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ON THE MEDIAN OF A JUMP TYPE DISTRIBUTION

Stefan V. STEFANESCU'

Atat in biologia moleculara cat si in stiintele sociale sau la modelarea
proceselor economice este necesard determinarea pragului 0, a<6<b , ce defineste
o schimbare a frecventei de raspuns pentru variabila aleatoare X. Vom presupune
ca variabila X are densitatea de probabilitate constanta pe subdomeniile [a , 8] ,
respectiv (8, b ] si, in plus, aceste constante sunt invers proportionale cu lungimile
intervalelor mentionate.

Ludnd in considerare aceste restrictii, vom demonstra ca estimatorul W a lui
0, estimator bazat pe mediana variabilei aleatoare X , este deplasat. Rezultatele
rularii unei proceduri Monte Carlo de simulare stocastica confirmad deplasarea
estimatiilor.

In the molecular biology as well as for modeling the social and economical
processes it is necessary to determine the change point 8, a<6<b , of the frequence
response from a random variable X. We'll suppose that the variable X has a
constant probability density function on the subdomains [a, 0] , respectively (6, b |
and more, these both constants are inverse proportional with the lengths of the
mentioned intervals.

Respecting these restrictions we proved that the estimator W of 6, based on
the median index of the random variable X , is biased. The running outputs of a
stochastic simulation Monte Carlo procedure confirms the theoretical results.

Keywords : change point, estimation, Monte Carlo simulation, median index,
probability density function.
MSC2000 primary : 62F10 ; secondary : 62F12, 65C10, 62P10, 62P20, 62P25.

1. Introduction

Often in the molecular biology as well as in economy it is necessary to
determine the threshold 6 , a <8< b , which defines a change in the appearance
frequencies of some observed events ([6], [8], [9]).

Taking into consideration the restrictions imposed by this kind of
phenomena, we'll suppose that the random variable (r.v.) X with the support
[a,b] has a constant probability density function (p.d.f.) fo(x;0,a,b) on the
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subdomains [a,#] and (@,b]. More, the mentioned constants are inverse
proportional with the length of the subintervals [a, 8] , respectively (@, b].
Therefore, the r.v. X has the p.d.f. f((x;6,a,D) ,
1/[2(0—a)] ; when a<x<6
fO(x;H’a’b)z{l/[z(b—a)] - when 6<x<b
In this situation we'll write X ~ CUT(6,a,b).
To simplify the exposure we designate by CU(A) , 0<A<1 , the
standard distribution CUT(A,0,1).
So, the r.v. Y~CU(A) , 0<A<1, has the p.df. f(y;4), 0<y<1,

(1)

where
1/(22) ; for 0<x<A
f(y;ﬂ):{l/[Z(l—ﬂ)]  for A<x<1 @
In the subsequent, basing on the specific form of the median Mdn(X) ,
we'll propose an estimation 0 for the unknown threshold @ when there are known
n independent observations x;, x5, x3, ..., x, from X.

2. Estimating the threshold @

2.1. Some properties of the distribution CUT(6,a,b)

Proposition 1. The cumulative distribution function (c.d.f.) Fy(x;6,a,b)
ofther.v. X ~CUT(6,a,b) , a<8<b ,is given by the expression
x—a)/[2(60—-a ; for a<x<6
Fy(x;6,a,b) = (o) 120 ) 4 3)
(x+b-20)/[2(b-0)] ; for <x<b
Proof. Indeed, for any a <x < b it is obvious the equality
ﬂFO(x;H,a,b)_f (x:0.0.b)
0’7)6 - 0 xa aaa
Remark 1. Particularly, the r.v. Y ~CU(A) , 0<A<1 , has the c.d.f.
F(y;4),0<y<1,
v/ (24) ; when 0<y< A
F(y;A)= : 4
(y+1=-20)/12(1-2)] ; when A<y<l
Proposition 2. If X ~CUT(0,a,b) with a<@<b and
Y=(X-a)/(b—a) A=(@—-a)/(b-a) (5)
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then Y ~CU(A) .

