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SYNCHRONIZATION AND CONTROL IN THE DYNAMICS 
OF DOUBLE LAYER CHARGE STRUCTURES. 
AUTONOMOUS STOCHASTIC RESONANCE   

Cristina STAN1, Constantin P. CRISTESCU2, Dumitru ALEXANDROAEI3 

În această lucrare se prezintă obervaţii experimentale şi rezultate numerice 
asupra rezonanţei stocastice autonome în sisteme de sarcini electrice de tip strat 
dublu. Structura de acest tip este generată în spaţiul inter-anodic al unei descărcări 
duble simetrice. Dinamica sistemului este studiată prin intermediul luminii emise 
din zona de interes a plasmei. Într-un domeniu restrâns al polarizării relative inter-
anodice, structura tip strat dublu prezintă o dinamică de tranziţie între o stare 
staţionară şi comporare periodică. Suprapunerea unui zgomot Gaussian poate 
induce o asemenea tranziţie fără aplicarea unui semnal periodic din exterior. Cu 
creşterea polarizării relative, curba raportului semnal/zgomot ca funcţie de nivelul 
zgomotului prezintă un maxim, comportare caracteristică fenomenului de rezonanţă 
stocastică autonomă. Modelarea sistemului este realizată pe baza unui model de 
oscilator van der Pol modificat, perturbat de zgomot Gaussian. Valorile numerice 
obţinute sunt în bună concordanţă cu rezultatele experimentale. 

 In this paper we present experimental observations and computational 
results on autonomous stochastic resonance in a double layer (DL) charge 
structure. The DL under investigation is generated in the inter-anode space of a twin 
electrical discharge. We investigate the dynamics of this structure as reflected in the 
light emission from the DL area of the plasma. In a restricted range of the inter-
anode biasing, the DL shows a transition between steady state and periodical 
dynamics. The superposition of Gaussian noise can induce such a transition without 
any periodic signal being injected into the system. With increasing of the biasing, 
the signal to noise ratio versus the noise level is a curve with a maximum, 
characteristic of stochastic resonance. As computational model, we consider a 
modified van der Pol oscillator perturbed by Gaussian noise. This model is found to 
well reproduce the experimentally observed dynamics.  

Keywords: autonomous stochastic resonance, van der Pol oscillator, double layer 

1. Introduction 

The transition from steady state to periodical dynamics under the influence 
of noise in the absence of an injected periodical perturbation is known as 
autonomous stochastic resonance (ASR). During the twenty five years since the 
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first mention of stochastic resonance (SR) in connection with the apparent 
periodicity of ice ages on earth, the subject has received considerable attention 
both theoretically and experimentally. The phenomenon can take place in 
nonlinear systems only and consists in a noise induced cooperative process 
leading to resonance between a weak periodic modulation and the stochastic 
signal. As a result, the small, hardly detectable deterministic modulation becomes 
clearly observable after the addition of noise. The original and still most popular 
model considers a weak periodical signal and a noise (usually Gaussian) 
simultaneously injected into a nonlinear system characterized by a two well 
potential [1-4]. While the model is applicable for many observed situations, 
systems where noise can lead to periodical dynamics without the necessity of 
injecting a periodical signal from outside were reported [5, 6]. This phenomenon 
was initially described in the last decade of the twentieth century [7-9] and was 
named autonomous stochastic resonance.  

In this paper we present the analysis of experimental observations on the 
stochastically induced harmonic oscillations in a DL charge structure generated in 
the inter-anode space of a twin electrical discharge with suitable biasing of one 
anode against the other. A computational analysis based on a modified van der Pol 
system working with parameters in the range corresponding to a supercritical 
Hopf bifurcation is presented. Addition of Gaussian noise under these 
circumstances can induce the transition from steady state to periodic dynamics.  

 

2. Experimental set-up and results 

A sketch of the experimental device is shown in Fig.1. Two independent 
electric discharges at low pressure (80 mTorr) in flowing Argon are running 
between the electrodes K1-A1 and K2-A2 respectively, placed in the same glass 
tube. A dc voltage source maintains a constant biasing U of one anode against the 
other. A perturbed regime can be generated if a small variable voltage is 
connected in series with the dc biasing. In the present study, the perturbation is 
generated by a Gaussian noise supply (denoted Un on Fig.1), with an equivalent 
standard deviation Us=10Vrms, coupled to the discharge through an attenuation 
network. The DL is the source of oscillations in the inter-anode plasma and its 
behavior can be efficiently controlled by the characteristics of the biasing [10-12]. 

