
U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 4, 2013 ISSN 1223-7027

WEAK AND STRONG CONVERGENCE THEOREMS OF
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In this paper, weak and strong convergence of two-step iteration sequences
to a common fixed point for a pair of a finite family of asymptotically nonexpansive
mappings and a finite family of generalized nonexpansive multivalued mappings in
a nonempty closed convex subset of uniformly convex Banach spaces are presented.
The results obtained in this paper extend and improve some recent known results.
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1. Introduction

Fixed point iteration process for nonexpansive and asymptotically nonexpan-
sive singlevalued mappings in Hilbert spaces and Banach spaces has been studied
extensively by many authors to solve nonlinear operator equation as well as varia-
tional inequalities, see e.g. [1-8] and the works referred there.

In recent years, approximation of fixed point of nonexpansive multivalued
mappings by iteration has been studied by many authors, (see [9-19]). The theory
of multivalued mappings has applications in control theory, convex optimization,
differential equations and economics. Recently, Eslamian and Abkar [20] proved the
existence of common fixed point for a pair consisting of a generalized nonexpansive
multivalued mapping and an asymptotically nonexpansive mapping in uniformly
convex Banach spaces. The purpose of this paper is to introduce a two-step iterative
process for approximating the common fixed points of a pair consisting of a finite
family of asymptotically nonexpansive mappings and a finite family of generalized
nonexpansive multivalued mappings and then prove weak and strong convergence
theorems for such iterative process in uniformly convex Banach spaces. The results
obtained in this paper extend and improve some recent known results.
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2. Preliminaries

Recall that a Banach space X is said to be uniformly convex if for each t ∈
[0, 2], the modulus of convexity of X given by:

δ(t) = inf{1− 1

2
∥x+ y∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ t}

satisfies the inequality δ(t) > 0 for all t > 0. A Banach space X is said to satisfy
Opial’s condition if xn → z weakly as n → ∞ and z ̸= y imply that

lim supn→∞∥xn − z∥ < lim supn→∞∥xn − y∥.
All Hilbert spaces, all finite dimensional Banach spaces and ℓp(1 ≤ p < ∞) have the
Opial property.

A subset D ⊂ X is called proximinal if for each x ∈ X, there exists an element
y ∈ D such that

∥ x− y ∥= dist(x,D) = inf{∥ x− z ∥: z ∈ D}.
We denote by CB(D),K(D) and P (D) the collection of all nonempty closed bounded
subsets, nonempty compact subsets, and nonempty proximinal bounded subsets of
D respectively. The Hausdorff metric H on CB(X) is defined by

H(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(X).
Let T : X → 2X be a multivalued mapping. An element x ∈ X is said to be a fixed
point of T , if x ∈ Tx. The set of fixed points of T will be denoted by F (T ).

Definition 2.1. A multivalued mapping T : X → CB(X) is called

(i) nonexpansive if

H(Tx, Ty) ≤ ∥x− y∥, x, y ∈ X.

(ii) quasi nonexpansive if F (T ) ̸= ∅ and H(Tx, Tp) ≤∥ x− p ∥ for all x ∈ X and
all p ∈ F (T ).

In [21], Garcia-Falset, Llorens-Fuster and Suzuki, introduced a new condition
on singlevalued mappings, called condition (E), which is weaker than nonexpan-
siveness. Very recently, Abkar and Eslamian [22] used a modified condition for
multivalued mappings as follows:

Definition 2.2. A multivalued mapping T : X → CB(X) is said to satisfy condition
(Eµ) provided that

dist(x, Ty) ≤ µdist(x, Tx) + ∥x− y∥, x, y ∈ X.

We say that T satisfies condition (E) whenever T satisfies (Eµ) for some µ ≥ 1.

Lemma 2.1. Let T : X → CB(X) be a multivalued nonexpansive mapping, then T
satisfies the condition (E1).

Lemma 2.2. ( [19]) Let X be a uniformly convex Banach space and let Br(0) =
{x ∈ X :∥ x ∥≤ r}, for r > 0. Then there exists a continuous, strictly increasing
convex function φ : [0,∞) → [0,∞) with φ(0) = 0 such that

∥a1x1 + a2x2 + · · ·+ akxk∥2 ≤ a1∥x1∥2 + a2∥x2∥2 + · · ·+ ak∥xk∥2 − aiajφ(∥xi − xj∥)
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for all xi, xj ∈ Br(0) and ai, aj ∈ [0, 1] for i, j = 1, 2, · · · , k and
∑k

i=1 ai = 1.

