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COOPERATION GAME-BASED RESOURCE ALLOCATION
FOR TASK OFFLOADING IN MOBILE EDGE COMPUTING

Ruixia LI'%, Chia Sien LIM2, Muhammad Ehsan RANA?2, Jinsong TU>*

To improve the users’ satisfaction and resource utilization of task offloading
in Mobile Edge Computing (MEC), an incentive mechanism for resource allocation
is considered. It motivates edge service providers to actively participate in task
offloading by setting the resource price. A bargaining-based cooperative game model
is proposed to charge terminal devices and reward edge servers. The Nash
equilibrium is analyzed with complete information game theory. The result indicates
that this strategy PSNCG can ensure that edge nodes participating in cooperative
resource allocation can obtain maximum utility at an acceptable cost, thereby
improving users’ experience and resource utilization.

Keywords: Cooperative game, mobile edge computing, resource allocation, task
offloading

1. Introduction

Cloud computing has become a key factor driving the development of social
intelligence and the integration of cloud networks. However, with the popularity of
mobile smart devices and continuous emergence of various network applications,
more and more users are accessing cloud computing centers, which brings new
challenges to the development of cloud computing. For example, new users such as
the Internet of Things (IoT), Industry 4.0 and the smart agriculture have different
requirements for computing, storage, and service performance, which makes it
difficult for users far from cloud computing centers to receive timely and effective
services. To overcome the limitations of cloud computing, further improve the
quality and resource utilization of user service, MEC has received widespread
attention [1]. As shown in Fig. 1, MEC can effectively shorten the distance between
users and computing storage services, reducing possible network congestion and
transmission delay [2].
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Task offloading in MEC means that users can offload tasks to adjacent edge
nodes for processing and then save battery capacity and break through computing
performance limitations [3]. Cloud computing centers and edge nodes collaborate
or compete to provide support for user task offloading requests [4].

(R
A Base station

(G2
é Access point

@ Mobile edge
server

Fig. 1. The MEC architecture framework

Compared with traditional cloud computing, the resources of the edge
servers are limited, which may lead to long processing time and low efficiency. It
will affect the user’s service experience if there is no reasonable mechanism of
resource allocation.

Resource allocation is focused in MEC. The resource pricing and incentive
mechanism in Section 3 is based on Nash bargaining game theory, encouraging
service providers to actively engage in task offloading and improving system
resource utilization. The main contributions can be summarized as follows:

o Nash bargaining process is introduced to determine the winning
coalition for factors affecting resource prices; the final price and payment price are
obtained to guarantee the quality of service and the enthusiasm of edge service
providers;

o A cooperative game model is developed, in which a scientific utility
function is designed to maximize the benefits of users and service providers;

o Nash equilibrium solution will be established to confirm the
effectiveness of this strategy.

The structure is arranged as follows: Section 2 presents a review of relevant
researches on task offloading and resource allocation in MEC; Section 3 analyzes
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the factors influencing pricing and the Nash bargaining process; Section 4 explains
the cooperative game model; Section 5 proves the Nash equilibrium solutions in a
complete information game theory and proposes an algorithm for the Nash
bargaining process; Section 6 evaluates the proposed strategy, and Section 7 gives
the conclusion.

2. Related works

From the perspective of computing resource allocation, an auction scheme
was designed for computing resource trading to ensure the privacy of buyers as well
as sellers while maximizing social welfare [5]. Guo et al. [6] considered blockchain
and established an incentive mechanism based on a game model to ensure the
acquisition of computing resources and the active participation of service providers.

Achieving peak performance of the entire system is challenging for
communication or computing resources. Wei et al. [7] considered the coupling of
calculation and transmission delay, as well as calculation and channel capacity, and
optimized the completion time of discrete task by designing corresponding resource
allocation strategies. Zhu et al. [8] used task offloading algorithms to allocate the
resources and applying delay constraints to minimize the total energy consumption
of the system.

