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ON THE MEDIAN OF A JUMP TYPE DISTRIBUTION 

Ştefan V. STEFĂNESCU1 

Atât în biologia moleculară cât şi în ştiinţele sociale sau la modelarea 
proceselor economice este necesară determinarea pragului θ , a<θ<b , ce defineşte 
o schimbare a frecventei de răspuns pentru variabila aleatoare X. Vom presupune 
ca variabila X are densitatea de probabilitate constantă pe subdomeniile [a , θ ] , 
respectiv (θ , b ] şi, în plus, aceste constante sunt invers proporţionale cu lungimile 
intervalelor mentionate.  

Luând în considerare aceste restricţii, vom demonstra ca estimatorul W a lui 
θ , estimator bazat pe mediana variabilei aleatoare X , este deplasat. Rezultatele 
rulării unei proceduri Monte Carlo de simulare stocastică confirmă deplasarea 
estimaţiilor. 

 
 
In the molecular biology as well as for modeling the social and economical 

processes it is necessary to determine the change point θ , a<θ<b  , of the frequence 
response from a random variable X. We'll suppose that the variable X has a 
constant probability density function on the subdomains [a , θ ] , respectively (θ , b ] 
and more, these both constants are inverse proportional with the lengths of the 
mentioned intervals.  

Respecting these restrictions we proved that the estimator W of θ , based on 
the median index of the random variable X , is biased. The running outputs of a 
stochastic simulation Monte Carlo procedure confirms the theoretical results. 

  
Keywords : change point, estimation, Monte Carlo simulation, median index,  
                     probability density function.  
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1. Introduction  

Often in the molecular biology as well as in economy it is necessary to 
determine the threshold θ  , a b< <θ  , which defines a change in the appearance 
frequencies of some observed events ([6], [8], [9]).  

Taking into consideration the restrictions imposed by this kind of 
phenomena, we'll suppose that the random variable (r.v.) X  with the support 
[ , ]a b  has a constant probability density function (p.d.f.) f x a b0 ( ; , , )θ  on the 

                                                            
1 Associate Professor, Departement of Probability Statistics and Operations Research, Faculty of 
Mathematics and Informatics, University of Bucharest, Romania 



Ştefan V. Ştefănescu 
 
10

subdomains [ , ]a θ  and ( , ]θ b . More, the mentioned constants are inverse 
proportional with the length of the subintervals [ , ]a θ  , respectively ( , ]θ b . 
 Therefore, the r.v. X  has the p.d.f. f x a b0 ( ; , , )θ  , 

      f x a b
a when a x

b when x b0
1 2
1 2

( ; , , )
/ [ ( )] ;
/ [ ( )] ;

θ
θ θ

θ θ
=

− ≤ ≤
− < ≤

⎧
⎨
⎩

                                     (1) 

In this situation we'll write X CUT a b~ ( , , )θ .  
To simplify the exposure we designate by CU ( )λ  , 0 1< <λ  , the 

standard distribution  CUT( , , )λ 0 1 .   
So, the r.v. Y CU~ ( )λ  , 0 1< <λ  , has the p.d.f.  f y( ; )λ  , 0 1≤ ≤y  , 

where 

      f y
for x
for x

( ; )
/ ( ) ;
/ [ ( )] ;

λ
λ λ

λ λ
=

≤ ≤
− < ≤

⎧
⎨
⎩

1 2 0
1 2 1 1

                                                 (2) 

In the subsequent, basing on the specific form of the median Mdn X( )  , 
we'll propose an estimation θ̂  for the unknown threshold θ  when there are known 
n  independent observations x1 , x2 , x3 ,  … , xn  from X . 

