U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 4, 2009 ISSN 1454-234x

THE ANALYSIS OF CAN AND ETHERNET IN DISTRIBUTED
REAL-TIME SYSTEMS

Siegfried COJOCARU', Constantin RADOI?, Stefan STANCESCU®

Programarea in sistemele distribuite presupune programarea procesorului
nodului local, programarea controlorului de comunicatie si programarea
comunicatiei pe mediul comun de transmisie. O abordare sistematica este aceea de
a separa programarea nodului local de programarea comunicatiei, astfel incat
algoritmii implementati pentru programarea acestora sda poatd fi modificati
independent unul de celalalt. In acest articol autorii analizeazi programarea
comunicatiei §i influenta acesteia asupra cerintelor sistemelor care functioneazad in
timp real pentru protocoalele CAN si Ethernet.

Process scheduling in dedicated distributed system designs involves local
node processor scheduling, communication controller programming and
transmission scheduling. A systematic approach is to decouple node design from
communication scheduling in a way that algorithms used to implement the solution
can be changed independently. In this paper authors will analyze communication
scheduling and its influence on real time requirements for CAN and Ethernet
medium access protocol.

Keywords: controller area network, Ethernet, real-time systems, communication
scheduling

1. Introduction

In a modern control system different functions are implemented in
electronic control units (ECU), which cooperate in order to accomplish their task.
Traditionally, a dedicated cable connects each ECU in the general design, but as
the solution functionality increases significantly and more and more ECUs are
needed to be connected, separate wiring was no longer a solution. An approach to
manage such increasing complexity is to distribute the system functionality across
several low costs microprocessors, which communicate via a shared medium. In
this case new problems must be treated, such as how a receiver knows where a

! Eng., National Institute for Research and Development in Informatics, Bucharest, Romania,
cojocaru_siegfried@yahoo.com

2 Prof, Department of Applied Electronics and Information Engineering, University
POLITEHNICA of Bucharest, Romania

* Prof, Department of Applied Electronics and Information Engineering, University
POLITEHNICA of Bucharest, Romania

28 Siegfried Cojocaru, Constantin Radoi, Stefan Stancescu

message starts and ends, with what rate the bits are sent and how the access to the
bus is treated when more nodes wish to transmit simultaneously [1]. For this
reasons, dedicated communication protocols must be developed. As many real
time (RT) applications and hard real time systems (HRTS) are subject to timing
constraints, developing network architectures and protocols capable to meet RT
requirements are of great importance. In the last decades several different network
protocols have been designed and implemented. But not all of them are capable to
meet stringent requirements imposed by RT traffic.

Designing RT data and control networks relieve different goals to be taken
into consideration. In common data systems, various amounts of data need to be
transmitted at various speeds at unpredictable time instants. Data systems do not
provide support for RT traffic. RT distributed control systems transmit control
messages frequently, with short amounts of data exchanged between a large set of
nodes. The ability to fulfil RT requirements represents the fundamental
difference between control and data networks [2]. Industrial applications, as being
essentially RT systems, use communication networks with some standardized real
time deterministic Medium Access Control (MAC) layers, like Process Field Bus
(PROFIBUS), Factory Instrumentation Protocol (FIP) , and Controller Area
Network (CAN) [3].The most popular wired network architecture used for data
transmission in common data systems, [EEE 802.3 , popularly called Ethernet,
does not provide consistent support for RT traffic. The protocol uses the binary
exponentially back-off (BEB) algorithm to solve collisions in a non-deterministic
manner and does not support any message priorities. On a shared medium, it is
possible, for a node that wishes to send a message, to wait a certain time until it
gains the bus while other nodes are sending their messages. This time is known as
blocking time and depends on the network protocol. It greatly affects the
determinism and performance of a control network.

We discuss and analyze in the paper the capability of CAN and Ethernet
network to meet the timing constraints imposed in RT systems.

