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HYPERBOLIC FOUR VARIABLE REFINED SHEAR
DEFORMATION THEORY FOR MECHANICAL BUCKLING
ANALYSIS OF FUNCTIONALLY GRADED PLATES

Abderranmane BOUCHETA!, Mokhtar BOUAZZA? , Tawfiq BECHERI 3,
Noureddine BENSEDDIQ*

Buckling behavior of a thick rectangular plate made of functionally graded
materials is investigated in this article. The material properties of the plate are
assumed to vary continuously through the thickness of the plate according to a
power-law distribution. The plate is assumed to be under three types of mechanical
loadings, namely; uniaxial compression, biaxial compression, and biaxial
compression and tension. The governing stability equations are derived based on the
new four variable refined shear deformation theory. Unlike any other theory, the
number of unknown functions involved is only four, as against five in case of other
shear deformation theories. The theory takes into account the transverse shear
effects and parabolic distribution of the transverse shear strains through the
thickness of the plate, hence it is unnecessary to use shear correction factors. The
resulted stability equations are decoupled and solved analytically for the
functionally graded rectangular plates being simply supported and subjected to
different types of mechanical loadings. A comparison of the present results with
those available in the literature is carried out to establish the accuracy of the
presented analytical method. The effects of the volume fraction exponent of the
functionally graded material, plate thickness, aspect ratio and mechanical loading
conditions on the critical buckling of aluminum/alumina functionally graded
rectangular plates are investigated and discussed in detail.

Keywords: Mechanical buckling, Functionally graded plate, Thick rectangular
plate, New four variable refined shear deformation theory, Analytical
solution.

1. Introduction

Recent advances in material processing technology have led to a new class
of materials called functionally graded materials (FGMs). FGMs are composites
whose composition and microstructure vary continuously in some spatial
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directions. The advantage of FGMs is that no distinct internal boundaries exist
and failures from interfacial stress concentrations developed in conventional
structure components can be avoided. Featuring gradual transitions in
microstructure and composition, they are designed to meet functional performance
requirements varying with location within a structure component and to optimize
the overall performance of the component. As a new concept of material design
FGMs have found various available or potential applications in industries [1, 2].
Many works on FGM structures have been studied in literature. For example, Vel
and Batra [3] have proposed a three-dimensional solution for free vibration of FG
rectangular plates. Reddy [4] has analyzed the static behavior of FG rectangular
plates based on his third-order shear deformation plate theory. Reddy and Cheng
[5] have presented a three-dimensional model for an FG plate subjected to
mechanical and thermal loads, both applied at the top of the plate. Park and Kim
[6] studied thermal postbuckling and vibration of simply supported FGM plates
with temperature-dependent materials properties by using finite element method.
Bouazza et al. [7] used the first-order shear deformation theory to derive closed-
form relations for buckling temperature difference of simply supported
moderately thick rectangular power-law (linear, quadratic, cubic, and inverse
quadratic) functionally graded plates. Bouazza et al. [8] presented the derivation
of equations for mechanical buckling of rectangular thin functionally graded
plates under uniaxial and biaxial compression using classical plate theory.
Mohammadi et al. [9] investigated the buckling behavior of functionally graded
material plate under different loading conditions based on the classical plate
theory (Levy solution); the governing equations are obtained for functionally
graded rectangular plates using the principle of minimum total potential energy.