In this study, we are interested in a small range of inter-anode biasing 
where a transition between steady state and periodical dynamics is taking place. 
From the dynamical point of view, in the transition region, a limit cycle can 
disappear if the control parameter (related to the biasing voltage) is adjusted 
below a critical value. At higher biasing, the DL behavior is more complex and 
correspondingly, its dynamics is different showing period doubling sequences and 
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chaos. For this range, a system of two coupled van der Pol oscillators was found 
to satisfactorily model the experimental dynamics [10]. 

 

 
Fig. 1. Sketch of the experimental set-up. 

 
We study the dynamics of the DL as reflected in the temporal behavior of 

the light emitted from the DL structure, collected by an optical fiber placed in the 
neighborhood of the DL region and recorded by a photomultiplier (PMT). Data 
acquisitions are analyzed using a personal computer. The main method of 
investigation is by spectral analysis of the PMT response. The stability of our 
experimental system allowed for a sixteen time repetition of the data acquisition 
process and the present analysis is based on the resulting ten sample averaged 
power spectra. 

We focus on the transition from steady state to periodical oscillations 
which takes place for biasing in the range between 17 and 20V where a Hopf 
bifurcation is observed.  

For values of the biasing below a certain threshold, the DL exists in a 
steady state. In this range, the intrinsic oscillation is only present as a transient 
behavior corresponding to the evolution of the system towards its steady state. 
The addition of Gaussian noise to the system in the steady state can induce the 
transition towards a harmonic oscillation through a Hopf bifurcation. For a 
particular noise level the regular dynamics shows an optimum degree of 
coherence that is interpreted as fingerprint of autonomous stochastic resonance.  

The autonomous stochastic resonance behavior can be detected by various 
measures [1, 13].  The one we use in the present work is the dependence of the 
signal to noise ratio (SNR) on the noise level.  

Spectra of the type presented in Fig. 2a where used to generate the 
diagram in Fig. 2b that shows the SNR as function of the noise level. The SNR (in 
dB) is computed from the power spectra as proportional to the logarithm to base 
ten of the ratio between the signal power and the noise power at the frequency of 
the harmonic component: 

N
SSNR 10log10)dB( = .     (1) 
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Here we use the approximate method to estimate S/N illustrated on Fig. 2a. 
The signal and the noise level are measured from a common base line. The curves 
of the SNR versus the noise level, for different values of the dc voltage in the 
range of interest, are shown in Fig.2b. The experimental values are represented by 
the marks while the lines are simply drawn for eye guiding. The graphs clearly 
show two different responses of the system to the noisy perturbation. Below a 
threshold of about 18.5V, the curves show the well-known SR shape presenting a 
clear maximum. The amplitude of the generated oscillation is maximal for an 
optimum value of the noise. Above the mentioned threshold, the SNR is 
continuously decreasing with increasing of the noise level. This is the expected 
behavior because above 18.5V the dynamics of the system consists of regular 
oscillations and the added noise only degrades the regularity. 

 
 

Fig. 2 (a) Power spectrum of the experimental data for the noise level corresponding to the 
maximum of the U=18V curve in Fig. 2b (sixteen spectra average); (b) Curves of SNR versus 

noise level for the specified experimental values 
 

Stochastic resonance-like behavior in electrical discharges was previously 
reported, in weakly ionized radio frequency magnetoplasma [14] as manifested in 
the spontaneously generated nonlinear ionization drift waves; it was also observed 
in waves of stratification generated by a convective instability of the positive 
column in a simple configuration electrical discharge in neon [15]. 

3. Computational model  

As computational model, we consider a slightly modified noise perturbed 
van der Pol oscillator adapted to take into account the effect of the biasing as 
control parameter. This model is supported by some works (e.g. [16]) that suggest 
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that the dynamics of a DL can be described by a van der Pol oscillator. 
Accordingly, the following system is analyzed: 

)(121 tDmxaxx ξ+−=       (2) 

1
2
122 )1( cxxbxx −−−=       (3) 

where a, b, c and D are positive parameters. Here, )(tξ  is a Gaussian noise with 
zero mean and delta correlation: 

)'()'()( tttt −>=< δξξ       (4) 
In the system (2-3), x1 stands for the electric charge distribution across the 

DL. As the DL is generated by the biasing, the effect thereof will be mostly 
manifest in the charge distribution. This is the reason why, both the dc biasing 
term and the noise term are introduced in the charge/current equation (2) rather 
than in the current/voltage equation (3). 