Proof. Indeed, for any 0<y<1 we have
therefore

PriY<y)=Pr(X-a)/(b—a)<y)=
=Pr(X<a+(b-a)y)=F,(a+(b-a)y0,a,b)
Since a<X<b,a<O<b itresults 0<Y<1,0<A<1.
Case 1. 1If 0<y<A then a<a+(b—-a)y<a+(b—a)l=6 .So
PrY < )= Fy(a+(b—a)yi0,a,b)= -0~V =8 Y _ oo
T 2(0-a) 24 ’
O=a+(b—-a)l<a+(b—-a)y<b .

a<a+(b-a)y<bh and

Case 2. For A<y<1 we have
Therefore

Pr(Y<y)=F,(a+(b—-a)y;0,a,b)=
a+(b-a)y+b-26 +1-24
_arGay SR S N
2(b-6) 2(1-2)
We designate by Mdn(X) the median coefficient for the r.v. X .
Proposition 3. If X ~CUT(6,a,b) , a<0<b ,then
Mdn(X)=6
Proof- Indeed we have

(6)

0—a 1

Pr(X <0)=Fy(0;0,a,b)= 0-a)"2

Remark 2. In the subsequent, basing on Proposition 2, instead of the r.v.
X ~CUT(0,a,b) we'll study ther.v. Y ~CU(A).

More precisely, from Proposition 3 and formula (5) we obtain
Mdn(X)—a
Mdn(Y)=——""— (7)
b-a
Instead of the independent observations xj,x,,x3,...,x, regarding the
r.v. X we'll operate with the quantities
X;—a
Vi= b—a ~
which describe the behavior of the r.v. Y.

1<i<n

()
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2.2. The estimator W based on the median index

Applying Proposition 3 and considering n=2s+1 independent
observations yi, ya, ¥3, ..., Vog41 Of therv. Y , Y ~CU(A) , we obtain the

estimation 4 for the parameter 4 , 0<A<1,

A= Y(s+1) ©)
where y(;) , 1<i<2s+1 , are just the quantities y; arranged in an increased
order, that is

YA)SY@2)SYE) S-S V(sH) S-S V(2s4) (10)
So we get the estimator W, to evaluate the unknown value 4, 0<A<1,
W= Y(s+l) (11
where Y, 1<i< 2s +1 , are the order statistic of degree i attached to the r.v.

Y~CU(A).

The p.d.f. g(w;4,s) , 0<w<1 , for the r.v. W, has the expression (
Ciucu, Craiu, [1], p-40)
(2s+1)!

N N
gwidis) =" o S F e D) (1= Fovs ) S wi 2) (12)
After a straightforward calculus we deduce
S(2A4-w\" 1
KS(K) ( Wj — ; for 0sw<A
A A A
gw;d,s)= s s (13)
I% (w+1—2/1j (1—w) 1 ) d<w<l
U 1-2 —x) 1oz ¢ JorAsws
where
(25 +1)!
K = BHDL (14)

S22 gy (s

Proposition 4. Respecting the previous notations we have

Mean(W)=A+(1-A)cy (15)
with
. :(s+2)(s+3)(s+4)...(2s+1) (16)
22s+2 (s1)
Proof. Indeed
Mean(Wy) =K, (7 +7?) (17)

where
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¢ S22 Sd
- ey
A A A
0
( w+1-2A(1-w)® dw
12 =[5 () s
2 1-2 1-4/ 1-2
Using the substitution w=(1-1¢)4 we deduce

JO :—Jq(l—t)z(l—t)S(lu)S dz:zi(l—tz)sdz—ﬂj't(l—tz)sdz
1 0 0

(19)

Similarly, after the substitution w=A4+(1—A)v it results

TP = [(A+A=Ap)1+v) (1-v)dv =

0

- 1}(1 v av+(l —xl)j.v(l—vz)s dv (20)