Lemma 2.3. ( [7]) Let {an}, {bn} and {δn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn.

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞ an exists. In particular , if {an}
has a subsequence converging to 0, then limn→∞ an = 0.

Definition 2.3. ([23]) Let D be a nonempty convex subset of a Banach space X.
A map f : D → D is called asymptotically nonexpansive if there exists a sequence
{kn} of real numbers with {kn} ≥ 1 and limn→∞kn = 1 such that

∥fnx− fny∥ ≤ kn∥x− y∥

for all x, y ∈ D and all n ≥ 1.

Lemma 2.4. ([9]) Let X be a uniformly convex Banach space, D be a nonempty
closed convex subset of X, and f : D → D be an asymptotically nonexpansive
mapping. If xn → x weakly and xn − fxn → 0 strongly, then x = fx.

3. Main results

We are interested in sequences in the following process.
(A): Let X be a Banach space, D be a nonempty convex subset of X and
Ti : D → CB(D) and fi : D → D (i = 1, 2, ...,m) be finite given mappings. Then,
for x0 ∈ D, we consider the following iterative process:

yn = bn,0xn + bn,1zn,1 + bn,2zn,2 + · · ·+ bn,mzn,m, n ≥ 0,

xn+1 = an,0xn + an,1f
n
1 yn + an,2f

n
2 yn + · · ·+ an,mfn

myn, n ≥ 0,

where zn,i ∈ Ti(xn) and {an,k}, {bn,k} are sequences of numbers in [0,1] such that
for every natural number n

m∑
k=0

an,k =

m∑
k=0

bn,k = 1.

Definition 3.1. A mapping T : D → CB(D) is said to satisfy condition (I) if
there is a non decreasing function g : [0,∞) → [0,∞) with g(0) = 0, g(r) > 0 for
r ∈ (0,∞) such that

dist(x, T (x)) ≥ g(dist(x, F (T ))).

A family {Ti : D → CB(D), i = 1, ...,m} is said to satisfy condition (II) if there is
a non decreasing function g : [0,∞) → [0,∞) with g(0) = 0, g(r) > 0 for r ∈ (0,∞)
such that for some i = 1, ..,m,

dist(x, Ti(x)) ≥ g(dist(x,

m∩
i=1

F (Ti))).

In this sequel, F =
∩m

i=1(F (Ti)
∩

F (fi)) is the set of all common fixed points of the
mappings fi and Ti for i = 1, 2, · · · ,m.
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Theorem 3.1. Let D be a nonempty closed convex subset of a uniformly convex
Banach space X. Let Ti : D → CB(D), (i = 1, 2, · · · ,m) be a finite family of quasi-
nonexpansive multivalued mappings, and fi : D → D, (i = 1, 2, · · · ,m) be a finite
family of asymptotically nonexpansive mappings with sequence {kn,i} ⊂ [1,∞) such
that

∑∞
n=1(kn − 1) < ∞, where kn = max{kn,i; 1 ≤ i ≤ m}. Assume that F ̸= ∅

and Ti(p) = {p}, (i = 1, 2, · · · ,m) for each p ∈ F . Let {xn} be the iterative process
defined by (A), and an,k, bn,k ∈ [a, 1) ⊂ (0, 1) for k = 0, 1, · · · ,m. Then

(i) limn→∞ ∥xn − p∥ exists for all p ∈ F ,
(ii) limn→∞ dist(Ti(xn), xn) = limn→∞ ∥fixn − xn∥ = 0, (i = 1, ...,m.)

Proof. Let p ∈ F . Then, we have

∥yn − p∥ = ∥bn,0xn + bn,1zn,1 + bn,2zn,2 + · · ·+ bn,mzn,m − p∥
≤ bn,0∥xn − p∥+ bn,1∥zn,1 − p∥+ bn,2∥zn,2 − p∥+ ...+ bn,m∥zn,m − p∥

= bn,0∥xn−p∥+bn,1dist(zn,1, T1(p))+bn,2dist(zn,2, T2(p))+...+bn,mdist(zn,m, Tm(p))

≤ bn,0∥xn−p∥+bn,1H(T1(xn), T1(p))+bn,2H(T2(xn), T2(p))+...+bn,mH(Tm(xn), Tm(p))

≤ bn,0∥xn − p∥+ bn,1∥xn − p∥+ bn,2∥xn − p∥+ ...+ bn,m∥xn − p∥ = ∥xn − p∥.