Zenkour [10] derived the exact solution for FGM plates using generalized
sinusoidal shear deformation theory and presented numerical results on
displacement and stress response of FGM plates under uniform loading. Ying et
al. [11] used a semi-analytical method to study thermal deformations of FG thick
plates and the analysis is directly based on the 3D theory of elasticity. Yang and
Shen [12] studied the postbuckling behavior of FGM thin plates under fully
clamped boundary conditions. This work was then extended to the case of shear
deformable FGM plates with various boundary conditions and various possible
initial geometric imperfections by Yang et al. [13]. Woo et al. [14] studied the
postbuckling behavior of FGM plates and shallow shells under edge compressive
loads and a temperature field based on the higher order shear deformation theory.
Javaheri and Eslami [15-18] presented the thermal and mechanical buckling of
rectangular FGM plates based on the first- and higher-order plate theories. Three-
dimensional deformations of a simply supported FG rectangular plate subjected to
mechanical and thermal loads on its top and/or bottom surfaces have been
analyzed by Vel and Batra [19].
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Recently, a two variable refined plate theory (RPT) was first developed for
isotropic plates by Shimpi [20], and was extended to orthotropic plates by Shimpi
and Patel [21,22]. Kim et al [23], and Thai and Kim [24] have studied laminated
composite plates using this theory. Mechab et al. [25] have developed this theory
for the FGM plates. Benachour et al. [26] presented analytical solution for free
vibrations of FG plates using this theory. Thai and Choi [27] developed the
efficient and simple refined theory for buckling analysis of functionally graded
plates. EI Meiche et al. [28] proposed a new hyperbolic shear deformation theory
for buckling and vibration analysis of functionally graded sandwich plates.
Piscopo [29] also investigated refined buckling analysis of rectangular plates
under uniaxial and biaxial compression. Hassaine Daouadji et al. [31] used a
higher order theory which involves only four degrees of freedom for bending
analysis of functionally graded plates. Bouhadra et al [32] studied the thermal
buckling response of functionally graded plates with clamped boundary
conditions using refined plate theory. Bellifa et al [33] used a new first-order
shear deformation theory for bending and free vibration analysis of functionally
graded plates using a simple shear deformation theory and the concept the neutral
surface position.

To the best of authors’ knowledge, there are no research works for
mechanical buckling analysis of functionally graded rectangular plates based on
new four variable refined shear deformation theory. In this work, the application
of a hyperbolic four-variable refined theory is extended for the FGM plates. For
this purpose, the constitutive relations of buckling and vibration analysis of
functionally graded sandwich plates are developed using four variable refined
plate theory [28]. The novelty of this paper is the use of new four variable refined
plate theory for mechanical buckling analysis of plates made of functionally
graded materials. Unlike any other theory, the number of unknown functions
involved is only four, as against five in case of other shear deformation theories.
The theory presented is variationally consistent and does not require a shear
correction factor. Introducing an analytical approach, the governing stability
equations of functionally graded plates are decoupled and solved for a FGM
rectangular plate with simply supported under different mechanical loads. The
obtained results are compared with existing data in the literature. Moreover,
mechanical loading conditions and geometric parameters of plate influence on the
critical buckling of the FGM rectangular plate is comprehensively investigated.
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2. Problem formulation
2.1 Material properties

Consider a rectangular plate of total thickness h. The FGM plate is made
of aluminium and alumina, the material properties of the FGM such as material
properties vary continuously across the thickness according to the following
equations, which are the same as the equations proposed by Reddy [4]:

E(z)=E, +E,_, (z/h+1/2)" E., =E. —E, 1)

v(z)=v,
where Em denote the elastic moduli of metal; Ec denote the elastic moduli of
ceramic . z is the thickness coordinate variable; and —h/2 <z <h/2, where k is
the power law index that takes values greater than or equals to zero

For simplicity, Poisson’s ratio of the plate is assumed to be constant in this

study for that the effect of Poisson’s ratio on deformation is much less than that of
Young’s modulus [33].

2.2. Present new hyperbolic shear deformation theory

The displacement field, which accounts for parabolic variation of
transverse shear stress through the thickness, and satisfies the zero traction
boundary conditions on the top and bottom faces of the plate using hyperbolic
four variable refined shear deformation theory, is assumed as follows :

(h/z)sinh (ﬂ- zj_ 7
U(x,y,2)=uy(x,y)—z 20 — h ow,
OX [cosh(z/2)-1] | éx

(h/ﬁ)Sinh[ﬁZ)—Z
. ow, h ow, (2)
Viy.2)=valy) -2 o T [y

W(x,y,2)=w, (x,y)+w,(x y)
where, u and v denote the displacements along the x and y coordinate directions of
a point on the midplane of the plate ; the transverse displacement W includes two
components of bending w, and shear w, . Both these components are functions of

coordinates x and y.