From the formulas (17), (19) and (20) we finally get

Mean(Wy) = K (22) D +(1-24) 1) 1)

where
1 1
S S
JO=[(1-2) @ IO =[i(1-2) a 22)
0 0
The value of the expression J §3 ) can be computed recurrently. So
1
t=1 -1
+2sjt2(1 —tz)s di =
t=0 g

JB® :j.(l—tz)sdt:t(l—tz)s
0

1 1
-1
=25 [(1-2) arvas[(1-22) " dr =250 4255
0 0
More precisely
(3) (23)

2s
J ==
S 254178
Applying the formula (23) we'll prove inductively the equality

2s
2 D(s! 1
7O Z (sH(sH _ (24)
(2s+1)! 2K,
First, the formula (24) is true for s=1,
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1

SO~ [(1- ) -2 - 2000
0

Now, supposing that J§3 ) has the form (24) and applying the recurrent

relation (23) we'll verify the inductive hypothesis. So

() 2542 3 _2s+2 275 (sh(sh) 226 (54 1)1 (s +1)!

SH T 054+375 T 25437 (2s+1)! (25 +3)!
After using the variable transform v=1- t> we also have
1 0
1 1
J(4)=It 1-12 Sdt:——J Sdv = 25
s 0( ) 21V YT (25)

From the formulas (24)-(25) and respecting the notation (16), the

expression (21) becomes finally

1 1
Mean(W,) = Ks(2/12—KS +(1- 2/1)2(S N I)J =

KS
2(s+1

= A+(1-24) ):/1+(1—2,1)c5

Remark 3. Since ¢; >0 and 0<A <1, from the relation (15) it results

that the estimator W, overestimates the real value of the parameter 4 when

0<A<05 . Similarly, in the case 0.5< A <1, the parameter A is subestimated.
The estimator W is unbiased for 4 =05 .

The bias value B(s,A)=(1-2A4)c, of the estimator W depends on the

value of 4 and also on the size n=2s+1 of the sample used in the estimation
process.

More, the r.v. W is an absolutely correct estimator ([2], [5], [7]) since

Proposition 5. For any 0< A <1 we have

lim B(s,A)=0 (26)
§ —> 0
Proof. Since B(s,A)=(1-24)c, itis sufficient to show that
lim ¢g=c=0 27)
5§ —> 0
But for every natural number s are true the relations
>0 Cs+l _ M < (28)
K c, 2544

which imply the strict inequalities
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cp>cp>c3>..>cg>C >...>0 (29)

Therefore the string {c, }, , being bounded and monotone, is convergent
toavalue ¢>0.
It remains to prove that ¢=0.
Indeed, applying successively & times the equality (28) we deduce
(4k +1)(4k - 1)(4k - 3)...(2k +3)
2k T 4k 2) 4k )4k —2) ... 2k +4) K

So it results the inequality

4k +1)*
ew <) o
and hence
lim ¢y < lim (4k+1jk. lim ¢,
k— oo k— oo\4k +2 k— oo
that is
c<e 4 ¢

This last inequality don’t accept the variant ¢ >0 since in this hypothesis

we obtain the incompatible result 1< e V4, Having always ¢ > 0 it remains only
the alternative ¢ =0 , that is the relation (27) is true.

Remark 4. The string {c,}; decreases very slowly to the limit ¢=0 (
see Table 1).

