
U.P.B. Sci. Bull., Series C, Vol. 68, No. 4, 2006

THE OPTIMIZATION OF DATA ACCESS USING “JOIN”
CLAUSE

I. RUSU, C. ARITON, Mihaela CĂPĂTOIU, Vlad GROSU*

În acest articol vom analiza cuplajele (join) din clasa 'asocierilor interne',
folosite în mod curent de către Oracle 9i, şi le vom urmări comportamentul în
diferite situaţii, cu ajutorul cheilor (hints) şi a planurilor explicative (explain plan).
În mod normal, comportamentul constă din aceea că optimizorul estimează un cost
al fiecărui plan de execuţie conform cu căile de acces existente şi a tipurilor de
asocieri disponibile, bazându-se pe statisticile aplicate tabelelor, indecşilor sau
altor factori.

Urmând aceste consideraţii teoretice, articolul de faţă prezintă câteva
exemple de analiză originale, care conduc către concluzii practice şi demne de
urmat.

In this article we will present an analysis of the 'inner type' of joins, used in
Oracle 9i, and also of their behavior in different cases, using hints and explain
plans. Generally, the behavior consists in that the optimizer estimates a cost for
each execution plan according to the available access paths and types of join
methods, using the statistics on tables, indexes or other factors.

Following these theoretical facts the present article shows several original
analysis examples, leading to practical and 'to be followed' conclusions.

Keywords: SQL, clause, join, hint, project plan, algorithm, efficiency.

Introduction

The relational databases have two types of operators: the set operators and
the specific operators. The operator that generates an extended amount of time for
a query is the join operator and it belongs to specific operators' class.

Suppose θ is an arithmetic operator, x an attribute of the relation A and y
an attribute of the relation B, where the attributes are defined on compatible
domains.

Definition. θ is called a join of the relations A and B by the attributes x, y.
It has the form:

A|X|B
x θ y

* Prof., Dept. of Electronic Technology and Reliability, Faculty of Electronics, University
“Politehnica” of Bucharest, Database Architect, Dept. Head of Billing, Crisoft, Assist., Assist.,
Dept. of Electronic Technology and Reliability, Faculty of Electronics, University “Politehnica” of
Bucharest, ROMANIA

I. Rusu, C. Ariton, Mihaela Căpătoiu, V. Grosu 14

and represents a relation R that contains the tuples of the Cartesian product AXB,
with the property that all the values of the attributes x and y respect the xθy
relation. The Cartesian product of the relations A and B represents a relation that
contains the tuples resulting from the concatenation of each tuple within relation A
with each tuple within relation B.

Due to the high level of the relations’ Cartesian product, most of the time
we are wondering:

- which of the used join methods offers more performance?,
- which are the algorithms they are build upon,
- how can we choose the optimal algorithm,
- how can we affect the process of choosing a different algorithm than

the optimizer has already chosen, by default ?
This article will primarily focus on these issues, which will be clarified in

the following.

1. Comparison between different join methods in Oracle 9i using the
hints and the explain plan

We will make an analysis of the inner type of joins, used in Oracle 9i and
will follow their behavior in different cases using hints and explain plan.
Generally, the optimizer estimates a cost for each execution plan according to the
available access paths and types of join methods, using the statistics on tables,
indexes or other factors. The optimizer compares the costs of the explain plans
and chooses the one with the lowest cost. Other important factors in query
optimization are throughput (CPU, memory, physical blocks reads etc) and the
response time. To find which of the join methods is faster and more efficient, we
use the hints.

Provided as example, the following query suggests the relationship
between two tables, namely software_table having the following structure:
soft_id, name_soft, version, size_soft, vendor_id, and vendor_table comprising on
vendor_id, name_vendor, country_vendor.

select name_soft, version,size_soft, name_vendor
from software_table a, vendor_table b
where a.vendor_id=b.vendor_id;
The indexes in the two tables are soft_id_pk and vendor_id_pk,

respectively. The relation between the two tables is achieved through vendor_id
column.