2. Ethernet

In Ethernet network, a node access to the communication medium is made
by the CSMA/CD (Carrier Sense Multiple Access with Collision Detect)
technique. The CSMA/CD algorithm does not define a collision solving protocol
of its own. The CSMA/CD protocol is specified in the IEEE 802.3 network
standard and is described in detail in [4]. In CSMA/CD collision protocol, if two
or more nodes collide, they back-off and try to retransmit message after randomly
determined time periods. This random interval is determined by the standard BEB
algorithm. CSMA/CD collision protocol is non-deterministic, so the Ethernet bus
is not appropriate for real-time systems and totally not recommended to HRTS.

The analysis of CAN and Ethernet in distributed real-time systems 29

It is very difficult to exactly estimate blocking time delay for Ethernet. At
a high level, the expected blocking time can be described by the following
equation [5]:

6

Z1 E{Tk} * Tresid' ©)

1
E{T =
{ block j k=

Where 7. represents the residual time that is seen by node i until the network
is idle, and E{7} } is the expected time of the kth collision.

3. CAN - Controller Area Network

CAN protocol was initially developed to be used for exchanging
information between subassemblies in an automobile truck or vessel. Because of
its low-cost implementation and built in error-detection scheme the protocol was
successfully applied to other process control systems.

The CAN bus uses a CSMA/CD+AMP (Carrierer Sense Multiple Access
with Collision Detection and Arbitration on Message Priority) access protocol. It
means that whenever a node wants to use the CAN bus, it first needs to detect
whether the bus is occupied or not. The node that wants to transmit a message
waits until the bus is free and then start sending their dominant bit of start.
During the arbitration process each node reads through its physical transceiver the
bus logical value and compares it with the one sent by himself. If one node sent a
dominant bit while the other sent a recessive bit, they will both read a dominant
bit. The node, which sent the recessive bit, loses the arbitration, withdraws from
the bus and turns into a receiver.

The blocking time in CAN 7,, ., is calculated in [6], by the following

equation :

(k=1)
*) Totocke” ™+ Thit |.()
T =T .+ s T . |
block resid =~ jeN (j) Ix (1)
hp TV
peri

where

T, is residual time needed by the current node to finish transmitting,
N, is the set of nodes with higher priority than the waiting node,

T/ is the period of the jth message,

peri

30 Siegfried Cojocaru, Constantin Radoi, Stefan Stancescu

T,i' ' is transmission time of node j on the network medium and

’_X—‘ denotes the smallest integer number that is greater than * .

It is possible for a lower priority node to lose arbitration successively,
while it is waiting to access the bus, against others node with higher priority who
wish to send on the network. In this case, the total blocking time appear. The

worst-case 1., under a low traffic load is:

T

resid

_)
= max T
Vien . 2

where N, is the set of nodes on the network.

4. Case Studies

TrueTime [7] is a MATLAB/Simulink-based tool that facilitates
simulation of the temporal behavior of a multitasking real-time kernel executing
controller tasks. It can be used for simulation and research of dynamic RT
networked control systems.[8] In order to examine CAN versus Ethernet RT
characteristics, we used TrueTime to exercise and analyze experiments in a
communication network with induced CAN or ETHERNET traffic. Network
parameters in the simulation model are: the message period, message size,
message offset, message priority and data transmission rate. In the experiments,
each of a set of four nodes sends, at intervals of 10ms, messages of 8 data octets
to the controller. Collisions may appear when some nodes wish to send
simultaneously messages over the network. Consequently, due to arbitration
process, different time delays will appear for different messages.

TrueTime trace the time in each experiment from the moment when a node
wants to send a message until it reaches in the input buffer of the destination. Two
of the network nodes will be created by configuring the TrueTime kernel block
offered by the TrueTime library. The kernel is initialized using the function
ttinitKernel to wich the corresponding parameters must be given. As the nodes
send messages periodically, the function ttCreatePeriodicTask will be used to
create a periodic task at each node. The functions ttCreatelnterruptHandler and
ttinitNetwork will be used to initialize the network. The function ttSendMsg will
be correspondingly configured to send the message over the TrueTime network.