The pricing strategy of bandwidth resources was studied for resource
pricing [9]. Baek et al. [10] established a resource pricing mechanism in MEC,
which can effectively allocate resources. Chen et al. [11] proposed a pricing
resource allocation method that maximizes the profits of operators and uses
Lyapunov optimization techniques to optimize utility maximization while ensure
system stability.

Some researchers have proposed incentive mechanism based on economic
theory and game theory to address the incentive challenges associated with task
offloading in MEC. Based on a non-cooperative environment, the resource
allocation of virtual machines was modeled as a graph matching problem [12]. The
introduction of auction mechanism aims to optimize collective social welfare.
Considering the utility of edge nodes and user profit constraints, Wang et al. [13]
designed an incentive algorithm to maximize the profit of edge servers.

The impact of resource allocation of incentive mechanism on task
offloading is seldom considered and conducted in non-collaborative environments.
There are few incentive mechanisms for resource allocation considering
cooperative games. In response to the above issues, we focus on the incentive
mechanism for resource allocation in cooperative game scenarios. Then a complete
information game model is established to investigate the Nash equilibrium solution
with an edge node and multiple terminal devices.
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Several works have investigated resource pricing in MEC economics. For
example, Zhou et al. [9] studied time-dependent bandwidth pricing under
information asymmetry, Baek et al. [10] proposed dynamic pricing schemes for
IoT-edge environments, and Chen et al. [11] developed an online dynamic pricing
framework for edge computing. Compared with these pricing methods, our PSNCG
(Pure Strategy Nash Cooperative Game) focuses on bargaining-based coalition
formation, which integrates both economic pricing and cooperative incentives.

3. Preliminary assumptions to resource allocation in MEC
3.1. Assumptions

The model relies on the following assumptions: (i) quasi-static Rayleigh
fading channels, (ii) a trusted third party assists in resource allocation, and (iii)
cooperation among edge nodes is disabled in the current setup. These assumptions
are adopted for analytical tractability and are clearly stated here for completeness.

3.2. Factors affecting price setting of resource allocation

Due to limited resources for edge nodes, pending applications offloaded to
edge nodes may exceed their service capabilities. A trusted third party is introduced
to assist edge nodes to allocate resources [13]. To simply the analysis, only one
edge node is used to demonstrate the proposed mechanism with multiple edge nodes.
Cooperation between edge nodes is not considered.

Resource allocation is considered by setting the resource price, so that
service providers are willing to actively participate in task offloading. Game theory
is a widely adopted trading strategy for efficiently allocating sellers’ resources to
buyers in a competitive market with fair pricing [14]. Referring to the notation and
definition rules [15], Table 1 shows the main notations.

Table 1
Description of notations
Notation Definition
node, The edge node
node, Terminal device i
Price The final agreeing price
Price, The payment price of terminal device node,
7, The reservation price of edge node node,
b, The bidding price of edge node node,

7, The reservation price of terminal device node,

i
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S; The asking price of terminal device node,
UiAS oo »Suode 4 | The utility function of terminal node node,
Uo{S 10, Su0ac,+ | The utility function of edge node node,
S node, The strategy of terminal node node,
Sode.. The strategies of other nodes except for terminal node node,
w, The task 7
D, The cache resource of edge node node,
G, The CPU cycles of edge node node,
D, The data size of task W,
C, The required number of CPU cycles to complete task 7,
Delayf The delay processed the task 7, locally
Delay" The delay offloading the task 17, to edge node
Energy' The constraint of energy consumption processing local task W,
Energyl”’ The required energy consumption offloading the task 1, to edge node
f | The CPU resource allocated by the edge node to the task W,
Bandwidth, The bandwidth of edge node node,
Bandwidth, The bandwidth to complete the task
3.2.1. Delay

Let W, ={D,,C, ,Delay;,Energy,} denote a task, where D, and C, represent the
data size and the required number of CPU cycles of the task ¥, respectively.
Delay, and Enegy, denote the constraints of delay and energy consumption
processing local task 7, . Delay is an important factor affecting the price of task

offloading. The smaller the delay required to complete a task, the higher the price
it should provide [16].