 

2. Estimating the threshold θ   

2.1. Some properties of the distribution CUT a b( , , )θ   

Proposition 1. The cumulative distribution function (c.d.f.) F x a b0 ( ; , , )θ  
of the r.v. X CUT a b~ ( , , )θ  , a b< <θ  , is given by the expression  

      F x a b
x a a for a x
x b b for x b0

2
2 2

( ; , , )
( ) / [ ( )] ;
( ) / [ ( )] ;

θ
θ θ

θ θ θ
=

− − ≤ ≤
+ − − < ≤

⎧
⎨
⎩

                       (3) 

Proof. Indeed, for any a x b≤ ≤  it is obvious the equality 

       
∂ θ

∂
θ

F x a b
x

f x a b0
0

( ; , , )
( ; , , )=  

Remark 1. Particularly, the r.v. Y CU~ ( )λ  , 0 1< <λ  , has the c.d.f.  
F y( ; )λ  , 0 1≤ ≤y  , 

      F y
y when y
y when y

( ; )
/ ( ) ;

( ) / [ ( )] ;
λ

λ λ
λ λ λ

=
≤ ≤

+ − − < ≤
⎧
⎨
⎩

2 0
1 2 2 1 1

                                  (4) 

Proposition 2. If  X CUT a b~ ( , , )θ   with  a b< <θ   and    
      )/()( abaXY −−=                          )/()( aba −−= θλ                                 (5) 
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then  Y CU~ ( )λ  . 
Proof. Indeed, for any 0 1≤ ≤y  we have  a a b a y b≤ + − ≤( )   and 

therefore 
      =≤−−=≤ ))/()(()( yabaXrPyYrP  
                       ),,;)(())(( 0 bayabaFyabaXrP θ−+=−+≤=  

Since  a X b≤ ≤  , a b< <θ   it results  0 1≤ ≤Y  , 0 1< <λ  .   
Case 1. If  0 ≤ ≤y λ   then  a a b a y a b a≤ + − ≤ + − =( ) ( )λ θ  . So  

      Pr Y y F a b a y a b
a b a y a

a
y

F y( ) ( ( ) ; , , )
( )

( )
( ; )≤ = + − =

+ − −
−

= =0 2 2
θ

θ λ
λ  

Case 2. For  λ < ≤y 1  we have  θ λ= + − < + − ≤a b a a b a y b( ) ( )  . 
Therefore   
      =−+=≤ ),,;)(()( 0 bayabaFyYrP θ  

                       );(
)1(2

21
)(2

2)( λ
λ

λ
θ

θ yFy
b

byaba
=

−
−+

=
−

−+−+
=  

We designate by Mdn X( )  the median coefficient for the r.v. X . 

Proposition 3. If  X CUT a b~ ( , , )θ  , a b< <θ  , then  
 Mdn X( ) = θ                                                                                 (6) 

Proof. Indeed we have 

 Pr X F a b
a
a

( ) ( ; , , )
( )

≤ = =
−
−

=θ θ θ
θ
θ0 2

1
2

 

Remark 2. In the subsequent, basing on Proposition 2, instead of the r.v. 
X CUT a b~ ( , , )θ  we'll study the r.v. Y CU~ ( )λ .  

More precisely, from Proposition 3 and formula (5) we obtain  

 Mdn Y
Mdn X a

b a
( )

( )
=

−
−

                                                               (7) 

Instead of the independent observations x1 , x2 , x3 ,…, xn  regarding the 
r.v. X  we'll operate with the quantities 

 y
x a
b ai
i=

−
−

   ,      1≤ ≤i n                                                            (8) 

which describe the behavior of the r.v. Y . 
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2.2. The estimator W  based on the median index 

Applying Proposition 3 and considering n s= +2 1 independent 
observations y1 , y2 , y3 , …, y s2 1+  of the r.v. Y , Y CU~ ( )λ  , we obtain the 

estimation $λ  for the parameter λ  , 0 1< <λ  ,  
 $

( )λ = +y s 1                                                                                      (9) 
where y i( )  , 1 2 1≤ ≤ +i s  , are just the quantities yi  arranged in an increased 
order, that is 
 y y y y ys s( ) ( ) ( ) ( ) ( )... ...1 2 3 1 2 1≤ ≤ ≤ ≤ ≤ ≤+ +                            (10) 

So we get the estimator Ws  to evaluate the unknown value λ , 0 1< <λ  , 
 W Ys s= +( )1                                                                                  (11) 

where Y i( )  , 1 2 1≤ ≤ +i s  , are the order statistic of degree i  attached to the r.v. 
Y CU~ ( )λ . 