The study will start with two cases in accordance with the number of
records in the tables. In the first case, the software_table and vendor_table tables
will be populated with 100,000 and 10,000 records, respectively, and in the

The optimization of data access using join clause 15

second case they will be populated with 1,000,000 and 100,000 records,
respectively.

In order to display the execution plan based on cost - referred to as cost
based optimization (CBO), we'll analyze the tables using the command analyze
table <name_table> compute statistics, set explain to “on” as in autotrace on and
then run the query above.

Before finding what join the optimizer has chosen by default, let us study
the fundamental types of algorithms that perform a join operation. There are three
main types of algorithms: nested-loops join, sort merge join and hash join.

1.1. The Nested-Loops algorithm used in join operation

Nested-Loops join is a preferred algorithm for simple queries. The
optimizer chooses one table and names it outer table, the other one being the
inner table.

For each tuple in the outer join relation, the entire inner join relation is
scanned and any tuples that match the join condition are added to the result set.
Oracle combines the data for each tuple set that satisfies the join condition and it
will display the resulting tuples.

The pseudo code of this algorithm is:
For Each outer_tablerow in outer_table
 For Each key in inner_table.primary_key_index
 If outer_tablerow equals key

Fetch inner_tablerow from inner_table
Combine columns from outer_tablerow and inner_tablerow
Return combined row to client

 Exit For
 End If
End For;

In our case, the execution plan using the nested-loops join algorithm is

depicted in the Fig. 1.1.

I. Rusu, C. Ariton, Mihaela Căpătoiu, V. Grosu 16

Fig.1.1 - Nested-Loops

The optimization module based on cost of the explain plan for nested-

loops join is obtained using USE_NL hint like below:
select /*+USE_NL(a,b)*/

name_soft, version,size_soft, name_vendor
 from software_table a, vendor_table b
 where a.vendor_id=b.vendor_id;

In the first case, we have the following execution plan:
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=100111
Card=100000 Bytes=12100000)
 1 0 NESTED LOOPS (Cost=100111 Card=100000 Bytes=12100000)
 2 1 TABLE ACCESS (FULL) OF 'SOFTWARE_TABLE' (Cost=111
Card=100000 Bytes=6800000)
 3 1 TABLE ACCESS (BY INDEX ROWID) OF 'VENDOR_TABLE' (Cost=1
Card=1 Bytes=53)
 4 3 INDEX (UNIQUE SCAN) OF 'VENDOR_ID_PK' (UNIQUE)
Statistics
--
 0 recursive calls
 0 db block gets
 214405 consistent gets
 273 physical reads
 0 redo size
 12690964 bytes sent via SQL*Net to client
 73825 bytes received via SQL*Net from client
 6668 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)

NESTED_LOOP
S
1

TABLE ACCESS
(FULL)

Software_table

TABLE ACCESS
(BY ROWID)
Vendor_table

2

3

INDEX (UNIQUE SCAN)
’VENDOR_ID_PK'

4

The optimization of data access using join clause 17

 100000 rows processed
Elapsed: 00:09:48

In the second case, the execution plan is:
Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1001090 Card=1000000
Bytes=125993826)
1 0 NESTED LOOPS (Cost=1001090 Card=1000000 Bytes=125993826)
2 1 TABLE ACCESS (FULL) OF 'SOFTWARE_TABLE' (Cost=1139
Card=1000000 Bytes=70996521)
3 1 TABLE ACCESS (BY INDEX ROWID) OF 'VENDOR_TABLE' (Cost=1
Card=1 Bytes=55)
4 3 INDEX (UNIQUE SCAN) OF 'VENDOR_ID_PK' (UNIQUE)

Statistics
--
 0 recursive calls
 0 db block gets
 2144301 consistent gets
 11828 physical reads
 0 redo size
 130829865 bytes sent via SQL*Net to client
 733792 bytes received via SQL*Net from client
 66665 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
1000000 rows processed
Elapsed: 01:09:52.01

Generally, Nested Loops Join is used where a small and large row sets are

joined but also where two small row sets are joined.
This algorithm is inefficient when the indexes from tables are missing or if

the indexed criteria are not very selective.