C. D
Delay” = —-+——
“a, ;. rate, )
. p’h,
rate, = Bandwidth, log, (1+ —N ) (2)

where /; represents the CPU resource allocated to the task 7, by the edge node.
rate; denotes the data transmission rate of offloading tasks to edge nodes, 4 =d," ,
s=4, and d,=[0,50] [16]. Bandwidth, denotes the user bandwidth, that is, the
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bandwidth required to complete task 7, . P and N, represent the transmission
power consumption and the noise power respectively.

3.2.2. Energy consumption

Energy consumption is another important factor affecting task offloading,
the lower the energy consumption required to complete a task, the higher the price.
We focus on terminal devices to address the energy consumption by defining the

energy consumption required to process task W, [17].
i Ci

+ —_
rate, f

Energy!" =( )x P (3)

3.2.3. Bandwidth

The channel is assumed to be quasi-static Rayleigh fading, which means
that the bandwidth of terminal devices remains unchanged during each of the period

[17]. Given a task offloading request of W, , the smaller the delay required to
complete a task, the higher the bandwidth it should be provided. The required
bandwidth Bandwidth, can be obtained as follows:

D,

Bandwidth. = !
" Delay" 4)

To simply the analysis, a single-edge-node model is adopted to investigate
the pricing and allocation of limited edge resources. This modeling choice allows
for a clear examination of the core interactions between edge resources and terminal
devices without involving additional inter-node complexity.

It is worth noting that although this study uses a single-node setting, the
underlying concepts and pricing mechanisms discussed here are also applicable to
multi-node MEC environments. Cooperation among edge nodes, such as distributed
coordination or inter-node negotiation, is a promising direction but is beyond the
scope of this work.

Although this study adopts a single-edge-node setting for tractability and
clarity of theoretical analysis, we acknowledge that inter-edge coordination is
highly relevant in realistic MEC scenarios. Future extensions of PSNCG will
explicitly consider multi-edge cooperation through distributed or hierarchical
game-theoretic frameworks.
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3.3. Bidding price

The reservation price 7% indicates the minimum price that the seller is
willing to accept. If the seller node, accepts the task offloading, a bidding price 5,
should be provided based on the reservation price 7 . For a given edge node node,,
the value of reservation price 7, is typically determined by the factors such as
cache resources D, , the number of CPU cycles C,, and the maximum available

bandwidth Bandwidth, . The reservation price 7, is calculated as follows:
1, =w,, x D, xC, x Bandwidth, (5)

>0

where "o denotes the weighting, "~ "o is positively correlated with Dy ,

G, , and Bandwidth, ;bO is an increasing function of "o, and byzn
3.4. Asking price

Terminal device node; must provide an asking price s, for each node before
participating in task offloading, which usually depends on its reservation price 7;.
r; refers to the highest price that terminal device node; can pay for task offloading.
Given the task #; that needs to be offloaded, reservation price 7 will be affected
by two aspects: 1) the task, including D, and C, ; 2) the constraints of delay and

energy consumption. Then, reservation price 7 of terminal device node, is
expressed as follows:
r=w, xD, xC, x(w, xEnergy! +(1-w, )x Delay") ©)
W, . >0 0<w <
where "0 and s represent the weight, and " , 0<w, 1; W represent the

weight of energy consumption. If there is no requirement for energy consumption,

w =0 . . . w =1
st~ 7 ; on the contrary, if only energy consumption is concerned, "« , and here

w, =05

[18]. For buyers node, , the asking price Siis proportional to its

S

”i . Without loss of generality, we will regard the asking price i

reservation price

as an increasing function of its reservation price ¢, i =%,

3.5. Nash bargaining process

When the terminal device node, sends a task offloading request to the edge

node, a Nash bargaining game between the terminal devices and the edge node
begins. The specific process is described as follows:
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First, edge node node, calculates a reservation price 7, chooses its bidding
price b,(b,21,) and sends its relevant resource parameters (D,, C, and Bandwidth,)

to the trusted third party [15]. The sent message does not include 7, and 5, ;
Then, the trusted third party broadcasts the information to all possible

terminal devices, and all the terminal devices within the coverage area of the edge

node node, with task offloading request will calculate their reservation price 7

according to (6) and provide their own asking price $,(s;<r).
Then the bargaining process begins, with the edge node node, and all

terminal devices node; requiring resources to handle their offloading tasks
C={Ce2" | ) s2b}

submitting their sealed prices &, and s; respectively. Let L
be a set of coalitions, where C is coalition. If there is a unique coalition C in C
(that is [C[=1), then the coalition C is selected to bargain ( that is all members of