The p.d.f. g w s( ; , )λ  , 0 1≤ ≤w  , for the r.v. Ws  has the expression ( 
Ciucu, Craiu, [1], p.40 )  

      ( ) ( )g w s
s

s s
F w F w f ws s( ; , )

( )!
( !)( !)

( ; ) ( ; ) ( ; )λ λ λ λ=
+

−
2 1

1                              (12) 

After a straightforward calculus we deduce  

      g w s
K

w w
for w

K
w w

for w

s

s s

s

s s( ; , )
;

;
λ λ

λ
λ λ

λ

λ
λ λ λ

λ
=

⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟ ≤ ≤

+ −
−

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟ −

< ≤

⎧

⎨
⎪
⎪

⎩
⎪
⎪

2 1
0

1 2
1

1
1

1
1

1
          (13) 

where 

 K
s

s s
s s=

+
+

( )!
( !) ( !)

2 1
22 1                                                                    (14) 

Proposition 4. Respecting the previous notations we have  
 Mean W cs s( ) ( )= + −λ λ1                                                          (15) 

with  

 c
s s s s

s
s s=

+ + + +
+

( )( ) ( ) ... ( )

( !)

2 3 4 2 1

22 2                                            (16) 

Proof. Indeed   
 ( )Mean W K J Js s s s( ) ( ) ( )= +1 2                                                    (17) 

where  
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 J w
w w dw

s

s s
( )1

0

2
= ⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟∫ λ

λ
λ λ

λ

 

 J w
w w dw

s

s s
( )2

1
1 2

1
1
1 1

=
+ −

−
⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟ −∫

λ

λ
λ λ λ

                                  (18) 

Using the substitution  w t= −( )1 λ   we deduce 

( ) ( )J t t t dt t dt t t dts
s s s s( ) ( ) ( ) ( )1

1

0
2

0

1
2

0

1

1 1 1 1 1= − − − + = − − −∫ ∫ ∫λ λ λ             (19) 

Similarly, after the substitution  w v= + −λ λ( )1   it results 

 ( ) =−+−+= ∫
1

0

)2( )1()1()1( dvvvvJ ss
s λλ   

        ( ) ( )∫∫ −−+−=
1

0

2
1

0

2 1)1(1 dvvvdvv ss
λλ                                  (20) 

From the formulas (17), (19) and (20) we finally get  
 ( )Mean W K J Js s s s( ) ( ) ( )( ) ( )= + −2 1 23 4λ λ                              (21) 

where  

      ( )J t dts
s( )3 2

0

1

1= −∫                           ( )J t t dts
s( )4 2

0

1

1= −∫                         (22) 

The value of the expression Js
( )3  can be computed recurrently. So 

      ( ) ( ) ( )J t dt t t
t
t

s t t dts
s s s( )3 2

0

1
2 2 2 1

0

1

1 1
1
0

2 1= − = −
=
=

+ − =∫ ∫
−

 

             ( ) ( )= − − + − = − +∫ ∫
−

−2 1 2 1 2 22

0

1
2 1

0

1
3

1
3s t dt s t dt s J s J

s s
s s
( ) ( )   

More precisely 

 J
s

s
Js s

( ) ( )3
1

32
2 1

=
+ −                                                                       (23) 

Applying the formula (23) we'll prove inductively the equality 

 J
s s

s Ks

s

s

( ) ( !)( !)
( )!

3
22

2 1
1

2
=

+
=                                                         (24) 

First, the formula (24) is true for  s = 1 , 
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 ( )J t dt1
3 2

0

1 2
1

2
3

2 1 1
3

( ) ( !)( !)
!

= − = =∫         

Now, supposing that Js
( )3  has the form (24) and applying the recurrent 

relation (23) we'll verify the inductive hypothesis. So  

      J
s
s

J
s
s

s s
s

s s
ss s

s s

+

+
=

+
+

=
+
+ +

=
+ +
+1

3 3
2 2 12 2

2 3
2 2
2 3

2
2 1

2 1 1
2 3

( ) ( )
( )

.
( !)( !)

( )!
( )! ( )!

( )!
  

