
U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 3, 2023 ISSN 2286-3540

BENEFITS, CHALLENGES, AND PERFORMANCE
ANALYSIS OF A SCALABLE WEB ARCHITECTURE BASED

ON MICRO-FRONTENDS

Adrian Petcu1, Madalin Frunzete2, Dan Alexandru Stoichescu3

In recent years, there has been significant growth in software devel-
opment in terms of how code is managed, load distribution, and the ease
of adding new features to existing codebases. While there are established
patterns for achieving these goals in backend development, front-end appli-
cations or Graphical User Interfaces (GUIs) do not have a simple, scalable
implementation pattern. Micro-frontends can help with this issue by mak-
ing front-end development more scalable and straightforward. This is espe-
cially useful since teams often struggle with monolithic applications that are
difficult to maintain or enhance. This paper will explore the benefits and
challenges of a scalable architecture based on micro-frontends.

Keywords: micro-frontends, scalability, architecture, code management,
GUIs

1. Introduction

Web applications have evolved to support working on multiple layers
without developers stepping on each other’s toes while parallelizing work on
the same feature between different teams and technologies.

In recent years, software development has been approached differently.
The focus has shifted from having developers work on features from start to
finish to having them concurrently work on various aspects of the application.
Currently, methods have been implemented to enable multiple developers to
collaborate on the same feature, with each developer primarily focusing on a
single application layer instead of multiple layers.

For example, for web applications that have specialized front-end, back-
end, and database developers features can be developed in parallel on all three
layers, increasing efficiency and expertise. An advantage of working on layers

1PHD Student, Faculty of Electronics Telecommunications and Information Technology,
University ”Politehnica” of Bucharest, Romania, e-mail: adrian.petcu@stud.etti.upb.ro

2Lecturer, Faculty of Electronics Telecommunications and Information Technology, Uni-
versity ”Politehnica” of Bucharest, Romania

3Professor, Faculty of Electronics Telecommunications and Information Technology, Uni-
versity ”Politehnica” of Bucharest, Romania

319



320 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

is that communication between the front-end and back-end can be abstracted,
and any layers can be changed without the other layer’s announcement.

Another trend when writing this paper is splitting large applications
into smaller apps, specialized and coordinated by a central proxy application.
This is commonly referred to as ”splitting monolith applications into micro-
services.” This reduces the deployment times and allows developers to work on
specialized services rather than everybody working on the same application.

This paper analyzes the existing solutions for creating micro-frontend
applications and highlights obstacles and advantages.

In the first section, we analyze current architecture patterns and their
benefits and drawbacks. Then we deep-dive into micro-frontend architecture,
investigating patterns and implementation techniques. Finally, we research the
available methods for implementing micro-frontends, each with advantages and
disadvantages based on predefined criteria, and a practical comparison between
three implementations of choice.

2. Architectural overview

In recent years, new technologies and methodologies have enabled the
development and deployment of software applications to be performed more
quickly and efficiently. One of the most significant trends in software develop-
ment is the shift from monolithic to microservice-based applications. Typically,
monolithic applications are large, complex applications that are created and
deployed as a singular entity. Conversely, microservices are small, independent
services collaborating to form a larger application.

For many years, monolithic applications have been the predominant ar-
chitecture for software development, but they have several drawbacks. They
can be challenging to maintain and scale, and revisions to one part of the ap-
plication can significantly affect other areas. On the other hand, microservices
offer a more modular approach to software development, with each service ac-
countable for a particular function or feature. This enables greater flexibility
and scalability, as each service can be developed and deployed independently,
making adding new features simpler or extending the application to meet fluc-
tuating demand.

2.1. Monolithic Architecture

The word ’Monolith’ in software development refers to a single-tiered ap-
plication in which multiple components and services are combined and served
under the same application infrastructure, which is served by only one plat-
form. Such applications usually serve multiple areas of concern[1] from one
big application. Such components and services might include the following in
a regular application:
(1) User authorization and authentication are used to manage the user’s iden-

tity and application browsing session in the application.