C participate in task offloading ). If | C|=0, the bargain fails. If |C[>1, one coalition
in maxMN =argmax|C’| 5 selected. After a coalition C is selected, it is referred to as

the C-Coalition. Once the bargain is finalized, the game will conclude with an
agreeing price Price, expressed as follows:
Price=exby+(1-€)x Y. s, 0<e<l @)

node;eC

where 0<¢<l_ ¢ is a weighting factor used to determine the final transaction price
between the buyers (terminal device) and the seller (edge node). A higher value of
¢ makes the final price closer to the buyers’ quote, while a lower value favors the
seller’s price.

Here? is set to 0.5 to reflect a balanced bargaining outcome and ensure fairness
between participants. This choice aligns with the principle of equitable negotiation
found in Nash bargaining solutions.

Different ¢ can significantly impact the allocation results: increasing ¢ can
enhance user satisfaction, but may reduce edge server incentives; decreasing ¢ does
the opposite. Future work may consider dynamically adjusting ¢ based on user
priority, service level, or real-time resource demand.

Price. node.

The payment price i of terminal devices i 1s obtained as follows:
-Price + Z s,
Price. =5, _ nodeeC N
€]

If a node outside the coalition fails, its utility is equal to zero.
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4. Cooperative game model

Game theory is introduced in this scheme, and the model for task offloading
and resource allocation can be considered as a cooperative game. A key issue in the
final decision-making of game theory is to consider its costs and benefits.

Definition 1. The resource allocation game G is denoted by a triple

(NODE,S,U),
) NODE ={node,} U{node,} is the set of participants.
[ ) S =4S 0, }i'o is the strategy set, when the terminal device has a task

offloading request, it has two options: Cooperation(CP) or Defect(D). For the edge
node node, , when it chooses CP, it will allocate resources to the terminal devices;
on the contrary, if it chooses D, any task offloading request will be rejected.

Therefore, the strategy set S,.., of terminal device node, is {CP,D}. We use S,o4,
denote the strategy set of terminal device node,, s,,. represents the strategy of

other nodes, then the strategy of all nodes can be expressed as {S,ou, > Snode, +

° U={u}, is the utility function set, and #{5,. 5. } denotes the
utility function of 7ode; . The utility function % {S,ou,>Sma,t of edge node node, is
defined as follows:

if S04, =CP and 3Ce 2% such  that
Price-r, ;
Uy {Snodeo > snadero} = ! Znode,e() 5 2 bo and | ¢ |: arg max | ¢ | (9)

C’eC

0 else

When the transaction is successful, the profit obtained by node, is measured
by the difference between its bidding price and the final agreed price. If the
transaction fails, node, will not be able to obtain any profit.

The utility function %;{S,, 5.} of terminal device node, is defined as

follows:
—ty 1f 4, =CP and node, ¢ C

-Price+ Z s, (10)

node;eC . _
ui {Snndel ’Snade,,} = ’: _Si + ’ lf‘ Snr)de[ - CP and nOdei € C

|C]
0’ l:fsnode, =D
o where the utility of any terminal device outside the coalition is

negative because it consumes resources to participate in task offloading;



86 Ruixia Li, Chia Sien Lim, Muhammad Ehsan Rana, Jinsong Tu

o The utility of the terminal device within any coalition is
-Price + Z S;
node;eC .
v, —S; + 5
|C
® The terminal device refuses task offloading, and its utility is equal

to 0.

According to game theory, the behavior of each node is rational, and choose
a strategy that maximizes its utility when the strategies of other nodes are given. In
this case, it represents the optimal response of node; to the strategies of other nodes,
= arg max ui (Snadev ’ Snode,v ) .