1.2. The Hash Join algorithm used in join operations

Hash Join is a faster method than Nested-Loops Join suitable for the
situations when the indexes are missing or when the criteria are not very selective,
being used only in the equijoin types. In the hash join, Oracle reads all the records
from the smaller table, builds a hash table, and then reads the larger table to probe
which of the records in the hash table are matching, using a key called hash key.

I. Rusu, C. Ariton, Mihaela Căpătoiu, V. Grosu 18

The HASH_AREA_SIZE configuration parameter determines the size of
the table placed into cache. When the available cache space exceeded, hash tables
are split apart and temporarily stored in a sorting space. This is detrimental for
performance.

The pseudo code of this algorithm is:
For Each small_table_row in small_table

Add small_table_row to hash (keyed on small_table.col)
End For
For Each large_table_row in large_table

Look up small_table_row from hash using large_table. small_table_row
as key
Combine columns from large_table_row and small_table_row
Return combined row

End For;

The execution plan using hash join is presented in the Fig. 1.2.

Fig.1.2 - Hash Join

The optimization module based on execution cost for hash join is obtained

using USE_HASH hint in this way:
select /*+USE_HASH(a,b)*/

name_soft, version, size_soft, name_vendor
 from software_table a, vendor_table b
 where a.vendor_id=b.vendor_id;

In the first case we have the following execution plan:
Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=335 Card=100000
Bytes=12100000)
1 0 HASH JOIN (Cost=335 Card=100000 Bytes=12100000)

HASH JOIN

1

TABLE ACCESS
(FULL)

Vendor_table

TABLE ACCESS
(FULL)

Software_table

 2 3

The optimization of data access using join clause 19

2 1 TABLE ACCESS (FULL) OF 'VENDOR_TABLE' (Cost=11 Card=10000
Bytes=530000)
3 1 TABLE ACCESS (FULL) OF 'SOFTWARE_TABLE' (Cost=111
Card=100000 Bytes=6800000)

Statistics
--
 0 recursive calls
 0 db block gets
 7841 consistent gets
 296 physical reads
 0 redo size
 12690964 bytes sent via SQL*Net to client
 73825 bytes received via SQL*Net from client
 6668 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 100000 rows processed
Elapsed: 00:00:29.08

In addition, the optimizer chooses by default this algorithm for our query

because the cost and the execution time are the smallest.
When the algorithm is chosen by default it is not necessary to use the hint.

The hint is used for displaying the execution plan for others algorithms that are
not chosen by default.

In the second case, we have the following execution plan:
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3436 Card=1000000
Bytes=125993826)
 1 0 HASH JOIN (Cost=3436 Card=1000000 Bytes=125993826)
 2 1 TABLE ACCESS (FULL) OF 'VENDOR_TABLE' (Cost=99
Card=100000 Bytes=5500000)
 3 1 TABLE ACCESS (FULL) OF 'SOFTWARE_TABLE' (Cost=1139
Card=1000000 Bytes=70996521)

Statistics

 0 recursive calls
 0 db block gets
 12854 consistent gets
 23963 physical reads
 0 redo size
 130829766 bytes sent via SQL*Net to client

I. Rusu, C. Ariton, Mihaela Căpătoiu, V. Grosu 20

 733792 bytes received via SQL*Net from client
 66665 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1000000 rows processed
Elapsed: 01:07:15.05

The hash join algorithm is useful either when we have a large table (e.g.

over 10,000 records) in relation with a smaller table, or when both tables are very
large and without indexes.

1.3. The Sort Merge Join used in join operations

This algorithm is executed in three steps. The first two steps sort both
tables separately and the third step merges them together into a sorted result.
Typically, the sort merge join fits the situations when no indexes are used on any
table or when the sorting is imposed by using ORDER BY or GROUP BY
clauses.