It should be noted that unlike the first-order shear deformation theory, this
theory does not require shear correction factors. The kinematic relations can be
obtained as follows:
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(h/z)sinh| 2z |-z
df( ) h

2)=1-1'(2),f'(2) = = .
9(z) (2),f'(2) = f(2)= [cosh(z/2)~1] (4)
The linear constitutive relatlons of a FGM plate can be written as:
O-X _Qll Q12 0 0 0 ] gx

9y | |Qp Qp 0 0 0 &
O-Xy = O O QGG 0 0 }/Xy (5)
O-yz O O 0 Q44 0 yyz
Oy L 0 0 0 0 Q55— Y xa

The strain energy of the plate can be written as

U= _[/a”g dVv = L(ngx +0,6,+ 0.7y T0,Vyp t 00y )dV (6)

The principle of virtual work for the present problem may be expressed as
follows:

[ IN,Ge + N Ged + N, 675 + MESKE + MEK® + MEKD +M kS

Xy "N xy
+ MK+ M3KS, +Q,75 +Qq 7 Jaxdy =0 o
where (N,,N,,N, ) denote the total in-plane force resultants, (M;,M/,M?),

(M:,M>, M7 )denote the total moment resultants of bending total moment

resultants of shear, respectively, and (Q,,,Q,) are transverse shear stress

resultants, show a Fig. 1 with the system of axes and force resultants and they are
defined as:
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Fig. 1 Internal forces and moments of the FGM plate.
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Substituting Eq. (5) into Eqg. (8) and integrating through the thickness of
the plate, the stress resultants are given as:

N} [A] [B] [B°] )
}Mb}: 8] [o] [o°]{k") ©)

mel| [[B*] o] [He )]s
Qu|_[AL 0 |7y
{sz } _|: 0 A5S5 7)?2 (10)
where A;,B;;, etc. are the plate stiffness of extensional stiffness matrix , coupling

stiffness matrix, defined by
(A;B,.D, B}, D H) = [ Q. 2.2%, f(2) 2 @), (T@))dz (i,i=126) (17

A= Q@) d  Gj=45)

The stability equations of the plate may be derived by the adjacent
equilibrium criterion. Assume that the equilibrium state of the FGM plate under
mechanical loads is defined in terms of the displacement

components (u, vy ,w,wl). The displacement components of a neighboring
stable state differ by (ug,vg,w;,w:) with respect to the equilibrium position.
Thus, the total displacements of a neighboring state are:
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Uy =UgJ +Ug, Vo =Vo +Vg, W, =W, +W,, W, =W’ +W, (12)

where the superscript 1 refers to the state of stability and the superscript O refers
to the state of equilibrium conditions.

Substituting Equations (3) and (12) into Equation (7) and integrating by
parts and then equating the coefficients of ~ dug, &v;, Swfand  Sw. to zero,
separately, the governing stability equations are obtained for the new four variable
refined shear deformation theory as

N! ON;
0 r+—2=0

OX oy

aNg_+aN;::0

ox oy (13)
2 bl 2 b1l
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with

+N =0

0" (W, +W;)
2

0° (W, +W;)
2

0° (W, +Ww;)

N=N?
ox oy

+NJ +2Ny (14)

The following approximate solution is seen to satisfy both the differential
equation and the boundary conditions

U U cosAxsin uy
Vo | &S | Vg, sin Axcos
w _;nzﬂl W2 sin Axsin | (15)
w! W, sin Axsin uy
where
U Vi W. W! are arbitrary parameters to be determined and

A=mzx/a and g=nzx/b.

The pre-buckling forces can be obtained using the equilibrium conditions
as [8, 9]

N2=§1N0, N3:§2N0’ Nx8:O7 (16)
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where N, is the force per unit length, & and &, are the load parameter which

indicate the loading conditions. Negative values for & and &, indicate that plate
is subjected to biaxial compressive loads while positive values are used for tensile
loads. Also, zero value for & or &, shows uniaxial loading in x or y directions,
respectively.

3. Results and discussion

In this section, various numerical examples are presented and discussed
for verifying the accuracy and efficiency of the present theory in predicting the
critical buckling load of FGM plates subjected to in-plane loading. For the
verification purpose, the results obtained by present theory are compared with
those found in the literature using various theories. The following material
Al/Al>O3 properties are used:

E. =380 GPa,E, =70GPa,v =0.3,

¢ and m represent the aluminum and alumina, respectively.
3.1. Comparisons

In order to validate the accuracy of the present method, a comparison has
been carried out with previously published results by Hashemi et al [34], Bouazza
and Adda [8] and Mohammadi et al [9] for rectangular plates for simply
supported. Plates are subjected to monoaxial in-plane compressive applied loads

in the x (£, =-1,&, =0) and equal biaxial in-plane compressive applied loads
(51 =-1,5, =-1) .
The results of critical buckling load parameters N, =Ncra2/D of

isotropic thin and moderately thick square rectangular plate are presented in Table
1 for different thickness to length ratios and aspect ratios. The obtained results
are compared with those given by Hashemi et al [34] based on exact solution for
linear buckling of rectangular Mindlin plates. It can be seen the present results are
in excellent agreement with those given by Hashemi et al [34] for all loading
types and geometric parameters.
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Table 1

