builds a hash table, and then reads the larger table to probe
which of the records in the hash table are matching, using a key called hash key.

18 I. Rusu, C. Ariton, Mihaela Capatoiu, V. Grosu

The HASH AREA SIZE configuration parameter determines the size of
the table placed into cache. When the available cache space exceeded, hash tables
are split apart and temporarily stored in a sorting space. This is detrimental for
performance.

The pseudo code of this algorithm is:

For Each small _table row in small _table

Add small_table row to hash (keyed on small_table.col)
End For
For Each large_table row in large table
Look up small_table_row from hash using large_table. small table row
as key
Combine columns from large_table row and small table row

Return combined row
End For;

The execution plan using hash join is presented in the Fig. 1.2.

HASH JOIN
1
TABLE ACCESS TABLE ACCESS
(FULL) (FULL)
Vendor_table Software_table

Fig.1.2 - Hash Join

The optimization module based on execution cost for hash join is obtained
using USE _HASH hint in this way:
select /*+USE_HASH(a,b)*/
name_soft, version, size_soft, name_vendor
from software_table a, vendor_table b
where a.vendor_id=b.vendor_id;

In the first case we have the following execution plan:
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=335 Card=100000

Bytes=12100000)
1 0 HASHJOIN (Cost=335 Card=100000 Bytes=12100000)

The optimization of data access using join clause 19

2 1 TABLE ACCESS (FULL) OF 'VENDOR TABLE' (Cost=11 Card=10000
Bytes=530000)

300 TABLE ACCESS (FULL) OF 'SOFTWARE TABLE' (Cost=111
Card=100000 Bytes=6800000)

Statistics

0 recursive calls
0 db block gets
7841 consistent gets
296 physical reads
0 redo size
12690964 bytes sent via SOL*Net to client
73825 bytes received via SQL*Net from client
6668 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
100000 rows processed
Elapsed: 00:00:29.08

In addition, the optimizer chooses by default this algorithm for our query
because the cost and the execution time are the smallest.

When the algorithm is chosen by default it is not necessary to use the hint.
The hint is used for displaying the execution plan for others algorithms that are
not chosen by default.

In the second case, we have the following execution plan:
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3436 Card=1000000
Bytes=125993826)

1 0 HASH JOIN (Cost=3436 Card=1000000 Bytes=125993826)

2 1 TABLE ACCESS (FULL) OF 'VENDOR TABLE' (Cost=99
Card=100000 Bytes=5500000)

3 1 TABLE ACCESS (FULL) OF 'SOFTWARE TABLE' (Cost=1139
Card=1000000 Bytes=70996521)

Statistics

0 recursive calls
0 db block gets
12854 consistent gets
23963 physical reads
0 redo size
130829766 bytes sent via SQL *Net to client

20 I. Rusu, C. Ariton, Mihaela Capatoiu, V. Grosu

733792 bytes received via SOL*Net from client
66665 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1000000 rows processed
Elapsed: 01:07:15.05

The hash join algorithm is useful either when we have a large table (e.g.
over 10,000 records) in relation with a smaller table, or when both tables are very
large and without indexes.

1.3. The Sort Merge Join used in join operations

This algorithm is executed in three steps. The first two steps sort both
tables separately and the third step merges them together into a sorted result.
Typically, the sort merge join fits the situations when no indexes are used on any
table or when the sorting is imposed by using ORDER BY or GROUP BY
clauses.

The pseudo code of this algorithm is:

function sortMerge(relation left, relation right, attribute a)

var relation output
var list left _sorted := sort(left, a)
var list right_sorted := sort(right, a)
var left _key
var right_key
var set left_subset
var set right subset
advance(left _subset, left sorted, left _key, a)
advance(right_subset, right_sorted, right key, a)
while not empty(left _sorted) and not empty(right sorted)
if left_key = right_key
add cross product of left _subset and right_subset to output
advance(left _subset, left_sorted, left key, a)
advance(right_subset, right_sorted, right_key, a)
else if left_key < right_key
advance(left_subset, left sorted, lef key, a)
else right_key < left key
advance(right_subset, right sorted, right key, a)
return output

Sfunction advance(key, subset, sorted, a)
key = sorted[1].a
subset = emptySet

The optimization of data access using join clause 21

while not empty(sorted) and sorted[1].a = key
insert(subset, sorted[1])
remove first element from sorted,

The execution plan using sort merge join is presented in the figure below
(see Fig. 1.3).