It follows that

∥xn+1 − p∥ = ∥an,0xn + an,1f
n
1 yn + an,2f

n
2 yn + ...+ an,mfn

myn − p∥
≤ an,0∥xn − p∥+ an,1∥fn

1 yn − p∥+ an,2∥fn
2 yn − p∥+ ...+ an,m∥fn

myn − p∥
≤ an,0∥xn − p∥+ an,1kn,1∥yn − p∥+ an,2kn,2∥yn − p∥+ ...+ an,mkn,m∥yn − p∥
≤ an,0∥xn − p∥+ an,1kn∥xn − p∥+ an,2kn∥xn − p∥+ ...+ an,mkn∥xn − p∥

≤ (1 + (kn − 1))∥xn − p∥.

Since
∑∞

n=1(kn−1) < ∞ , by lemma 2.5 we have limn→∞ ∥xn−p∥ exists for all p ∈ F .
Since the sequences {xn} and {yn} are bounded, we can find r > 0 depending on p
such that xn − p, yn − p ∈ Br(0) for all n ≥ 0. From Lemma 2.4, for i = 1, 2, ...,m,
we obtain that

∥yn − p∥2 = ∥bn,0xn + bn,1zn,1 + bn,2zn,2 + ...+ bn,mzn,m − p∥2

≤ bn,0∥xn − p∥2 + bn,1∥zn,1 − p∥2 + bn,2∥zn,2 − p∥2 + ...

+ bn,m∥zn,m − p∥2 − bn,0bn,iφ(∥xn − zn,i∥)
= bn,0∥xn − p∥2 + bn,1dist(zn,1, T1(p))

2 + bn,2dist(zn,2, T2(p))
2 + ...

+ bn,mdist(zn,m, Tm(p))2 − bn,0bn,iφ(∥xn − zn,i∥)
≤ bn,0∥xn − p∥+ bn,1H(T1(xn), T1(p))

2 + bn,2H(T2(xn), T2(p))
2 + ...

+ bn,mH(Tm(xn), Tm(p))2 − bn,0bn,iφ(∥xn − zn,i∥)
≤ bn,0∥xn − p∥2 + bn,1∥xn − p∥2 + bn,2∥xn − p∥2 + ...

+ bn,m∥xn − p∥2 − bn,0bn,iφ(∥xn − zn,i∥)
= ∥xn − p∥2 − bn,0bn,iφ(∥xn − zn,i∥).
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It follows from Lemma 2.4 that

∥xn+1 − p∥2 = ∥an,0xn + an,1f
n
1 yn + an,2f

n
2 yn + ...+ an,mfn

myn − p∥2

≤ an,0∥xn − p∥2 + an,1∥fn
1 yn − p∥2 + an,2∥fn

2 yn − p∥2 + ...

+ an,m∥fn
myn − p∥2 − an,0an,iφ(∥xn − fn

i yn∥)
≤ an,0∥xn − p∥2 + an,1k

2
n,1∥yn − p∥2 + an,2k

2
n,2∥yn − p∥2 + ...

+ an,mk2n,m∥yn − p∥2 − an,0an,iφ(∥xn − fn
i yn∥)

≤ an,0∥xn − p∥2 + an,1k
2
n∥xn − p∥2 + an,2k

2
n∥xn − p∥2 + ...+ an,mk2n∥xn − p∥2

− an,0an,iφ(∥xn − fn
i yn∥)− an,ibn,0bn,ik

2
nφ(∥xn − zn,i∥)

≤ (1+ (k2n − 1))∥xn − p∥2 − an,0an,iφ(∥xn − fn
i yn∥)− an,ibn,0bn,ik

2
nφ(∥xn − zn,i∥).