Srmdq

*
denoted as  Snode,

Definition 2. S° is a Nash equilibrium strategy if and only if
U (S Snode ) Z (S, »Sr00 )» 1SE<N,s,, €8, . In the Nash equilibrium condition, no
participant can increase its utility by unilaterally changing the strategy, and the
Nash equilibrium can ensure the stability of the game.

Definition 3. v(7' ) is used to denote the collective Pareto-optimal utility,
and T <V is a subset of total nodes. If the utility function of a coalition with only

one member is represented as v(Z) . The utility function of node; in the coalition T
|7 | —
is expressed as x, . If x;2v(i), and in =w(T ), the vector x=(x,.x;,) 1S a
reasonable utility distribution.
Lemma 1. Given a coalition C defined in subsection 3.5, the utility
distribution of (10) is rational.
Proof. Suppose node, € C | its utility function is expressed as follows:

-Price + Z s, (1-e) Z s, —by)
ui=}’;—si+$=l’;—si+ node;eC (11)
1C] 1C|

r-520 and 2 S ~h= O then 20, The utility of the coalition of a single

node;eC

member is either 0 or -7, and Lemma 1 is proved.
5. Cooperative game with complete information

Each player has common knowledge about the strategy space and utility of

all other players in the game and has complete information.
Lemma 2. For a N-player game, if > s=h then (CR,CR,..CP,) represents

node,eC

a pure strategy Nash equilibrium, where N =max MN is a member of C-

> node,..node,
Coalition and CF, represents the strategy of node; is CP .

Proof. For the edge node node,, its utility is Price—7, when its strategy is
cooperating. On the contrary, if it chooses to defect instead of cooperating
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unilaterally, its utility becomes zero, which is lower than the cooperation utility.
Similarly, for the terminal device node, , if it unilaterally deviates from cooperation

to defect, its utility consistently remains lower than -Price+ Y s,

r—s + node;eC > O

Therefore, when 2 szb, , (CR.,CE,..CP)) is a pure strategy Nash equilibrium,

node;eC

Lemma 2 is proved.

Lemma 3. For a N-player game, when dzc S <by , all defect strategies are

a pure-strategy Nash equilibrium.
Proof. When the terminal device node; chooses defect, its utility is equal to
0. If it chooses cooperation, its utility is less than 0, and Lemma 3 is proved.

Theorem 1. For a N-player game, when coalition C exists, Z 520y and

node;eC
|Cl<max MN | there exists at least one pure strategy Nash equilibrium.
Proof. Given a coalition C , there must be a coalition € =agmax|C’| where
C’ represents the coalition. Therefore, the best response of the edge node rnode, is

. " . CP if node eC
CP, 1.e. Snodg =CP . Let Snm[u, = f '
? 0 D else

, then (S, > Soe S, ) bE @ pure strategy
Nash equilibrium.

Lemma 2 indicates that for any node €C that deviates unilaterally from
cooperation to defect, its utility is always lower than the cooperation utility, which
means its utility does not increase. Similarly, for any node ¢C" that deviates
unilaterally from defect to cooperation, its utility will change from 0 to negative.
Therefore, all players are unwilling to change their strategies.

When the terminal devices request the edge node for computation
offloading, a Nash bargaining game in the terminal devices and the edge node starts.
The detailed process is shown in Algorithm 1.

Algorithm 1: Pure Strategy Nash Cooperative Game (PSNCGQG)

Edge node node, selects a proper weight W, ; each terminal device node, (1 <i<N ) selects

two proper weight Wy and Wi .