MERGE JOIN

SORT JOIN SORT JOIN

TABLE ACCESS TABLE ACCESS
(FULL) (FULL)
VENDOR_TABLE SOFTWARE VENDOR

Fig.1.3 - Sort Merge Join

For the sort merge join, the optimization module based on the execution
cost is obtained using USE_MERGE hint, like this:
select /*+USE_MFERGE(a,b)*/
name_soft, version, size_soft, name_vendor
from software_table a, vendor_table b
where a.vendor_id=b.vendor_id;

In the first case, we have the following execution plan:
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3092 Card=100000
Bytes=12100000)

1 0 MERGE JOIN (Cost=3092 Card=100000 Bytes=12100000)

2 1 SORT (JOIN) (Cost=118 Card=10000 Bytes=530000)

3 2 TABLE ACCESS (FULL) OF 'VENDOR_TABLE' (Cost=11
Card=10000 Bytes=530000)

4 1 SORT (JOIN) (Cost=2975 Card=100000 Bytes=6800000)

5 4 TABLE ACCESS (FULL) OF 'SOFTWARE TABLE' (Cost=111 Card
=100000 Bytes=6800000)

I. Rusu, C. Ariton, Mihaela Capatoiu, V. Grosu

Statistics

0 recursive calls
17 db block gets
1242 consistent gets
2616 physical reads
0 redo size
8150598 bytes sent via SOL*Net to client
73825 bytes received via SQL*Net from client
6668 SQL*Net roundtrips to/from client
1 sorts (memory)
1 sorts (disk)
100000 rows processed
Elapsed: 00:00:34

In the second case, the execution plan is:
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=65008
Card=1000000 Bytes=125993826)

1 0 MERGE JOIN (Cost=65008 Card=1000000 Bytes=125993826)

2 1 TABLE ACCESS (BY INDEX ROWID) OF 'VENDOR TABLE'
(Cost=1217 Card=100000 Bytes=5500000)

3 2 INDEX (FULL SCAN) OF ' VENDOR _ID PK ' (UNIQUE)
(Cost=209 Card=100000)

4 1 SORT (JOIN) (Cost=63791 Card=1000000 Bytes=70996521)

5 4 TABLE ACCESS (FULL) OF 'SOFTWARE TABLE' (Cost=1139
Card=1000000 Bytes=70996521)

Statistics

0 recursive calls
123 db block gets
13842 consistent gets
46234 physical reads
0 redo size
82636602 bytes sent via SQL*Net to client
733792 bytes received via SOQL*Net from client
66665 SQL*Net roundtrips to/from client
0 sorts (memory)
1 sorts (disk)
1000000 rows processed
Elapsed: 01:08:15.02

The optimization of data access using join clause 23

This algorithm suits for larger data sets already sorted, where the hash join
and nested-loops join algorithms cannot be applied. As we can notice in this study
(see Figs. 1.4 and 1.5 below), the number of records has an important role in
choosing the algorithm's type. In addition, this method based on execution cost,
called CBO, depends on many parameters as you can see in the execution plan (db
block gets, memory, disk, CPU etc). Consequently, the optimizer makes a
compromise between the response time and throughput.

Elapsed Time

700
600
a00
400
300
200
100

0)

1
Join type

O nested-loops
| hash
O sort merge

SeC

Fig 1.4 - The response time with fetching data for all the algorithms, in the first case.

Elapsed Time

/0
B35
B9

BE.5 O Mested-Loops
c bd

E Brs mE7. 15 mHash
E7 OSort Merge

BB.5
BB
B5.5

oBg.52

oBB.15

1
Join type

Fig 1.5 - The response time with fetching data for all the algorithms, in the second case.