The pseudo code of this algorithm is:
function sortMerge(relation left, relation right, attribute a)
 var relation output
 var list left_sorted := sort(left, a)
 var list right_sorted := sort(right, a)
 var left_key
 var right_key
 var set left_subset
 var set right_subset
 advance(left_subset, left_sorted, left_key, a)
 advance(right_subset, right_sorted, right_key, a)
 while not empty(left_sorted) and not empty(right_sorted)
 if left_key = right_key
 add cross product of left_subset and right_subset to output
 advance(left_subset, left_sorted, left_key, a)
 advance(right_subset, right_sorted, right_key, a)
 else if left_key < right_key
 advance(left_subset, left_sorted, lef_key, a)
 else right_key < left_key
 advance(right_subset, right_sorted, right_key, a)
 return output

 function advance(key, subset, sorted, a)
 key = sorted[1].a
 subset = emptySet

The optimization of data access using join clause 21

 while not empty(sorted) and sorted[1].a = key
 insert(subset, sorted[1])
 remove first element from sorted;

The execution plan using sort merge join is presented in the figure below

(see Fig. 1.3).

Fig.1.3 - Sort Merge Join

For the sort merge join, the optimization module based on the execution

cost is obtained using USE_MERGE hint, like this:
select /*+USE_MERGE(a,b)*/

name_soft, version, size_soft, name_vendor
 from software_table a, vendor_table b
 where a.vendor_id=b.vendor_id;

In the first case, we have the following execution plan:
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3092 Card=100000
Bytes=12100000)
 1 0 MERGE JOIN (Cost=3092 Card=100000 Bytes=12100000)
 2 1 SORT (JOIN) (Cost=118 Card=10000 Bytes=530000)
 3 2 TABLE ACCESS (FULL) OF 'VENDOR_TABLE' (Cost=11
Card=10000 Bytes=530000)
 4 1 SORT (JOIN) (Cost=2975 Card=100000 Bytes=6800000)
 5 4 TABLE ACCESS (FULL) OF 'SOFTWARE_TABLE' (Cost=111 Card
=100000 Bytes=6800000)

MERGE JOIN

1

SORT JOIN

2

SORT JOIN

4

TABLE ACCESS
(FULL)

VENDOR_TABLE

3

TABLE ACCESS
(FULL)

SOFTWARE_VENDOR

5

I. Rusu, C. Ariton, Mihaela Căpătoiu, V. Grosu 22

Statistics
--
 0 recursive calls
 17 db block gets
 1242 consistent gets
 2616 physical reads
 0 redo size
 8150598 bytes sent via SQL*Net to client
 73825 bytes received via SQL*Net from client
 6668 SQL*Net roundtrips to/from client
 1 sorts (memory)
 1 sorts (disk)
 100000 rows processed
 Elapsed: 00:00:34

In the second case, the execution plan is:
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=65008
Card=1000000 Bytes=125993826)
 1 0 MERGE JOIN (Cost=65008 Card=1000000 Bytes=125993826)
 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'VENDOR_TABLE'
(Cost=1217 Card=100000 Bytes=5500000)
 3 2 INDEX (FULL SCAN) OF ' VENDOR_ID_PK ' (UNIQUE)
(Cost=209 Card=100000)
 4 1 SORT (JOIN) (Cost=63791 Card=1000000 Bytes=70996521)
 5 4 TABLE ACCESS (FULL) OF 'SOFTWARE_TABLE' (Cost=1139
Card=1000000 Bytes=70996521)

Statistics
--
 0 recursive calls
 123 db block gets
 13842 consistent gets
 46234 physical reads
 0 redo size
 82636602 bytes sent via SQL*Net to client
 733792 bytes received via SQL*Net from client
 66665 SQL*Net roundtrips to/from client
 0 sorts (memory)
 1 sorts (disk)
 1000000 rows processed
Elapsed: 01:08:15.02

The optimization of data access using join clause 23

This algorithm suits for larger data sets already sorted, where the hash join
and nested-loops join algorithms cannot be applied. As we can notice in this study
(see Figs. 1.4 and 1.5 below), the number of records has an important role in
choosing the algorithm's type. In addition, this method based on execution cost,
called CBO, depends on many parameters as you can see in the execution plan (db
block gets, memory, disk, CPU etc). Consequently, the optimizer makes a
compromise between the response time and throughput.