Comparison of critical buckling load parameters, Ncr = Ncraz/D of simply supported

isotropic square plates (Nl =& Ncr , NZ =¢, Ncr)

alb Critical buckling load
hfa (&,.£,)=(L0) (&,&)=C1D)
Hashemi et al. | Present Hashemi et | Present study
[34] study al. [34]
0.4 0.001 | 13.280498 13.280496 11.448705 11.4487037
0.01 13.27636 13.276201 11.445141 11.4450009
0.1 | 12.875571 12.860397 11.099630 11.0865495
0.2 | 11.796432 11.746961 10.169338 10.1266901
0.5 0.001 | 15.421205 15.421203 12.336964 12.3369620
0.01 | 15.416032 15.415828 12.332826 12.3326625
0.1 14.915722 14.896839 11.932578 11.9174714
0.2 | 13.580179 13.519520 10.864143 10.8156159
2/3 0.001 | 20.592057 20.592054 14.256039 14.2560372
0.01 | 20.584076 20.583761 14.250514 14.2502963
0.1 | 19.816043 19.787249 13.718799 13.6988647
0.2 | 17.803107 17.713481 12.325227 12.2631793
1 0.001 | 39.478204 39.478195 19.739102 19.7390976
0.01 | 39.457021 39.456186 19.728510 19.7280931
0.1 | 37.447690 37.373771 18.723845 18.6868855
0.2 | 32.441432 32.230498 16.220716 16.1152490
1.5 0.001 | 96.381222 96.381158* | 32.075932 32.0759206
0.01 | 96.219798 96.213448?% | 32.047973 32.0468723
0.1 | 82.416286 81.974152?% | 29.478533 29.3878842
0.2 | 57.444097 56.714707% | 23.716511 23.5004635
2 0.001 157.910245 157.910111% | 49.347353 49.3473269
0.01 | 157.571876 157.55857?2 | 49.281211 49.2786081
0.1 | 129.765726 128.92199?2 | 43.456572 43.2624640
0.2 | 76.902078 75.829669% | 31.996718 31.6268055
2.5 0.001 | 255.022775° 255.02236° | 71.553225 71.5531705
0.01 | 253.983122° 253.94235° | 71.414247 71.4087824
0.1 | 180.427919¢ 178.61856"° | 59.799393 59.4387577
0.2 | 87.667294° 87.563138¢ | 40.057195 39.5232409

a Mode for plate is (m, n) = (2, 1).
b Mode for plate is (m, n) = (3, 1).
¢ Mode for plate is (m, n) = (4, 1).
d Mode for plate is (m, n) = (5, 1).
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Table 2
Comparison of the critical buckling load (MN/m) for a FGM plate (b=1, h=0.01).
CRITICAL BUCKLING LOAD
alb
(6,.&,)=t10) CRARE CRARCE
REF[9] REF[8] PRESENT | REF[9] REF[8] PRESEN | REF[9] REF[8] PRESEN
T T
05 | 214655 | 2.14655 | 2.14353 8.58619 8.58619 857412 | 171724 | 171724 | 1.71482
1 1.37379 | 1.37379 | 1.37302 1.37379 1.37379 1.37302 | 0.68689 | 0.686896 | 0.68651
15 | 1.49066° | 1.49066* | 1.48949 0.71658 0.71658 0.71628 | 0.49609 | 0.49609 | 0.49589
05 | 1.06993 | 1.06993 | 1.06866 427971 4.27971 427464 | 0.85594 | 0.85594 | 0.85493
1 0.68475 | 0.68475 | 0.68443 0.6847532 | 0.6847532 | 0.68443 | 0.34238 | 0.34238 | 0.34221
15 | 0.74300 | 0.74300* | 0.74252 0.35717 0.35717 0.35705 | 0.24727 | 0.24727 | 0.24719
05 | 0.83488 | 0.83488 | 0.83382 3.33953 3.33953 3.3353 0.66791 | 0.66791 | 0.66706
1 0.53432 | 053433 | 0.53405 0.53432 0.53433 0.53405 | 0.26716 | 0.26716 | 0.26703
15 0.57978* | 0.57978* | 0.57937 0.27871 0.27871 0.2786 0.19295 | 0.19295 | 0.19288

a Mode for plate is (m, n) = (2, 1).