Benefits, challenges, and performance analysis of a scalable web architecture based on ... 321

(2) Business logic responsible for flows and application actions
(3) The presentation layer is provided by the User Interface, which interacts

with the application layer[2] via HTTP requests
(4) Integration with third-party applications via network protocols and REST

communication Notification services and monitoring, responsible for rais-
ing alerts when applications are down
The monolithic Architecture has been present and is implemented in most

of the applications [3] we interact with in our current days. Such architecture
is easy to follow as it is straightforward in all processes, from development and
testing to deployment. Applications with higher complexity usually become
problematic as they are hard to maintain, and more complexity is introduced
by multiple teams working on the same codebase. There are several drawbacks
to monolithic architectures, and this can be seen in the following list:
(1) The entire application must be shut down and redeployed for each minor

change, and users might be affected.
(2) With a higher complexity, the codebase increases along with the build

time, disk space, and startup time.
(3) Maintenance becomes stressful as the application becomes too large and

complex to understand fully. It is difficult to make changes quickly and
accurately.

(4) Reliability: a failure in a module can potentially stop the entire process
or the application instance.

(5) Although it may seem simple in the early stages, monolithic applications
have difficulty introducing new technologies[4] because framework changes
can affect the entire application.

(6) Monolithic applications can also be difficult to scale when different mod-
ules have conflicting resource requirements.

2.2. Microservices Architecture

The Microservices architecture is a variant of the Service Oriented Ar-
chitecture. Even though SOA has been available for a long time, microservices
were officially adopted in 2012 [5]. The central concept behind microservices
is to have multiple small and autonomous services that work together to serve
the same purpose of a large application focusing on dividing the large, complex
application into smaller chunks [6], organized by sub-domains, thus being eas-
ier to maintain. This way, smaller-sized applications are independent and easy
to deploy, ensuring that if a particular service is down, the rest of the services
and a large proportion of the application will continue functioning properly.
There are multiple benefits to microservices. A part of those benefits can be
observed in the following list:
(1) Continuous delivery and deployment are greatly simplified because the

application is decoupled into smaller services[7] that serve a limited pur-
pose.



322 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

Figure 1. Monolith vs Microservice Arhitecture

(2) Development of new features can be done independently, and the number
of code conflicts between the development teams is significantly reduced.

(3) Fault isolation is improved. If a service is down due to memory leaks
or some other errors, the rest of the services will continue to provide re-
sponses to the consumers, and only some parts of the end-user application
might be affected.

(4) Automated testing is improved as small-scaled services serve limited scopes.
(5) The microservices architecture allows team independence in deciding the

architecture[8] and programming language used for each service, as the
communication is done via agreed standards.

(6) Improved testability because of the smaller services and faster deployment.
(7) Development can be scaled and organized between multiple teams on the

spot.

2.3. Monoliths vs Microservices

As per the stated advantages and drawbacks, microservices are an obvi-
ous choice. If there is a particular demand for a specific area of the application,
only the services responsible for that area are scaled to meet consumer needs[9].
The scaling is horizontal and can be instantaneous because the small size of
microservices allows them to start very fast. Scalability can also be achieved
with monoliths, but the application’s resource consumption would significantly
increase. Figure 1 presents a comparison between layer separation in both ar-
chitectures.



Benefits, challenges, and performance analysis of a scalable web architecture based on ... 323

3. Micro-frontends

In the cloud web application area, and the business logic being trans-
formed into the microservices architecture, the front-end applications become
bigger and bigger. Slowly, the non-essential logic is moved to the front-end
applications, and this can cause a strain on the applications, which become
harder to maintain. [10] As previously stated, breaking the backend applica-
tions from a monolith into microservices brings significant benefits, and the
same architecture pattern should also be explored for the User Interface ap-
plications. This would break the User Interface into multiple smaller modules
that can work independently but under the same application shell [11]. The
solution for this problem is using Micro Frontends.

New front-end frameworks are introduced to the public. Along with
them, the appetite for working with new and optimized tooling reduces the
development time while increasing the application performance. There are
multiple ways to organize front-end applications, i.e., Single Page Applications
(SPA) and Server-Side Rendered Applications (SSR). However, most of the
solutions are monoliths loaded chunk by chunk instead of each area being
technology agnostic[12] and independently deployable.

Software developers often adopt technologies based on their experience
without considering the whole project’s magnitude, thus leading to a complex,
monolithic project in which multiple teams are involved. Working on a single
codebase developed by multiple teams takes time to maintain.

Micro-Frontend is a Microservice-like approach to front-end web tech-
nologies. The primary purpose behind micro-frontends is to split the applica-
tion into multiple application units based on pieces of functionality or screens
that represent a specific domain instead of creating an actual monolithic front-
end application[13]. De-composing the application is the team’s responsibility
so independent parts coexist and share a common codebase when needed.