24 I. Rusu, C. Ariton, Mihaela Capatoiu, V. Grosu

Another interesting “performance time” analysis should be the execution
time of queries for each type of join in both cases, without fetching data in the
grid. After studying this problem the results relative to the execution time are
really amazing (see Figs. 1.6 and 1.7), compared to those relative to the execution
time with fetching data (previously obtained - see above). To display the results
for each case we'll add to the join condition any number that is not integer, e.g. in
our case for use_hash we'll use the value +0.1.
To view the execution time the following syntax is used:
SELECT /*+ USE_HASH (a b) */
name_soft, version, size_soft, name_vendor

FROM software_table a, vendor_table b
WHERE a.vendor_id = b.vendor_id+0.1;

In the first case, the results for each join algorithm are:
USE_NL= 609 seconds
USE HASH: 0.328 seconds
USE_MERGE: 2 seconds

In the second case, we have the following times:
USE _NL= 4200 seconds
USE HASH: 10 seconds
USE _MERGE: 45 seconds

Execution Time

a00 nested-
loops
E00 O nested-loops
ﬁ 400 mhash
O zort merge
=00 haszh =sort merge 8
i}

1
Join type

Fig. 1.6 - The response time without fetching data (the first case).

Execution Time

nested-
5000 [oopE
4000 +— O nested-loops
ﬁ 3000 +— m hash
2000 +——
1 O =ort merge
'IEIDS hash =sort merge

1
Join type

Fig. 1.7 - The response time without fetching data (the second case).

The optimization of data access using join clause 25

Conclusions

The leak of practical examples requested discussions around this subject.
The evaluation tests based upon 'execution cost' that this article proposed are
indeed an original and useful approach of the matter. These tests, along with the
'optimization plan', raised prevalent practical conclusions.

As the study presented in this article reveals, the number of recordings
plays a very important role in choosing the type of algorithm. More records in a
table means an exponential increasing of the execution time, no matter the type of
algorithm in use.

This method is also based upon the cost of execution (CBO). If more
parameters are taken into account, as the plan of execution has already shown (db
block gets, memory, disk, CPU etc.), the optimizer makes a compromise between
the interval of execution and the minimum of resources. In both cases, the hash
Jjoin algorithm performs faster than the other nested-loops algorithms, as shown by
the graphics above. The graphics also point differences between the interval of
execution 'without fetch' and the interval of execution 'with fetch'. In these two
cases, the hash algorithm is the fastest, followed by the merge algorithm, the
nested-loops algorithm being the slowest. We notice that in the case of nested-
loops algorithm, the intervals of execution with or without data loading are very
much alike, as the data loading occurs during the execution time.

There is no algorithm faster than other and the optimizer only chooses one
of them, depending on the practical situation.

This article presented technical information regarding the optimization
methods using JOIN sql, an Oracle specific, based on original test cases and
situations, which are not well documented and that can either be discovered only
by experienced database users or obviously known by the database designers.

REFERENCES

1. Eyal Aronoff, Kevin Loney and Noorali Sonawalla, Explain Plan: Everything you wanted to
know and had no-one to ask.

2. Joseph C. Johnson, Oracle91™ Performance Tuning, Study Guide, 2002

3. Dominique Jeunot, Enterprise DBA Part 2:Performance and Tuning, vol. 1, Instructor Guide,
September, 1999

4. ¥** Database Performance Tuning Guide and Reference in Oracle9i, October, 2002

5.http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/adm
in/c0005311.htm

6. http://www.psoug.org/reference/hints.html

7. http://oracle.developpez.com/guide/tuning/tkprof/

8. http://www.adp-gmbh.ch/ora/sql/hints.html

9. http://en.wikipedia.org/wiki/Join %28SQL%29

26 I. Rusu, C. Ariton, Mihaela Capatoiu, V. Grosu

10. http://www.cs.umbc.edu/help/oracle8/server.815/a67781/¢20¢_joi.htm#4479

11. http://people.aapt.net.au/roxsco/tuning/hints.html

12. http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96533/optimops.htm

13. http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96533/optimops.htm#49941
14. http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96533/toc.htm