Edge node node, calculates its cache resource D, , CPU cycles ¢y and the required

bandwidth Bandwidth, | reservation price 7, according to (5), choose a bidding price

by (b, = ry) and then broadcasts its relevant parameters (D, , Co and Bandwidth, ) to
terminal devices within its communication range through the trusted third party;

3: | FOR each terminal device (buyer) node,eM DO
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4 Receive Dy, Cy and Bandwidth,
5: / .
Collect the related parameter ( Delayf , Ener, &Y. and Bandwidth, ), then calculate its
reservation price ’; and choose an asking price $; according to (6);
END FOR
d . . . . b . . :
Edge node node, calculates its bidding price 0, and each terminal device node, € M
calculates its asking price §; by adopting the equilibrium excursion method as in [18];
8: Edge node node, submits b, , and each terminal device node,eM  submits S; ; let
C={Ce2"| Y s,zb,and |C|<max MN} . IF |21, a coalition C in argmax|C’| is chosen
node;eC c/eC
to participate in resource allocation;
9: Finally, the utilities are allocated to nodes in the coalition C according to (10).

The computational complexity of the algorithm 1 is analyzed to evaluate its
feasibility during runtime. The algorithm consists of four main stages:

Initialization involves the allocation of weights and basic parameters,
resulting in a constant computational cost of O(1).

Price setting requires each terminal device to calculate its reservation price
independently. For N devices, this results in a total complexity of O(N). The most
computationally intensive part is the coalition formation and Nash bargaining stage.
This process enumerates all possible subsets of terminal devices to identify feasible
coalitions whose total offers meet or exceed the bidding price of edge node. The
worst-case complexity of this exhaustive search is O(2V).

After determining the coalition, the stages of benefit distribution and
resource allocation only involve basic arithmetic operations, maintaining the
complexity of O(1).

Therefore, the total running time of algorithm 1 is mainly influenced by the
coalition selection step. Despite exponential growth in the worst-case scenario, this
complexity is still acceptable for small and medium-sized MEC systems, as the
number of active terminal nodes per edge server is relatively limited.

To enhance scalability, future implementations may incorporate heuristic or
greedy coalition formation methods, threshold-based pruning, or parallel subset
evaluations. These approaches could significantly reduce the exponential cost of
coalition selection while maintaining near-optimal performance.

6. Performance evaluation

The PSNCG method is compared with RCFL [19] and CPFL [20], we note
that RCFL and CPFL are not direct resource-pricing baselines but are widely used
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cooperative benchmarks in MEC and federated settings. They are included to
demonstrate the comparative advantages of PSNCG in system-level metrics.
Meanwhile, related MEC pricing schemes [9-11] are conceptually compared in
Section 2 to provide readers with a broader perspective on pricing-based approaches.

Based on gradient-descent federated learning, RCFL optimizes the trade-off
between local model updates and global aggregation under constrained resource
budgets, minimizing the loss function in distributed learning tasks. CPFL
introduces a synergistic cloud-edge framework for personalized federated learning,
aiming to address device heterogeneity and reduce communication and computation,
meeting the latency demands of IoT applications. In contrast, the PSNCG does not
focus on joint learning optimization, but solves the incentive-compatible resource
pricing and allocation in MEC through a bargaining-based cooperative game model.
PSNCG enables interactive negotiation between terminal devices and edge servers
for resource trading, incorporating Nash bargaining theory to achieve fairness and
system-wide utility maximization. This theoretical design allows PSNCG to
dynamically balance resource supply and demand in a decentralized MEC
environment, which is beyond the scope of RCFL and CPFL.

The simulation environment consists of a MEC system with 10 edge nodes
and 100 terminal devices uniformly distributed. Each edge node is connected to 10
terminal devices, which generate tasks with various service levels [21]. Task
generation rate in individual devices follows a Poisson process, and the task load
ranges from 1 to 5. 100 simulations are conducted to obtain system performance
metrics, which are plotted as a function of task request load. The performance
metrics include normalized device benefits, bandwidth utilization, and task success
rate in the MEC system.