As can be seen in figure 2, a Micro-Fronted application is a composi-
tion of features or micro-applications that work together to create a more
extensive application where independent units are controlled end-to-end by
cross-functional teams. Thus, there is a loose coupling between the apps, and
they coexist using well-defined contracts. Such micro-applications or features
can belong to one or more application suites, thus strengthening the idea of
reusability. A perfect example of a micro-frontend unit would be a shopping
cart shared between multiple e-commerce solutions developed by the same
company.

3.1. Composition types

To build a Micro-Frontends application, there are a few different options.
For example, with Micro-Frontends architecture, certain architectural decisions
must be made in advance[14] because these decisions will shape the future
decisions made on the side of the project.



324 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

Figure 2. Cross-functional teams with micro-frontends

The most critical decision in defining Micro-Frontends is to identify the
need to consider a Micro-Frontend from a technical point of view. There are
two options for this:

• Horizontal split: several Micro-Frontends on the same page.
• Vertical split: one Micro-Frontend at a time.

In a horizontal split (figure 3), several smaller applications are loaded
onto the same page, requiring several teams to coordinate their efforts. Each
team is responsible for a part of the screen.



Benefits, challenges, and performance analysis of a scalable web architecture based on ... 325

Figure 3. Horizontal splitting

Figure 4. Vertical splitting

In a vertical split (figure 4), each application represents an entire page
of the overall application. Each team is responsible for one page and the
integration with other pages.

3.2. Challenges of using a micro-frontend architecture

To the best of our knowledge, only a limited number of studies were
created to find the best approach for adopting a micro-frontend architecture.
Thus, there is no standard in place. The following challenges in implementing
a micro-frontend architecture have been identified:

• Working on a separate application section, a robust framework for coor-
dinating events and communication between the different units must be
maintained.

• Backward compatibility must be respected when modifying the coordina-
tor application.

• A standard for communication between units must be implemented[15]
with well-defined, standardized inputs and outputs.



326 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

• Communication should be centralized, and the Publisher/Subscriber pat-
tern will facilitate the communication between many components at once

• Overall bundle size must be controlled by instantiating framework core
bundles only in need and not for every unit.

• A styling library must be shared between all the independent units to
keep aspect consistency and reduce code duplication and overall bundle
size.

3.3. Benefits

Emphasizing the emerging attributes and the benefits they bring rather
than a specific technical approach, the micro-frontend architecture brings many
benefits to the development teams.

3.3.1. Incremental updates. Many organizations are slow in releasing new fea-
tures since the release process is often clogged by procedures or the need to
align teams and approvals.

Shifting from a monolithic to a microservice approach is done gradually,
tearing the application part by part and extracting it into smaller, easily-
maintainable chunks, easy to release independently[16] while releasing new
features on the base module in the regular cadence which the organization is
accustomed to.

Migration from old to new is easily achievable by intertwining the mono-
lithic application with micro-front-ends. Incrementally updating parts of the
application allow small experiments to be run in isolation. i.e., trying a differ-
ent communication method or a new pattern of writing code

3.3.2. Simple, decoupled codebases. Codebases for monolithic applications tend
to get bigger due to increasing complexity and feature add-ins. This leads to
code smells and code duplications that result in developer frustration and slow-
ness in reaching a business goal. Coupling different areas of the application
also bring an extra layer of complexity because any code change can lead to
breaking some other working parts of the application

Since the micro-frontends are independent working pieces of the big-
ger functionality, their codebase is significantly smaller and easy to maintain.
Coupling is avoided by separating the codebases and keeping a clean commu-
nication channel applicable to all plug-and-play microservices.

Sharing is encouraged between microservices to ensure consistency and
reduce duplication. The key components that have to be shared are:

• Styling should be shared since the app needs to follow the same design
guideline

• Stateless libraries that are referred to as ”utilities” (e.g. string parsing
libraries, date formatting libraries)



Benefits, challenges, and performance analysis of a scalable web architecture based on ... 327

Figure 5. Independent deployments

Best coding practices need to be put in place to ensure that even though
code bases are separated, the quality of the code and consistency across the
application is in place.

3.3.3. Independent deployments. The main advantage of micro frontends is in-
dependent deployability without getting stuck on the broader business process
of deploying large applications.

Independent deployments allow more minor, frequent codebase updates.
However, if something goes wrong with the targeted deployment, this will
only impact one user-interface area[17], and rollback can be easily achieved to
restore the functionality.