So we have

a3φ(∥xn − zn,i∥) ≤ an,ibn,0bn,ik
2
nφ(∥xn − zn,i∥)

≤∥ xn − p ∥2 − ∥ xn+1 − p ∥2 +(k2n − 1))∥xn − p∥2,
which implies that

∞∑
n=1

a3φ(∥xn − zn,i∥) ≤ ∥x1 − p∥2 +

∞∑
n=1

(k2n − 1))∥xn − p∥2 < ∞,

from which it follows that limn→∞ φ(∥xn − zn,i∥) = 0. Similarly it can be shown
that limn→∞ φ(∥xn − fn

i yn)∥ = 0. From Lemma 2.4, since φ is continuous at 0 and
is strictly increasing, we have

lim
n→∞

∥xn − zn,i∥ = lim
n→∞

∥xn − fn
i yn∥ = 0.

Moreover for i = 1, 2, ...,m, we get dist(xn, Tixn) ≤ ∥xn − zn,i∥ → 0 as n → ∞.
Using (A) we have

lim
n→∞

∥yn−xn∥ = lim
n→∞

(bn,1∥zn,1−xn∥+ bn,2∥zn,2−xn∥+ ...+ bn,m∥zn,m−xn∥) = 0,

and

lim
n→∞

∥xn+1−xn∥ = lim
n→∞

(an,1∥fn
1 yn−xn∥+an,2∥fn

2 yn−xn∥+...+an,m∥fn
myn−xn∥) = 0.

Also we have

∥xn − fn
i xn∥ ≤ ∥xn − fn

i yn∥+ ∥fn
i yn − fn

i xn∥
≤ ∥xn − fn

i yn∥+ kn∥yn − xn∥ → 0 n → ∞,

and

∥xn+1 − fn
i xn+1∥ ≤ ∥xn+1 − xn∥+ ∥xn − fn

i xn∥+ ∥fn
i xn+1 − fn

i xn∥
≤ ∥xn+1 − xn∥+ ∥xn − fn

i xn∥+ kn∥xn+1 − xn∥ → 0.

Hence

∥xn+1 − fixn+1∥ ≤ ∥xn+1 − fn+1
i xn+1∥+ ∥fn+1

i xn+1 − fixn+1∥
≤ ∥xn+1 − fn+1

i xn+1∥+ k1∥fn
i xn+1 − xn+1∥ → 0 as n → ∞,
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which implies

lim
n→∞

∥fixn − xn∥ = 0 i = 1, 2, ...,m.

�

Theorem 3.2. Suppose that X,D, fi, Ti(i = 1, 2, ...,m) are as in theorem 3.2 with
F ̸= ∅ and Ti(p) = {p}, (i = 1, 2, · · · ,m) for each p ∈ F . Let {xn} be the iterative
process defined by (A), and an,k, bn,k ∈ [a, 1) ⊂ (0, 1) for k = 0, 1, · · · ,m. Then {xn}
converges strongly to a common fixed point of Ti and fi ,i = 1, 2, · · · ,m if and only
if lim infn→∞ dist(xn,F) = 0.

Proof. Necessity it obvious. Conversely, suppose that limn→∞ infdist(xn,F) = 0.
As in Theorem 3.2, we have

∥xn+1 − p∥ ≤ (1 + (kn − 1))∥xn − p∥,

for all p ∈ F . This implies that

dist(xn+1,F) ≤ (1 + (kn − 1))dist(xn+1,F)

Since
∑∞

n=1(kn − 1) < ∞ , by lemma 2.5 we have limn→∞dist(xn,F) exists. Thus
limn→∞dist(xn,F) = 0. Therefore there exists a subsequence {xnk

} of {xn} and a
sequence {pk} in F such that ∥xnk

− pk∥ < 1
2k

for all k. Let θn = (kn − 1)∥xn − p∥
(note that

∑∞
i=1 θn < ∞). Then we get

∥xnk+1
− p∥ ≤ ∥xnk+1−1 − p∥+ θnk+1−1

≤ ∥xnk+1−2 − p∥+ θnk+1−2 + θnk+1−1

≤
...

≤ ∥xnk
− p∥+

nk+1−nk−1∑
i=1

θnk+i

for all p ∈ F . This implies that

∥xnk+1
− p∥ ≤ ∥xnk

− pk∥+
nk+1−nk−1∑

i=1

θnk+i

≤ 1

2k
+

nk+1−nk−1∑
i=1

θnk+i.