After using the variable transform  v t= −1 2   we also have 

 ( )J t t dt v dv
ss

s s( )
( )

4 2

0

1

1

0

1
1
2

1
2 1

= − = − =
+∫ ∫                            (25) 

From the formulas (24)-(25) and respecting the notation (16), the 
expression (21) becomes finally  

 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+=
)1(2

1)21(
2

12)(
sK

KWeanM
s

ss λλ  

                                         s
s c

s
K )21(

)1(2
)21( λλλλ −+=

+
−+=         

 Remark 3. Since cs > 0  and 0 1< <λ  , from the relation (15) it results 
that the estimator Ws  overestimates the real value of the parameter λ  when 
0 05< <λ .  . Similarly,  in the case 0 5 1. < <λ , the parameter λ  is subestimated. 
The estimator Ws  is unbiased for  λ = 05.  . 

The bias value B s cs( , ) ( )λ λ= −1 2  of the estimator Ws  depends on the 
value of λ  and also on the size  n s= +2 1  of the sample used in the estimation 
process. 

More, the r.v. Ws  is an absolutely correct estimator ([2], [5], [7]) since 

Proposition 5. For any  0 1< <λ   we have 
 lim ( , )

s
B s

→ ∞
=λ 0                                                                         (26) 

Proof. Since  B s cs( , ) ( )λ λ= −1 2   it is sufficient to show that 
 lim

s
sc c

→ ∞
= = 0                                                                           (27) 

But for every natural number s  are true the relations 

 cs > 0                     
c
c

s
s

s

s

+ =
+
+

<1 2 3
2 4

1                                         (28) 

which imply the strict inequalities 
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 c c c c cs s1 2 3 1 0> > > > > > >+... ...                                           (29) 
Therefore the string { }cs s  , being bounded and monotone, is convergent 

to a value c ≥ 0 .  
It remains to prove that  c = 0 .    
Indeed, applying successively k  times the equality (28) we deduce 

 c
k k k k

k k k k
ck k2

4 1 4 1 4 3 2 3
4 2 4 4 2 2 4

=
+ − − +

+ − +
( )( )( ) ... ( )

( )( )( ) ... ( )
              

So it results the inequality 

 c
k
k

ck

k

k2
4 1
4 2

<
+
+

⎛
⎝⎜

⎞
⎠⎟                      

and hence 

 lim lim . lim
k

k
k

k

k
kc

k
k

c
→ ∞ → ∞ → ∞

≤
+
+

⎛
⎝⎜

⎞
⎠⎟2

4 1
4 2

                                                

that is 
 c e c≤ −1 4/ .                                                                                             

This last inequality don’t accept the variant c > 0  since in this hypothesis 
we obtain the incompatible result  1 1 4≤ −e / . Having always c ≥ 0  it remains only 
the alternative c = 0  , that is the relation (27) is true. 

Remark 4.  The string  { }cs s   decreases very slowly to the limit  c = 0  ( 
see Table 1 ). 
 

Table 1  
The values of the coefficients  cs ( formula (16) ) 

s 1 2 3 4 5 6 7 8 
cs 0.1875  0.1563  0.1367 0.1231 0.1128 0.1047 0.0982 0.0927  

s 9 10 15 20 25 30 35 40 
cs 0.0881  0.0841  0.0700 0.0612 0.0551 0.0505 0.0469 0.0439  

s 45 50 75 100 125 150 175 200 
cs 0.0415  0.0394  0.0323 0.0280 0.0251 0.0229 0.0212 0.0199  

s 250 300 350 400 500 600 700 800 
cs 0.0178  0.0163  0.0151 0.0141 0.0126 0.0115 0.0107 0.0100  

s 900 1000 1500 2000 2500 3000 4000 5000 
cs 0.0094  0.0089  0.0073 0.0063 0.0056 0.0051 0.0045 0.0040  
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2.3. Monte Carlo simulations 

Let U and V  be two independent r.v.-s, each of them having an uniform 
distribution over the interval  [ , ]0 1  . 

Fixing an arbitrary value  0 1< <λ   we define the r.v.  Zλ  , 

 Z
U daca V

U daca Vλ
λ
λ λ

=
≤

+ − >
⎧
⎨
⎩

; .
( ) ; .