Release cycles of independent smaller applications can be intertwined.
Whenever a microservice is working and ready to be shipped to production, it
should be independent of the other microservices’ overall context and readiness
state.

Figure 5 reflects the independence of deploying multiple parts of the same
application into production to form the full functionalities.

3.3.4. Autonomous teams. Having decoupled the codebases and the release
cycles, teams achieve independency to self-organize [18] and deliver their code
to the end user whenever it is production ready. Of course, broader business
and marketing strategies must be considered.

Teams become total owners of their code quality, business logic, frame-
work, and styling particularities, as a larger framework does not constrain
them.

Figure 6 reflects the splitting of layers between cross-functional teams
working on the same product.



328 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

Figure 6. Team ownership

3.4. Micro-frontend solutions

Several micro-frontend solutions have emerged in recent years, each with
benefits and drawbacks. There are multiple out-of-the-box solutions present
on the web such as SingleSPA or NX but also many solutions can be built
from scratch. Some of the current solutions are:

• Routing Each route represents a different micro frontend
• Iframe Each micro-frontend is included in the application via a frame
inside a base application

• Web components A set of standardized browser technologies that en-
ables the creation of modular components and are framework-agnostic

• Module federation Enables the dynamic loading of code and resources
From a performance perspective, web components and module federation

perform better than iframe and routing solutions in terms of load time and
speed. However, we can expect a higher initial load time for web components
since all dependencies need to be loaded up-front. Module federation has an
increased performance for resource sharing, and scalability as it allows dynamic
loading of code across different parts of the application.

Web components and module federation tend to be the most tech-agnostic
since they can be used with a variety of frameworks. However, since routing
and iframe don’t necessarily rely on the parent to display content, they can
also be technologically agnostic.

Routing and Iframe require the least amount of specialized developer
knowledge as they can be developed independently regardless of the technology
chosen. Web components and module federation require a literature study for
in-depth knowledge.



Benefits, challenges, and performance analysis of a scalable web architecture based on ... 329

Resource sharing performs less with routing and iframe since in some
scenarios files and resources need to be duplicated since the micro-frontends
can work independently.

User experience is impacted mostly on routing and iframe solutions as
they either require a full page reload or a specific part of the page to become
unavailable until the resources are loaded. In module federation and web com-
ponents, the user experience is not impacted as long as development discipline
is in place.

4. Research methodology

A thorough research methodology was employed to compare the advan-
tages of various micro-frontend solutions. The methodology included a compre-
hensive analysis of prior research and publications on the subject and analyzing
third-party providers’ documentation for existing micro-frontend solutions.

Identifying the different types of micro-frontend solutions to be evaluated
was the initial phase in the research methodology. Among these were routing,
iframe, web components, and module federation.

The second phase of the research methodology involved establishing the
evaluation criteria for each micro-frontend solution. Time required for the
first paint, number of requests, total resource consumption, and load time were
identified as the criteria. These criteria were chosen based on their significance
to the micro-frontend solution’s overall success.

By comparing the advantages and disadvantages of each solution con-
cerning the identified criteria, we determined which solution would be most
appropriate for migrating an application to a micro-frontend architecture.

The implementation of a simple web application has taken place as part of
this study in order to compare two micro-frontend solutions with the monolith
approach. Similar variations of the application have been implemented using
iframes and module federation for comparison. Figure 7 portrays the applica-
tion implemented. The turquoise and mauve blocks represent micro-frontends
for the iframe and module federation implementations. The navigation bar and
the top-right block belong to the shell application, which subsequently loads
the modules. Using the practical implementation we acquired information and
insights regarding the performance of each micro-frontend solution in meeting
these criteria.

Relevance of the observed criteria:
• First paint Time spent until the full page is displayed to the user and is
relevant for the general user experience when opening the website. It is
an indicator of how quickly the website becomes visually interactive and
provides feedback to the user.

• Requests Number of network requests made by the application. Each
request made by the browser to fetch a specific resource (such as HTML,
CSS, JavaScript files, images, etc.) introduces additional overhead and



330 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

Figure 7. Simple application layout

Figure 8. Analysis of the first content paint time using Chrome inspector

Figure 9. Analysis of resources consumption with Chrome inspector

can impact the overall load time and user experience. Handling a larger
number of requests may imply additional server costs as well.

• Resources Total size of network requests. This metric directly impacts
the time it takes for a website to load.