Table 1
The values of the coefficients ¢ (formula (16))
S 1 2 3 4 5 6 7 8
o 0.1875 | 0.1563 | 0.1367 | 0.1231 | 0.1128 | 0.1047 | 0.0982 | 0.0927
S 9 10 15 20 25 30 35 40
c 0.0881 | 0.0841 | 0.0700 | 0.0612 | 0.0551 | 0.0505 | 0.0469 | 0.0439
s 45 50 75 100 125 150 175 200

c 0.0415 | 0.0394 | 0.0323 | 0.0280 | 0.0251 | 0.0229 | 0.0212 | 0.0199

s 250 300 350 400 500 600 700 800
c 0.0178 | 0.0163 | 0.0151 | 0.0141 | 0.0126 | 0.0115 | 0.0107 | 0.0100

s 900 1000 1500 2000 2500 3000 4000 5000
c 0.0094 | 0.0089 | 0.0073 | 0.0063 | 0.0056 [ 0.0051 | 0.0045 | 0.0040
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2.3. Monte Carlo simulations

Let U and V' be two independent r.v.-s, each of them having an uniform
distribution over the interval [0,1] .

Fixing an arbitrary value 0<A <1 we definether.v. Z; ,
{ AU ; daca V<05
ﬂ, =

A+(1-AU ; daca V>05 (30)

Proposition 6. Forany 0 <A <1 we have Z; ~CU(A).
Proof. Keeping the previous notations we'll show that for every 0<z <1 it
is true the equality
Pr(Z; <z)=F(z;A1)
Indeed
PrZ; <z)=Pr(AU<z,V<05U(A+(1-A)U<z,V>05))=
=Pr(AU<z,V<05)+Pr(A+(1-A)U<z,V>05)=
=Pr(AULz)Pr(V<05)+ Pr(A+(1-A)U<Lz) Pr(V >05)=
—lPr(U<£j +lPr(U< Z_/lj
2 A2 T 1-2
Case 1. If 0<x< A then

1 z 1 1(z
Pr(zﬂsZ)zgpr OSUSE +5Pr(U£O)=E 7 =F(z;1)

Case 2. In the situation A <x<1 we have
PrH(Z; <z) 1P(U<ZJ+1P(U<Z_/1)
7 <)==—PrlUL—|+=-PrlUZ< =

A=2=5 22 )

—lPr(O<U<1)+lP(0<U<Z_/1)—l+l(z_/1j—F( 1)
T EEEYTEE A ) T ) T

Proposition 6 can be used to generate an arbitrary sample
V15V25V3ses Vogu1 fromther.v. Y ~CU(A)(see also [3], [4]).

The following Monte Carlo algorithm permits us an empirical validation
of the biased property for W ( according to Proposition 4 ) and more to evaluate

the dispersion of the A estimations.
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Algorithm AMC ( Monte Carlo procedure to obtain an estimation y) ).

Step 0. Input: seN, (samplesize n=2s+1), 0<A<l1

Step 1. i=0

Step 2. i=i+1

Step 3. Generate two independent variates U, ) which are uniformly
Distributed over the interval [0, 1]

Step 4. ( Generate independent observations y; forther.v. Y ~CU(A) )
If V<05 then y; =AU

else y;=A+1-A)U

Step 5. If i<2s+1 then Goto Step 2

Step 6. ( Sort in an increasing order the values y; , 1<i<2s+1)
Obtain the sorted string  y(1) < ¥(2) < ¥(3) S-S V(541) S+ V(2541)

Step 7. ( Determine the estimation A for the parameter A )

A= Y(s+1)

Step 8. Output 1 . STOP.

Considering s=3 and A =025 , in Table 2 were listed the estimations p)
obtained by running 20 times the stochastic simulation algorithm AMC.

Graphic G1 represents the variation of the estimation values A listed in
Table 2.

Remark 5. Graphic G1 emphasizes the overevaluation of the estimations

A when A=025 ( see Remark 3 and formula (15) too ). The overevaluation
property is also confirmed practically by the inequality

j‘l +£2 +£3 +...+£20
20

where /fl , 1<i<20 , are the values presented in Table 2.