Figures 2-4 summarize the performance of the proposed MEC system under
different scenarios. Fig. 2 shows the average task completion time under different
offloading strategies, where the X-axis represents task generation rate (requests per
unit time) and the Y-axis shows completion time (ms), illustrating the impact of
offloading strategies on performance. Fig. 3 presents resource utilization across
various MEC scenarios, with the X-axis representing the number of edge servers
and the Y-axis indicating resource utilization (%), highlighting system efficiency
under different configurations. Fig. 4 depicts system throughput versus task arrival
rate, where the X-axis corresponds to task arrival rate (requests per unit time) and
the Y-axis shows throughput (tasks per second), demonstrating how varying task
loads affect overall system performance. Error bars and confidence intervals are not
shown in the current figures but will be reported in future work.
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Fig. 2. Normalized device benefits and task generation rate under PSNCG, RCFL, and CPFL

In Fig. 2, the normalized benefits of devices are plotted against the task
generation rate. As the number of task requests increases per device, more service
is applied. The results demonstrate that the PSNCG can effectively manage
resources under different task load from light to heavy, yielding higher device
benefits within the MEC infrastructure. Notably, PSNCG operates interactively and
strengthens the influence of the cooperative game model.

1

Bandwidth utilization

0.2 r r r

1 2 3 4 5
Task generation rate

Fig. 3. Bandwidth utilization and task generation rate under PSNCG, RCFL, and CPFL

Fig. 3 shows the bandwidth utilization of task generation rate under different
solutions. Compared with RCFL and CPFL, the PSNCG can ensures more stable
and higher bandwidth utilization, achieving the bandwidth allocation process within
the MEC system.
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Task success rate

c c c
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Fig. 4. Task success rate and task generation rate under PSNCG, RCFL, and CPFL

Fig. 4 shows the task success rate in these three schemes. Since the tasks are
generated with their time constrained, system entities should fine tune the limited
computation and communication resources to improve task success rate. The
PSNCG can provide the optimal tradeoff for current system until the best solution
has been found during the bargaining process. As shown in in Fig. 4, PSNCG can
share system resources of different devices and obtain the maximum benefits while
maintaining a rather higher task success rate than RCFL and CPFL.

From Figs. 2 to Fig. 4, numerical analysis is conducted to draw insights for
validation. The bargaining approach PSNCG can achieve an appropriate
performance balance in the MEC infrastructure. The results in Figs. 2 to 4 were
obtained by averaging the results of 100 independent simulations for each setting.
Although the observed performance gains of PSNCG relative to RCFL and CPFL
are consistent in all experiments, statistical significance testing and confidence
interval reporting will be incorporated in future work to provide more rigorous
validation.

Current performance evaluation is based on a simulated MEC environment
with uniformly distributed edge and terminal nodes. Although this setting provides
a controlled baseline for comparing algorithms, real-world deployments involve
varied and typically dynamic topologies. The current evaluation presents averaged
results over 100 runs, which serve as proof-of-concept evidence. We acknowledge
that future studies should incorporate confidence intervals, statistical significance
tests, and sensitivity analyses of key parameters such as ¢ , reservation weights,
and traffic heterogeneity to further substantiate robustness. In future work, the
PSNCG scheme will be evaluated under diverse network structures such as
clustered, grid-based, and random graph topologies, as well as using real-world
traces from mobile networks or MEC benchmarks. In this way, the robustness and
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adaptability of the scheme under more realistic and heterogeneous scenarios will be
validated.

7. Conclusion

An incentive mechanism that encourages edge service providers to
participate in MEC task offloading by setting resource prices. A cooperative game
model is proposed for resource allocation, aiming to maximize the profits of edge
service providers while ensuring the quality of service for terminal devices. The
Nash equilibrium with complete information game indicates that this model is
reasonable. Compared with RCFL and CPFL, extensive simulations validate the
performance of the proposed approach in normalized device advantages, bandwidth
utilization, and task success rate. Future work will focus on designing a bargaining
process that considers incentive-based interaction under incomplete information
games. In this case, the resource allocation model can be formulated as a Bayesian
game, where each participant has private information and forms beliefs about others.
Under standard assumptions (finite type sets, compact strategy spaces, and
continuous utility functions), the Bayesian Nash equilibrium can be established.
This provides a theoretical basis for extending PSNCG to more realistic MEC
scenarios with asymmetric information.

Beyond the single-node setting studied here, extending PSNCG to multi-
edge cooperative MEC environments remains an important direction. Distributed
bargaining and inter-node coordination will be incorporated in future research to
enhance external validity.
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