Fig 1.4 - The response time with fetching data for all the algorithms, in the first case.

Fig 1.5 - The response time with fetching data for all the algorithms, in the second case.

I. Rusu, C. Ariton, Mihaela Căpătoiu, V. Grosu 24

Another interesting “performance time” analysis should be the execution
time of queries for each type of join in both cases, without fetching data in the
grid. After studying this problem the results relative to the execution time are
really amazing (see Figs. 1.6 and 1.7), compared to those relative to the execution
time with fetching data (previously obtained - see above). To display the results
for each case we'll add to the join condition any number that is not integer, e.g. in
our case for use_hash we'll use the value +0.1.

To view the execution time the following syntax is used:
SELECT /*+ USE_HASH (a b) */
 name_soft, version, size_soft, name_vendor
FROM software_table a, vendor_table b
WHERE a.vendor_id = b.vendor_id+0.1;

In the first case, the results for each join algorithm are:
USE_NL= 609 seconds
USE_HASH: 0.328 seconds
USE_MERGE: 2 seconds

In the second case, we have the following times:
USE_NL= 4200 seconds
USE_HASH: 10 seconds
USE_MERGE: 45 seconds

Fig. 1.6 - The response time without fetching data (the first case).

Fig. 1.7 - The response time without fetching data (the second case).

The optimization of data access using join clause 25

Conclusions

The leak of practical examples requested discussions around this subject.
The evaluation tests based upon 'execution cost' that this article proposed are
indeed an original and useful approach of the matter. These tests, along with the
'optimization plan', raised prevalent practical conclusions.

As the study presented in this article reveals, the number of recordings
plays a very important role in choosing the type of algorithm. More records in a
table means an exponential increasing of the execution time, no matter the type of
algorithm in use.

This method is also based upon the cost of execution (CBO). If more
parameters are taken into account, as the plan of execution has already shown (db
block gets, memory, disk, CPU etc.), the optimizer makes a compromise between
the interval of execution and the minimum of resources. In both cases, the hash
join algorithm performs faster than the other nested-loops algorithms, as shown by
the graphics above. The graphics also point differences between the interval of
execution 'without fetch' and the interval of execution 'with fetch'. In these two
cases, the hash algorithm is the fastest, followed by the merge algorithm, the
nested-loops algorithm being the slowest. We notice that in the case of nested-
loops algorithm, the intervals of execution with or without data loading are very
much alike, as the data loading occurs during the execution time.

There is no algorithm faster than other and the optimizer only chooses one
of them, depending on the practical situation.

This article presented technical information regarding the optimization
methods using JOIN sql, an Oracle specific, based on original test cases and
situations, which are not well documented and that can either be discovered only
by experienced database users or obviously known by the database designers.

R E F E R E N C E S

1. Eyal Aronoff, Kevin Loney and Noorali Sonawalla, Explain Plan: Everything you wanted to
know and had no-one to ask.

2. Joseph C. Johnson, Oracle9i™ Performance Tuning, Study Guide, 2002
3. Dominique Jeunot, Enterprise DBA Part 2:Performance and Tuning, vol. 1, Instructor Guide,

September, 1999
4. *** Database Performance Tuning Guide and Reference in Oracle9i, October, 2002
5.http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/adm

in/c0005311.htm
6. http://www.psoug.org/reference/hints.html
7. http://oracle.developpez.com/guide/tuning/tkprof/
8. http://www.adp-gmbh.ch/ora/sql/hints.html
9. http://en.wikipedia.org/wiki/Join_%28SQL%29

I. Rusu, C. Ariton, Mihaela Căpătoiu, V. Grosu 26

10. http://www.cs.umbc.edu/help/oracle8/server.815/a67781/c20c_joi.htm#4479
11. http://people.aapt.net.au/roxsco/tuning/hints.html
12. http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96533/optimops.htm
13. http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96533/optimops.htm#49941
14. http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96533/toc.htm