The other two nodes will be created using the built in block named
ttSendMsg, as seen in the Fig. 4.1. These are configured through the Block
Parameters dialog box. The ttSendMsg block has a Simulink trigger input port
which can be configured to trigger on raising, falling, or either flanks. In this case
a pulse generator is connected at this block and the trigger port is set on “either”.

The analysis of CAN and Ethernet in distributed real-time systems 31

As seen in the Fig. 4.1 a priority input port is also set to allocate message priority
in the case when the protocol allows this (CAN). The simulation network is
represented in the Fig. 4.1 below.

et b M

Clock
=) = Pulse v Gei:lr:on
o o Gi \{
NoDE1| < NoDE2| % enerator o7 ;'
Water ° Oil ° >|dat
Temperature 3 Pressure 3 1 snd (> (In10ut2
priority 4 priority
I— Constant NODE 3 Constanti NODE 4 !
Gear icrocontrolle
. Angle Sensor
Information
\4 \ 4
= N) <)
2 2 2 2 2
@ @ @ @ @
Network e ~ - 2 -
> S 2 3 >
g 8 g g g

Fig. 4.1. Network model

We consider that the most important message, Gear Information, is sent
by node N3, followed by Oil_pressusre message send by node N2.

The first experiment is an Ethernet network simulation and analysis . The
transmission speed is chosen 1Mbps for Ethernet and 250Kbps for CAN network.
In the network schedule, the states of the network node are represented by the
following level: high=sending, medium=waiting, low=idle. As can be seen in the
Fig. 4.2 some messages loose arbitration in favor of others which are the first to
gain the access to the network.

Time Series Plot of Ethemnet

1
|

AENEEEN

1] om o [IRIE] s nos e ooy nos ng o1
Time (saconds)

Fig. 4.2. Network scheduling for Ethernet

32 Siegfried Cojocaru, Constantin Radoi, Stefan Stancescu

When trying to send its first message, node 3 (Gear Information) has to
wait, for example, 8.724 ms until he gets access to the bus and then transmit the
message. In this case node 3 is the last to gain access to the bus. In the case of
Ethernet, the nodes involved in collision wait an arbitrary time until they try to
access the bus again. This leads to various time delays from the moment a node
wishes to send until it gains access to the bus. Another delay for node 3 appears,
for example, at the moment 0.03s, when sending its 4t message. This time, it is
the second node to gain access to the bus, having to wait a much smaller time,
0.6ms, to access the network. On the other hand, node 2 (Oil pressure) gains
arbitration at moment 0.07 s and sends its 8" message immediately, having to wait
instead any other time when it wants to access the network. To send its first
message, it has to wait, for example, 2.284ms until he gets the bus. The time delay
of a message represents the difference between the moment when a node is ready
to send the message and the moment when it is received by the destination node.
The variety of time delays of these messages illustrates the non-deterministic
mechanism used by Ethernet protocol to regulate access to the bus. In RT
systems it is important that the deadline for a message is guaranteed. One can
notice that in this case the deadline for the Gear Information and Oil pressure
cannot be guaranteed because many times they loose arbitration and have to wait
until other messages are transmitted.

Keeping the same network configuration, the second experiment simulates
and analyses a CAN network. CAN protocol offers the possibility to allocate
priority to messages according to their importance.

Time Series Plot of CAN

s | 1] |

0 0.01 0.2 0.0z 0.04 0.05 0.06 0.07 0.08 0.09 01
Time (seconds)

Fig 4.3. Network scheduling for CAN

The analysis of CAN and Ethernet in distributed real-time systems 33

Suppose we give nodel, node2, node3 and node4 the priorities 1, 2, 3 and
4 respectively. As can be seen in the Fig. 4.3, node 3 (Gear Information) always
looses arbitration in favor of node 2 and 1. In the same way node 2, to which
priority 2 is assigned, loses arbitration against node 1. It is to be noticed that CAN
has a constant time delay which depends on the message priority.