Now, we show that{pk} is Cauchy sequence in D. Note that

∥pk+1 − pk∥ ≤ ∥pk+1 − xnk+1
∥+ ∥xnk+1

− pk∥

<
1

2k+1
+

1

2k
+

nk+1−nk−1∑
i=1

θnk+i

<
1

2k−1
+

nk+1−nk−1∑
i=1

θnk+i,
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which implies that {pk} is Cauchy sequence in D and hence converges to q ∈ D.
Since for each i = 1, 2, · · · ,m

dist(pk, Ti(q)) ≤ H(Ti(pk), Ti(q)) ≤∥ q − pk ∥
and pk → q as k → ∞, it follows that dist(q, Ti(q)) = 0. Also, by continuity of fi
for i = 1, 2, ...,m we have

∥pk − fi(pk)∥ → ∥q − fi(q)∥.
Hence ∥q − fi(q)∥ = 0 which implies that q ∈ fiq. Therefore q ∈ F and {xnk

} con-
verges strongly to q. Since limn→∞ ∥xn−q∥ exists, we conclude that {xn} converges
strongly to q. This complete proof. �
Theorem 3.3. Suppose that X,D, fi, Ti(i = 1, 2, ...,m) are as in theorem 3.2 with
F ̸= ∅ and Ti(p) = {p}, (i = 1, 2, · · · ,m) for each p ∈ F . Let {xn} be the iterative
process defined by (A), and an,k, bn,k ∈ [a, 1) ⊂ (0, 1) for k = 0, 1, · · · ,m. If the
mappings {Ti, fi : i = 1, 2, ...,m} satisfy the condition (II), Then {xn} converges
strongly to a common fixed point of Ti and fi for i = 1, 2, · · · ,m.

Proof. By Theorem 3.2, for i = 1, 2, ...,m, we have

lim
n→∞

dist(Ti(xn), xn) = lim
n→∞

∥fixn − xn∥ = 0.

Since the mappings {Ti, fi; i = 1, 2, ...,m} satisfying the condition (II), we get
limn→∞ dist(xn,F) = 0. The conclusion now follows from Theorem 3.3. �
Theorem 3.4. Let D be a nonempty compact convex subset of a uniformly convex
Banach space X. Let Ti : D → CB(D), (i = 1, 2, · · · ,m) be a finite family of
quasi-nonexpansive multivalued mappings satisfying the condition (E), and fi : D →
D, (i = 1, 2, · · · ,m) be a finite family of asymptotically nonexpansive mappings with
sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞, where kn = max{kn,i : 1 ≤

i ≤ m}. Assume that F ̸= ∅ and Ti(p) = {p}, (i = 1, 2, · · · ,m) for each p ∈ F .
Let {xn} be the iterative process defined by (A), and an,k, bn,k ∈ [a, 1) ⊂ (0, 1) for
k = 0, 1, · · · ,m. Then {xn} converges strongly to a common fixed point of Ti and fi
for i = 1, 2, · · · ,m.

Proof. By Theorem 3.2, we have for i = 1, 2, ...,m

lim
n→∞

dist(Ti(xn), xn) = lim
n→∞

∥fixn − xn∥ = 0.

Since D is compact, there exists a subsequence {xnk
} of {xn} such that limxnk

= w
for some w ∈ D. By condition (E), there exists µ ≥ 1 such that for i = 1, 2, ...,m

dist(w, Tiw) ≤ ∥w − xnk
∥+ dist(xnk

, Tiw)

≤ µdist(xnk
, Tixnk

) + 2∥w − xnk
∥ → 0 as k → ∞,

this implies that w ∈ F (Ti). Also, by continuity of the mappings fi (i = 1, 2, ...,m)
we have

∥xnk
− fixnk

∥ → ∥w − fiw∥ as k → ∞,

hence w ∈ F (fi). Since {xnk
} converges strongly to w and limn→∞ ∥xn − w∥ exists

( by Theorem 3.2), it follows that {xn} converges strongly to w. �
By similar method as in [[19] , Theorem 3.3], we can prove the following

Lemma. However we omit the details of proof.
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Lemma 3.1. Let D be a nonempty closed convex subset of a uniformly convex Ba-
nach space X with the Opial property. Suppose that T : D → K(D) is a multivalued
mappings satisfying the condition (E). If xn → v weakly and lim distn→∞(xn, Txn) =
0, then v ∈ Tv.