The next comparison is performed for simply supported FGM plates
subjected to various loading conditions. The plate is made from a mixture of
aluminum (Al) and alumina (Al2Oz). The critical buckling loads of simply
supported plate for different values of aspect ratio a/b, and power law index k are
shown in Table 1. As table shows, the present results have a good agreement with
Refs. [8,9].

3.2. Buckling analysis of FGM plates

The variation of the nondimensional critical buckling load N_ of square

plate versus the variation of the modulus ratio En/Ec of FGM (i.e., different
ceramic-metal mixtures) and dimensional parameter a/h have been plotted for
various loading conditions in Fig. 1 through Fig. 6. In each figure, four arbitrary
values of the power law index (k = 0; 1; 5; 10) are considered. As explained
earlier, the variation of the composition of ceramics and metal is linear for k = 1.
The value of k equal to zero represents a homogeneous (fully ceramic) plate.

Figs. 1, 3, and 5 show that nondimensional critical buckling load
increases by increasing modulus ratio Em/Ec of FGM and decreases by increasing
power law index (k) from zero to 10. Figs. 2, 4, and 6 show that nondimensional
critical buckling load increases with increasing dimension ratio a/h and also with
decreasing power law index (k) from 10 to zero. It can be concluded from all the
figures that, nondimensional critical buckling load for homogeneous plate (k = 0)
is considerably greater than the values for nonhomogeneous functionally graded
plates (k > 0) especially for thin plates.
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Fig.2. Critical buckling load of the FGM under biaxial compression versus a/h

A comparison of Figs. 1 and 2 with Figs. 3 and 4 shows that the
nondimensional critical buckling load for the plate subjected to uniaxial
compression (&=-1, £=0), is greater than the corresponding values for the plate
under biaxial compression (&=-1, &=-1). The calculated values for (&=-1, £=0)
are twice those for (&=-1, &=-1) for the square plate b/a= 1 but the difference
decreases by increasing aspect ratio (a/h) and modulus ratio (Emn/Ec). Also, a
comparison of Figs. 3 and 4 with Figs. 5 and 6 shows that the nondimensional
critical buckling load for the plate subjected to compression along x-direction and
tension along y-direction (&=-1, £=1) , is greater than the corresponding values
for the plate under uniaxial compression (&=-1, £=0). Obtained values for (&=-
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1, £=1) are approximately twice those for (&=-1, £=0) for the square plate
(b/a= 1) but the difference decreases by increasing aspect ratio (a/h) and modulus
ratio (Em/Ec). For the square plate under in-plane combined tension and
compression ((&=-1, £=1); b/a = 1), the plate buckles whenm =1andn=2.1In
all other cases, buckling occurs for m = n= 1.

70

-

° _ -
S 60 —=—k=0 S
G, —e— k=1 ./
E —x— k=5 ./
_‘S 50 4 v— k=10 -
3 v = ./
o
< 404 /'/ o .
38 - Uniaxial compression
= .
= ~ a/b=1
S 304 A
g L e
s} s o—0—
2 —
n 20 4 /l ././I
c - o—
[} 7 ——
= . o——*
5 10 e g
c ] /%/' e % =¥ i‘—*:*:V:*:*:*—*—*—#
o ¥—V¥—V_ v
2 n=Y—¥—¥

T T T

15 20

Fig.3. Critical buckling load of the FGM under uniaxial compression Nx versus E¢/Em

20

Nondimensional critical buckling load

184

16

14

124

104

50

] - -
o
/ - E:E Uniaxial compression
» —e — k=
a/b=1
—x— k=5
—v— k=10
o 0—0—0—9—0_0-0_0-0-0-0-0-0_0_0_0_0_0_0_0_
o
L} '/
K —K— K K —K—K— K—K—K—K—K—K—K—K—K—K—K—X—%
/5:525—5—5—5—5—i—ﬁ—v—v—v—v—v—v—v—v—v—v—v—v—-
s /';.&"/
T T T T
0 10 20 30 40
a/h

Fig.4. Critical buckling load of the FGM under uniaxial compression Ny versus a/h.