For Ethernet network, however, the average time delay is not constant and
it is difficult to predict even under low traffic conditions, that some messages
must be rejected due to collisions, accordingly to BEB algorithm. The values of
mean time delay calculated in table.l illustrate the nondeterministic feature of
time delay in Ethernet even when the network is not saturated. By comparison, the
CAN network presents constant average time delay and O values for standard
deviation. There is a linear trend for message time delay depending on the
message priority. This is due to the priority based algorithm and the periodicity of
messages which allow CAN to guarantee constant time delay for its messages.

Table 1
Simulation results for Ethernet and CAN
Med. Ethernet Med.
Ethernet Deviation CAN
[ms] [ms] [ms]
Nodel 1.6706 2431454318 0.444

Node2 1.3184 | 1.024334711 0.888
Node3 2.6229 | 3.687007354 1.332
Node4 1.2702 | 1.840722385 1.776
Med 1.720525 | 2.245879692 1.110

As node 3 and node 2, respectively, send the most important messages in
the network the design of the network can be improved by giving node 3 priority
1, node 1 priority 3, and choosing an offset for node 2 equal to 2ms.The
simulation results indicate that better performances are obtained for node 3 and
node 2. Running on a CAN network, node 3, which has the highest priority
messages, will be the one to gain first access to the bus in any collision situation.
By choosing a certain offset for node 2 it is possible to avoid collision with other
messages. This offset depends on the size of messages to be transmitted, their
period and the network transmission rate. Node 3, and node 2, with an offset of
2ms, request transmission at every 10 ms and don’t have to wait any longer to
transmit their message. By comparison, node 4 has to wait for both node 3 to
finish first its transmission and then for node 1. By configuring the network this
way deadline can be guaranteed for message Gear Information sent by node 3 and
Oil pressure sent by node?2.

34 Siegfried Cojocaru, Constantin Radoi, Stefan Stancescu

$5. Conclusion

On a RT bus, response time of messages should be bounded. The Ethernet
protocol uses the BEB algorithm to solve collisions in a non-deterministic manner
and does not support any message prioritization. Ethernet is not suited for traffic
with RT requirements. When the node has to send the highest priority message,
the CAN arbitration mechanism allows it to immediately access the bus and
transmit without any delay. In CAN protocol, the worst case response time for
highest priority message is deterministic, and priorities can be allocated to
messages according to their importance in order to meet their timing
requirements. Choosing a certain offset for messages, collision may be avoided in
some extent. For control systems with short and/or prioritized messages, CAN
offers a better performance.

REFERENCES

[1] Stallings William, Data and computer communication, ISBN 0-13-084370-9, 2000

[2] R.S. Raji, Smart networks for control, IEEE Spectrum, vol. 31, no. 6, pp. 49-55, June 1994

[3] Etschberger Konrad, Controller Area Network (CAN) Grundlagen, Protokolle, Bausteine,
Anwendungen, Dritte Auflage. Hanser Verlag, Miinchen Wien, 2002

[4] A.S. Tanenbaum, Computer Networks, Upper Saddle River, NJ, Prentice-Hall Inc., third
edition, 1996

[5] F.-L. Lian, J.R. Moyne, D.M. Tilbury, Performance evaluation of control networks: Ethernet,
ControlNet, and DeviceNet, Technical Report: UM-MEAM-99-02, 2001

[6] K. Tindell, A. Burns, A.J. Wellings, Calculating Controller Area Network (CAN)message
response times, Control Engineering Practice, vol. 3, no. 8, pp. 1163-1169,Aug. 1995.

[7] M. Ohlin, D. Henriksson, A. Cervin, TrueTime 1.5—Reference manual, Department of
Automatic Control, Lund Institute of Technology, January 2007

[8] Andersson, Martin, Dan Henriksson, Anton Cervin, Karl-Erik Arzén, (2005) Simulation of
wireless networked control systems. In: Proceedings of the 44th IEEE Conference on
Decision and Control and European Control Conference ECC 2005. Seville, Spain