• Load time Time spent until all resources for the page have been loaded
and it represents the time it takes for a website to fully load and become
usable for the user.
Analyzing the implemented solution using the browser inspection tools

available. Figure 8 is an example of the first content paint analysis, while
figure 9 represents an analysis of the resources loaded for each implemented
solution.

5. Results

Several prospective research findings regarding the advantages and dis-
advantages of various micro-frontend solutions can be deduced from the eval-
uation criteria enumerated in the research methodology.



Benefits, challenges, and performance analysis of a scalable web architecture based on ... 331

We can calculate the relative improvement using the Equation 1 formula,
where N represents the new value and O represents the original value.

RI =
N −O

O
(1)

Analyzing the information resulting from implementing a simple web
application as seen in table 1 and figure 10, we can observe that the module
federation solution outperforms the iframe implementation. Figure 10 presents
a radar chart in which values obtained from the analysis and outline in table
1 are compared between the three implementations.

All values have been normalized to have a similar graphical representation
between the four metrics while maintaining relativity for the three solutions
studied.

Regarding the time required for painting the application, loading it, the
resources it consumes, and the requests made, the best result is the closest to
zero, or the center of the radar chart. We can assume that for larger projects
or codebases, the first paint time will increase for the monolith solution as the
total bundle size increases.

Module federation shows a 55% decrease in time spent for the first paint
as compared with iframe and a 29% increase in time spent compared to a
monolith application. Still, taking into consideration that the first paint is
dependent on the bundle size, for larger applications, the first paint time will
increase compared to module federation which leverages asynchronous module
loading in which modules are loaded on the fly depending on the need of the
user.

The results show that the bundle size is reduced in module federation
compared to the iframe solution. Resource duplication in an iframe and rout-
ing solution is often inevitable, thus, increasing the bundle size. Analyzing the
results obtained and listed in table 1, we can observe a 60% decrease in bun-
dle size for the module federation compared with the iframe implementation.
Nevertheless, the module federation implementation shows a 22% increase in
bundle size compared to the monolith approach.

In terms of the number of requests and the total size of resources
loaded, module federation outperforms the iframe implementation but is less
performant than the monolith implementation. Iframe implementation shows
a significant increase compared to the monolith approach and monolith ap-
proach, mostly since resources are not shared between the different parts of
the application. Module federation shows a 23% decrease in the number of
requests as compared to the iframe implementation and a 100% increase in
the number of requests compared with the monolith solution.

Load time is calculated based on the initial load of the resources and
since module federation asynchronously loads secondary modules, there is a
significant improvement in speed as compared to monolith and iframe. The



332 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

Table 1. Comparison of resources used by each type of application

Type/Criterion Monolith Iframe Module
First paint 418ms 1222ms 540ms
Requests 13 34 26
Resources 5.4MB 16.6MB 6.6MB
Load Time 1.35s 1.12s 0.774s

Figure 10. Relative Comparison between implemented solutions

results show a 30% decrease when comparing module federation load time to
the iframe and a 42% decrease when compared to the monolith approach.

Even though the results of the module federation solution show a lack in
performance on some specific chapters for the studied implementation, we can
assume that for larger applications, it will outperform the monolith approach.
Achieving decoupled codebases that work together to form an entire applica-
tion offers teams independence and scalability without decreasing performance
or degrading the user experience.

6. Conclusions

As time passes, applications become more complex to fulfill user and
market demands, code complexity increases, and the release process becomes
complicated with multiple variables and interdependencies between teams, lay-
ers, and business feature release timings.

In order to follow a clean approach and allow for easier scaling and team
independency, cross-functional teams working on independent pieces of the



Benefits, challenges, and performance analysis of a scalable web architecture based on ... 333

same applications must be applied by encouraging microservices and micro-
frontends.

Based on the analysis conducted in this paper, it can be concluded that
micro-frontends offer a promising solution for overcoming the challenges posed
by monolithic front-end applications. By dividing the front-end applications
into smaller, more manageable pieces, development teams can work more effi-
ciently, resulting in shorter development cycles and enhanced agility.

While using micro-frontends is still a relatively new architectural pat-
tern, the results presented in this paper suggest that they hold significant
promise for the future of front-end development. Choosing the right architec-
tural pattern or solution should be dictated by a comprehensive analysis of the
entire application code along with an analysis of team competencies, shared
resources, and other company applications with which the code can be shared.