Hyperbolic four variable refined shear [...] buckling analysis of functionally graded plates 39

140

E ] -
: " >

| = -
é 100 —e—k=1 "
s —x— k=5 /_/
= 80+ —v—k=10 - ) _
g o Combined compression
B - a/b=1, a/h=10
© 60 -
© - '
c - oo
% 40 4 - " _e—
c e R .
] . /' — __e—
% 20 - «——""

/. =T e s KK —E—K—K—

§ e SRR
z 0 . | |

0 5 10 15 20

EJE,

Fig.5. Critical buckling load of the FGM under combined compression Ny and tension N, versus

Ec/Em
45
40 4 .____._.__.._.-.—-—-—-—--—--—-—-—I—-—-—-—
s ././l—
- e - . .
/' —=—k=0 Combined compression
30 4 . —*—k=1 a/b=1

—x— k=5
25 —v— k=10

20 - .’._.___.___.___._l—-I——.—I—-l—.—l—l—l—'—-—.—-l—.—l
/./
15 o
IR ;

Nondimensional critical buckling load

KK —K—K—K—K—K—X—K—X
bd X _'_v—z—v—v—v—*—z—$—v—v—v—v—v—v—v—v—v—v
104 « / -
"
5 - /
0 T T T T
0 10 20 30 40 50

a/h
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The nondimensional critical buckling loads have been show in Figures 3-6
for simply supported plates subjected to uniaxial compression, and biaxial
compression and tension, respectively. Fig. 3 shows the variation of
nondimensional critical buckling load of square plate versus the modulus ratio
EJ/E. of FGM (i.e., different ceramic-metal mixtures) for different values of power
law index. The thickness ratio a/h is assumed to be 10. It can be seen that the
nondimensional critical buckling load increases as the ceramic-to-metal modulus
ratio increases and decreases as the power law index increases.
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Fig. 4 shows the nondimensional critical buckling load vs the thickness to
span ratio a/h for different values of volume fraction exponent k (a/b=1). It is seen
that the nondimensional critical buckling load increases monotonically as the
relative thickness a/h increases.

The modulus ratio Ec//Em of FGM on nondimensional critical buckling load
of simply supported plate under combined compression and tension is shown in
Fig. 5. The thickness ratio a/h is assumed to be 10. It is shown that the
nondimensional critical buckling load generally increases by the increase of the
modulus ratio Ec/Em.

Fig. 6 shows the variation trend of nondimensional critical buckling with
respect to the thickness to span ratio a/h for different values of material gradient
index k. The aspect ratio of the plate is set as a/b=1. It is observed that with
increasing the thickness to span ratio a/h from 5 to 50, the nondimensional critical
buckling also increases steadily, whatever the material gradient index Kk is.

4. Conclusions

In the present paper, mechanical buckling analysis of simply supported
FGM plates has been analyzed using a new four-variable refined plate theory.
Derivation was based on the new four variable refined shear deformation theory
and with the assumption of power law composition for the material. Equilibrium
and stability equations for rectangular simply supported functionally graded plates
have been obtained. The buckling analysis of FGM plates under different types of
mechanical loadings is presented. Closed-form solutions for the critical buckling
of plates are presented. It is concluded that:

1. Itis adisplacement-based theory that includes the transverse shear effects.

2. Unlike any other theory, the number of unknown functions involved is
only four, as against five in case of other shear deformation theories.

3. The theory takes account of transverse shear effects and parabolic
distribution of the transverse shear strains through the thickness of the
plate, hence it is unnecessary to use shear correction factors.

4. The critical buckling load for the functionally graded plates is reduced
when the power law index k increases.

5. The critical buckling load for the functionally graded plates increases with
increasing dimension ratio b/a.

6. The critical buckling load for the functionally graded plates decreases with
increasing modulus ratio Ec/Em.

7. The critical buckling load for the plates under uniaxial compression is
greater than the plates under biaxial compression.
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8. The critical buckling load for the plates under combined compression and
tension is greater than for plates under uniaxial and biaxial compression.
This conclusion confirms that the addition of a tensile load in the
transverse direction is seen to have a stabilizing influence.

In conclusion, it can be said that the proposed theory is accurate and simple in
solving the buckling behaviors of thick functionally graded plates.
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