0 5
1 0 5

                                     (30) 

 Proposition 6. For any 0 1< <λ  we have  Z CUλ λ~ ( ) .   
Proof. Keeping the previous notations we'll show that for every 0 1≤ ≤z  it 

is true the equality 
 Pr Z z F z( ) ( ; )λ λ≤ =  

Indeed  
      Pr Z z Pr U z V U z V( ) (( , . ) ( ( ) , . ))λ λ λ λ≤ = ≤ ≤ ∪ + − ≤ > =0 5 1 0 5   
                         = ≤ ≤ + + − ≤ > =Pr U z V Pr U z V( , . ) ( ( ) , . )λ λ λ0 5 1 0 5   
                         = ≤ ≤ + + − ≤ > =Pr U z Pr V Pr U z Pr V( ) ( . ) ( ( ) ) ( . )λ λ λ0 5 1 0 5  

                         = ≤
⎛
⎝⎜

⎞
⎠⎟ + ≤

−
−

⎛
⎝⎜

⎞
⎠⎟

1
2

1
2 1

Pr U
z

Pr U
z

λ
λ
λ

  

Case 1. If  0 ≤ ≤x λ   then 

      ( )Pr Z z Pr U
z

Pr U
z

F z( ) ( ; )λ λ λ
λ≤ = ≤ ≤

⎛
⎝⎜

⎞
⎠⎟ + ≤ =

⎛
⎝⎜

⎞
⎠⎟ =

1
2

0
1
2

0
1
2

 

Case 2.  In the situation  λ < ≤x 1  we have 

      Pr Z z Pr U
z

Pr U
z

( )λ λ
λ
λ

≤ = ≤
⎛
⎝⎜

⎞
⎠⎟ + ≤

−
−

⎛
⎝⎜

⎞
⎠⎟ =

1
2

1
2 1

  

      ( )= ≤ ≤ + ≤ ≤
−
−

⎛
⎝⎜

⎞
⎠⎟ = +

−
−

⎛
⎝⎜

⎞
⎠⎟ =

1
2

0 1
1
2

0
1

1
2

1
2 1

Pr U Pr U
z z

F z
λ
λ

λ
λ

λ( ; )   

Proposition 6 can be used to generate an arbitrary sample 
y y y y s1 2 3 2 1, , , ..., +  from the r.v.  Y CU~ ( )λ ( see also [3], [4] ).  

The following Monte Carlo algorithm permits us an empirical validation 
of the biased property for Ws  ( according to Proposition 4 ) and more to evaluate 

the dispersion of the $λ  estimations. 
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Algorithm  AMC ( Monte Carlo procedure to obtain an estimation $λ  ). 

   Step 0.  Input :  s N∈ +  ( sample size n s= +2 1 ) ,  0 1< <λ    
   Step 1.  i = 0 
   Step 2.  i i= + 1 
   Step 3.  Generate two independent variates U V,  which are uniformly 
                Distributed over the interval  [ , ]0 1   
   Step 4.  ( Generate independent observations yi  for the r.v.  Y CU~ ( )λ  ) 
               If  V ≤ 05.   then   y Ui = λ  
                                 else    y Ui = + −λ λ( )1  
   Step 5.  If  i s< +2 1  then  Goto Step 2  
   Step 6.  ( Sort in an increasing order the values  yi  , 1 2 1≤ ≤ +i s  ) 
                Obtain the sorted string  y y y y ys s( ) ( ) ( ) ( ) ( )... ...1 2 3 1 2 1≤ ≤ ≤ ≤ ≤ ≤+ +    

   Step 7.  ( Determine the estimation $λ  for the parameter λ  ) 
                $ ( )λ = +y s 1  

   Step 8.  Output  $λ  .                   STOP.  
 
 
Considering s = 3  and λ = 0 25.  , in Table 2 were listed the estimations $λ  

obtained by running 20 times the stochastic simulation algorithm AMC.   
 
Graphic G1 represents the variation of the estimation values $λ  listed in 

Table 2. 
 