=029148>025=41 3D
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Table 2

The estimations A deduced by using the median of the sample yj,1<isn=7
(A =0.25, 20 simulations ).

g

Y, ¥z ¥s Y4 ¥s Ys y7 )

0.0894 | 0.8453 | 0.3327 | 0.0331 | 0.0337 | 0.0991 | 0.4308 | 0.0991
0.5433 | 0.0232 | 0.3697 | 0.2198 | 0.9935 | 0.2178 | 0.1240 | 0.2198
0.0152 | 0.3897 | 0.0308 | 0.5273 | 0.9170 | 0.0392 | 0.0583 | 0.0583
0.5477 | 0.3138 | 0.9773 | 0.1955 | 0.0489 | 0.7853 | 0.7278 | 0.5477
0.8860 | 0.7512 | 0.8655 | 0.6152 | 0.1604 | 0.1652 | 0.2345 | 0.6152
0.3182 | 0.1287 | 0.1813 | 0.2410 | 0.3708 | 0.0001 | 0.0688 | 0.1813
0.0235 | 0.8627 | 0.2669 | 0.8860 | 0.9663 | 0.1856 | 0.2210 | 0.2669
0.2946 | 0.2396 | 0.1041 | 0.5875 | 0.0979 | 0.5158 | 0.7381 | 0.2946
0.2082 | 0.1575 | 0.1355 | 0.8973 | 0.6042 | 0.1640 | 0.0328 | 0.1640
0.0096 | 0.4959 | 0.0784 | 0.5747 | 0.3884 | 0.1131 | 0.5351 | 0.3884
0.8209 | 0.5931 | 0.0335 | 0.0938 | 0.6130 | 0.0855 | 0.6887 | 0.5931
0.0409 | 0.6220 | 0.8546 | 0.7073 | 0.1530 | 0.0396 | 0.1401 | 0.1530
0.1961 | 0.2732 | 0.1396 | 0.3156 | 0.0648 | 0.2869 | 0.1366 | 0.1961
0.1592 | 0.0166 | 0.4368 | 0.7221 | 0.7313 | 0.5763 | 0.3220 | 0.4368
0.1364 | 0.0927 | 0.6586 | 0.0363 | 0.3010 | 0.3505 | 0.6361 | 0.3010
0.0301 | 0.0950 | 0.1003 | 0.5327 | 0.7526 | 0.3722 | 0.0935 | 0.1003
0.2789 | 0.5292 | 0.1988 | 0.0632 | 0.2420 | 0.5262 | 0.5329 | 0.2789
0.0459 | 0.9381 | 0.3177 | 0.2535 | 0.2392 | 0.7987 | 0.2446 | 0.2535
0.6950 | 0.4452 | 0.1591 | 0.6150 | 0.0315 | 0.5282 | 0.2340 | 0.4452
0.0323 | 0.2364 | 0.4964 | 0.0743 | 0.1727 | 0.5933 | 0.9111 | 0.2364
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3. Concluding remarks

We analyzed the behavior of the estimator W, proposed to evaluate the
threshold A ofther.v. Y ~CU(A1), 0<A<1.

Proposition 4 brings supplementary informations regarding the size of the
bias B(s,A) for the r.v. ;. Depending on the effective value of 1 we'll have an

overevaluation process ( when 0< A< 0.5 ) or an underevaluation in the case
05<A<1 (Remark 3).
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More, the bias B(s;A) tends to zero when is increased the volume
n=2s+1 of the sample {y;} <j<25+1 used to estimate the parameter 1 ( see
Proposition 5 ).

As function of the index s the string {B(s;4)},cy decreases very slowly

to zero ( Table 1).

The practical application of a Monte Carlo simulation procedure validates
the theoretical results ( to compare the estimation points in the graphic G1 and
view the inequality (31) ).

The distribution CUT(6,a,b) , a<6@<b , has multiple practical
interpretations in the study of some molecular processes and also for modeling
complex aspects from the economy.

0,7

estimations

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

current simulation

Graphic G1. Twenty estimations for the parameter A
(n=7, A=0.25, 20 simulations )
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