Theorem 3.5. Let D be a nonempty closed convex subset of uniformly convex Ba-
nach space X with the Opial property. Let Ti : D → K(D), (i = 1, 2, · · · ,m) be
a finite family of quasi-nonexpansive multivalued mappings satisfying the condition
(E), and fi : D → D, (i = 1, 2, · · · ,m) be a finite family of asymptotically nonex-
pansive mappings with sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn−1) < ∞, where

kn = max{kn,i : 1 ≤ i ≤ m}. Assume that F ̸= ∅ and Ti(p) = {p}, (i = 1, 2, · · · ,m)
for each p ∈ F . Let {xn} be the iterative process defined by (A), and an,k, bn,k ∈
[a, 1) ⊂ (0, 1) for k = 0, 1, · · · ,m. Then {xn} converges weakly to a common fixed
point of Ti, fi, for i = 1, 2, · · · ,m.

Proof. By Theorem 3.2, {xn} is an approximate fixed point sequence of Ti and fi
for i = 1, 2, ...,m, that is

lim
n→∞

dist(xn, Tixn) = lim
n→∞

∥fixn − xn∥ = 0.

Also limn→∞ ∥xn − w∥ exists for all w ∈ F . Thus {xn} is bounded. Since X is
uniformly convex, it is reflexive, so that we can assume that xn → q weakly as
n → ∞ for some q ∈ D. By Lemma 3.6 and 2.7 we have q ∈ F . Now we prove
that {xn} has a unique weak subsequential limit in F . To prove this, let w and
v be weak limits of the subsequence {xnk

} and {xnm} of {xn}, respectively and
v ̸= w. By Lemma 3.6 and 2.7, w, v ∈ F , and hence by Theorem 3.2, the limits
limn→∞ ∥xn − w∥ and limn→∞ ∥xn − v∥ exists. Then by Opial’s property,

lim
n→∞

∥xn − w∥ = lim
nk→∞

∥xnk
− w∥

< lim
nk→∞

∥xnk
− v∥ = lim

n→∞
∥xn − v∥

= lim
nm→∞

∥xnm − v∥ < lim
nm→∞

∥xnm − w∥

= lim
n→∞

∥xn − w∥

which is a contradiction. Therefore {xn} converges weakly to a point in F . �

We now intend to remove the restriction that Ti(p) = p for each p ∈ F . We
define the following iteration process.
(B): Let Ti : D → P (D) (i = 1, 2, ...,m) be a finite family of given multivalued
mappings and

PTi(x) = {y ∈ Ti(x) :∥ x− y ∥= dist(x, Ti(x))}.

For fixed x0 ∈ D we consider the iterative process defined by:

yn = bn,0xn + bn,1zn,1 + bn,2zn,2 + · · ·+ bn,mzn,m, n ≥ 0,

xn+1 = an,0xn + an,1f
n
1 yn + an,2f

n
2 yn + · · ·+ an,mfn

myn, n ≥ 0
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where zn,i ∈ PTi(xn) and {an,k}, {bn,k} are sequences of numbers in [0,1] such that
for every natural number n

m∑
k=0

an,k =

m∑
k=0

bn,k = 1.

We note that if T : D → P (D) is a multivalued mapping, then F (T ) = F (PT ) and
for all p ∈ F (T ), PT (p) = {p}.

Remark 3.1. All of the above results holds, if we assume T ;D → P (D) is a mul-
tivalued mapping, which PT is quasi-nonexpansive.

Remark 3.2. A mapping T : C → CB(C) is ⋆-nonexpansive [24] if for all x, y ∈ C
and ux ∈ Tx with d(x, ux) = inf{d(x, z) : z ∈ Tx}, there exists uy ∈ Ty with
d(y, uy) = inf{d(y, w) : w ∈ Ty} such that

d(ux, uy) ≤ d(x, y).

By the definition of the Hausdorff metric, we obtain that if T is ⋆-nonexpansive,
then PT is nonexpansive. It is known that ⋆-nonexpansiveness is different from
nonexpansiveness for multivalued maps, (see [25] for details).
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