For the selected range of the parameters and in the absence of noise (D=0), 
the system (2-3) presents two distinctive dynamics, depending on the control 
parameter m. Below some threshold value the system presents periodic oscillation 
while above that value, it evolves by damped oscillation towards a stationary 
state.  
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Fig.3 Phase portraits of the system (2-3) without noise (D=0) for the values of the parameters 
indicated on each graph: a) limit cycle oscillation; b) stationary state (spiral sink).   
 
Fig. 3 shows phase portraits of the system (2-3) without noise for the 

values of the parameters indicated on each diagram: limit cycle oscillation (a) and 
stationary state (spiral sink) (b). The broken lines represent the nullclines of the 
system. 

The dynamics of the model system is similar to the behavior of the 
experimental one with respect to their control parameters. However, in the 
experimental system the transition from steady state to periodic oscillation takes 
place with the increasing of the biasing (U), while in the model system, the same 
transition takes place for decreasing of the control parameter (m). 
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Similarity also exists in the dependence of the fundamental frequency of 
oscillation on the control parameter. As presented in a previous work [10], the 
fundamental frequency of the DL shows linear dependence on the biasing for a 
large range of the values, namely between the threshold Uth ≈ 18.5V and about 
30V. 

 
 

Fig. 4 Frequency versus control parameter curves: experimental, solid triangles and computed, 
open triangles. Inset is shown the m=f(U) dependence; the shaded area represents the range of 

interest for this study. 
 
The change of the oscillation frequency of the model system (2-3) with 

respect to the control parameter m in the absence of noise is also linear between 
the threshold value mth≈ 0.51 and m=0.30. Below this value, the frequency 
quickly evolves towards saturation. Based on these facts, we consider a linear 
dependence of m on U namely m = p(q-U). By fitting the linear parts of the two 
frequency versus the control parameter curves (experimental and computed), as 
shown in Fig.4, we find p=0.02 and q=44. Inset on Fig.4 the m=f(U) dependence 
is shown.  

It should be observed that the range of validity of the model extends over a 
considerably larger domain than that used in this study - shaded on this graph. We 
consider this wide range correspondence as solid argument to justify the extension 
of the model for the region of stationary state dynamics. 

Fig. 5 shows the behavior of the model with respect to the injected noise, 
corresponding to the experimental curves in Fig. 2. For values of m in the 
stationary state range (m>0.51) the curves of the SNR versus the noise level (D) 
show a maximum characteristic of stochastic resonance (Fig. 5b). This is in 
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agreement with the experimental stochastic resonance curves obtained for values 
of U below the oscillation threshold (Fig. 2b). For values of m below the threshold 
(m ≈ 0.51), in the oscillatory regime, the curves of the SNR versus the noise level 
show the expected monotonous decreasing with increasing of the noise level. 

 

Fig. 5 Results of the model corresponding to the experimental curves in Fig.2; a) Power spectrum 
of the computed data (ten sample average) for the noise level corresponding to the maximum of 

the m=0.52 curve in Fig. 4b;( b) Curves of SNR versus the noise level computed for values of m in 
the range 0.48-0.53. 

 
This is in agreement with the experimental behavior observed for U larger 

than the threshold. 

4. Conclusions 

We observed that the behavior of a DL dynamics with respect to injected 
noise is changing as the inter-anode biasing transcends a certain threshold value 
that separates stationary and oscillatory dynamics. Although the curves in Fig.2b 
are drawn through a reduced number of points, restricted by the possibilities of the 
available noise generator, we consider the experimental results fully conclusive. 
The numerical treatment of this behavior is based on a modified van der Pol 
system working in the range of the parameters corresponding to a supercritical 
Hopf bifurcation. Addition of Gaussian noise under these circumstances can cause 
the transition from steady state to periodic dynamics. Depending on the value of 
the control parameter, in the oscillatory regime, the curves of the SNR versus the 
noise level show the expected monotonous decreasing with increasing of the noise 
level corresponding to a degrading of the spectrum. In the stationary state, the 
curves show a well defined maximum, characteristic of autonomous stochastic 
resonance. The good agreement between the experimental data and the dynamical 
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treatment demonstrates that a properly modified van der Pol oscillator represents a 
suitable model for the behavior of the DL charge structure in the considered 
circumstances.  
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