Remark 5. Graphic G1 emphasizes the overevaluation of the estimations 
$λ  when  λ = 0 25.  ( see Remark 3 and formula (15) too ). The overevaluation 

property is also confirmed practically by the inequality  

 
$ $ $ ... $

. .
λ λ λ λ

λ1 2 3 20
20

0 29148 0 25
+ + + +

= > =                             (31) 

where $λi  , 1 20≤ ≤i  , are the values presented in Table 2. 
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Table 2  

The estimations $λ  deduced by using the median of the sample  yi , 1 ≤ i ≤ n = 7 
( λ = 0.25  ,  20 simulations ). 

sim Y1 y2 y3 y4 y5 Y6 y7 $λ  
1 0.0894 0.8453 0.3327 0.0331 0.0337 0.0991 0.4308 0.0991 
2 0.5433 0.0232 0.3697 0.2198 0.9935 0.2178 0.1240 0.2198 
3 0.0152 0.3897 0.0308 0.5273 0.9170 0.0392 0.0583 0.0583 
4 0.5477 0.3138 0.9773 0.1955 0.0489 0.7853 0.7278 0.5477 
5 0.8860 0.7512 0.8655 0.6152 0.1604 0.1652 0.2345 0.6152 
6 0.3182 0.1287 0.1813 0.2410 0.3708 0.0001 0.0688 0.1813 
7 0.0235 0.8627 0.2669 0.8860 0.9663 0.1856 0.2210 0.2669 
8 0.2946 0.2396 0.1041 0.5875 0.0979 0.5158 0.7381 0.2946 
9 0.2082 0.1575 0.1355 0.8973 0.6042 0.1640 0.0328 0.1640 
10 0.0096 0.4959 0.0784 0.5747 0.3884 0.1131 0.5351 0.3884 
11 0.8209 0.5931 0.0335 0.0938 0.6130 0.0855 0.6887 0.5931 
12 0.0409 0.6220 0.8546 0.7073 0.1530 0.0396 0.1401 0.1530 
13 0.1961 0.2732 0.1396 0.3156 0.0648 0.2869 0.1366 0.1961 
14 0.1592 0.0166 0.4368 0.7221 0.7313 0.5763 0.3220 0.4368 
15 0.1364 0.0927 0.6586 0.0363 0.3010 0.3505 0.6361 0.3010 
16 0.0301 0.0950 0.1003 0.5327 0.7526 0.3722 0.0935 0.1003 
17 0.2789 0.5292 0.1988 0.0632 0.2420 0.5262 0.5329 0.2789 
18 0.0459 0.9381 0.3177 0.2535 0.2392 0.7987 0.2446 0.2535 
19 0.6950 0.4452 0.1591 0.6150 0.0315 0.5282 0.2340 0.4452 
20 0.0323 0.2364 0.4964 0.0743 0.1727 0.5933 0.9111 0.2364 

 
 
 

3. Concluding remarks 

  
We analyzed the behavior of the estimator Ws  proposed to evaluate the 

threshold λ  of the r.v. Y CU~ ( )λ , 0 1< <λ .  
Proposition 4 brings supplementary informations regarding the size of the 

bias B s( , )λ  for the r.v. Ws . Depending on the effective value of λ  we'll have an 
overevaluation process ( when 0 05< <λ .  ) or an underevaluation in the case 
0 5 1. < <λ  ( Remark 3 ).   
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More, the bias B s( ; )λ  tends to zero when is increased the volume 
n s= +2 1 of the sample { }yi i s1 2 1≤ ≤ +  used to estimate the parameter λ  ( see 
Proposition 5 ).  

As function of the index s  the string { ( ; )}B s s Nλ ∈  decreases very slowly 
to zero ( Table 1 ).     

The practical application of a Monte Carlo simulation procedure validates 
the theoretical results ( to compare the estimation points in the graphic G1 and 
view the inequality (31) ). 

The distribution CUT a b( , , )θ  , a b< <θ  , has multiple practical 
interpretations in the study of some molecular processes and also for modeling 
complex aspects from the economy. 
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Graphic G1. Twenty estimations for the parameter λ 
( n = 7 ,  λ = 0.25 ,  20 simulations ) 
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