The results obtained are an intriguing expansion for this study, and the
authors want to broaden the outcomes of the current work by conducting a
comprehensive investigation on the impact on performance for enterprise-grade
applications with larger codebases.

REFERENCES

[1] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Rahina Oumarou Ma-
hamane, Pascal Zaragoza, and Christophe Dony. From monolithic architecture style
to microservice one based on a semi-automatic approach. In 2020 IEEE International
Conference on Software Architecture (ICSA), pages 157–168. IEEE, 2020.

[2] Omar Al-Debagy and Peter Martinek. A comparative review of microservices and mono-
lithic architectures. In 2018 IEEE 18th International Symposium on Computational
Intelligence and Informatics (CINTI), pages 000149–000154. IEEE, 2018.

[3] Miika Kalske et al. Transforming monolithic architecture towards microservice archi-
tecture. Master’s thesis, University of Helsinki, 2018.

[4] Chen-Yuan Fan and Shang-Pin Ma. Migrating monolithic mobile application to mi-
croservice architecture: An experiment report. In 2017 ieee international conference on
ai & mobile services (aims), pages 109–112. IEEE, 2017.

[5] Francisco Ponce, Gastón Márquez, and Hernán Astudillo. Migrating from monolithic
architecture to microservices: A rapid review. In 2019 38th International Conference
of the Chilean Computer Science Society (SCCC), pages 1–7. IEEE, 2019.

[6] Nicola Dragoni, Saverio Giallorenzo, Alberto L Lafuente, Manuel Mazzara, Fabrizio
Montesi, Ruslan Mustafin, Lara Safina, and Gianluigi Zavattaro. Microservices: yester-
day, today, and tomorrow. Communications of the ACM, 60(6):36–44, 2017.

[7] Hulya Vural, Murat Koyuncu, and Sinem Guney. A systematic literature review on
microservices. In Computational Science and Its Applications–ICCSA 2017: 17th In-
ternational Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part VI 17, pages
203–217. Springer, 2017.

[8] Daojiang Wang, DongMing Yang, Huan Zhou, Ye Wang, Daocheng Hong, Qiwen
Dong, and Shubing Song. A novel application of educational management information
system based on micro frontends. Procedia Computer Science, 176:1567–1576, 2020.
Knowledge-Based and Intelligent Information and Engineering Systems: Proceedings
of the 24th International Conference KES2020.



334 Adrian Petcu, Madalin Frunzete, Dan Alexandru Stoichescu

[9] Calin CONSTANTINOV, Lucian IORDACHE, Adrian GEORGESCU, Paul-Stefan
POPESCU, and Mihai MOCANU. Performing social data analysis with neo4j: Work-
force trends & corporate information leakage. In 2018 22nd International Conference
on System Theory, Control and Computing (ICSTCC), pages 403–406, 2018.

[10] Anna Montelius. An exploratory study of micro frontends. Master’s thesis, Linköping
University, Software and Systems, 2021.

[11] Severi Peltonen, Luca Mezzalira, and Davide Taibi. Motivations, benefits, and issues
for adopting micro-frontends: A multivocal literature review. Information and Software
Technology, 136:106571, 2021.

[12] Michael Geers. Micro frontends in action. Simon and Schuster, 2020.
[13] Andrey Pavlenko, Nursultan Askarbekuly, Swati Megha, and Manuel Mazzara. Micro-

frontends: application of microservices to web front-ends. J. Internet Serv. Inf. Secur.,
10(2):49–66, 2020.

[14] Luca Mezzalira. Building Micro-Frontends. ” O’Reilly Media, Inc.”, 2021.
[15] Caifang Yang, Chuanchang Liu, and Zhiyuan Su. Research and application of micro

frontends. IOP Conference Series: Materials Science and Engineering, 490:062082, 04
2019.

[16] Davide Taibi and Luca Mezzalira. Micro-frontends: Principles, implementations, and
pitfalls. SIGSOFT Softw. Eng. Notes, 47(4):25–29, sep 2022.

[17] Emilija Stefanovska and Vladimir Trajkovik. Evaluating micro frontend approaches
for code reusability. In International Conference on ICT Innovations, pages 93–106.
Springer, 2022.

[18] P Yedhu Tilak, Vaibhav Yadav, Shah Dhruv Dharmendra, and Narasimha Bolloju.
A platform for enhancing application developer productivity using microservices and
micro-frontends. In 2020 IEEE-HYDCON, pages 1–4. IEEE, 2020.


