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 CENTRALIZED AND DISTRIBUTED H∞ STATE FEEDBACK 
CONTROL LAWS FOR MULTI-AGENT SYSTEMS WITH 

TIME-DELAY COMMUNICATION NETWORKS 

Serena Cristiana STOICU (VOICU)1, Adrian-Mihail STOICA1 

The main objective of this paper is to design a distributed controller for multi-
agent networks. The design of this controller involves solving two specific Riccati 
equations and its structure depends on the connection between agents. Using the H∞ 
control method, the influence of communication time delays on system stability is 
analyzed. The characteristics of the designed controller are highlighted through two 
configurations with a variable number of identical agents and with distinct 
possibilities of their interconnection. Through the presented case study, it is shown 
that the structure of the obtained distributed controller complies with the 
interconnection mode of the agents.  

 
Keywords: multi-agent systems, H∞ type control, distributed controller, time 

delays. 

1. Introduction 

Over the last decades, the interest in multi-agent systems (MAS) 
development has increased significantly. Due to their capabilities to solve complex 
problems, MAS are found in multiple applications of engineering control. 
Therefore, these systems are widely used in various aerial and space missions like 
search and rescue, surveillance and monitoring. Recent progress of this topic is 
treated in surveys, such as [1], [2], [3], [4], where many aspects of these systems 
are described. A few challenges faced by the control theory of multi-agent systems 
are presented in [5]. 

In recent literature, the solutions proposed for networked control systems 
refer to centralized and distributed controllers. A comparative study of these 
methods is presented in [6]. The centralized controller design involves 
interconnection of all agents. This fact implies process data difficulties as a control 
decision-maker has to access information from all networked agents. This type of 
control requires high performance of the central controller, becoming ineffective 
for a large number of agents. Therefore, a single error of the central controller 
influences the behavior of the entire network.  
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Compared to the centralized case, distributed control requires a particular 
structure, namely, the information transmission is achieved between certain agents. 
The communication manner is described by specific matrix forms of graphs. Data 
transmission is provided by communication channels. Many significant theoretical 
results in distributed control of multi-agent systems are reviewed in [7]. 

Although the last period has contributed to the appearance of a considerable 
amount of works regarding the distributed control, only a few of them are surveyed 
in this paper. [8] uses the robustness properties of Linear Quadratic Regulator 
(LQR) to guarantee the robust stability of multi-agent systems. This approach is 
based on the distributed LQR results given in [9], where it is proved that the optimal 
solution depends on the stabilizing solutions of two Riccati equations. It provides a 
numerical example for a network of a large number of identical and dynamically 
decoupled agents. The determination of the solution for the LQR problem for both 
centralized and distributed control is treated in [10]. In order to emphasize the 
differences between these approaches, two different configurations are considered 
as a case study.  

Distributed control has been treated in various works such as [11], [12], 
[13], [14], [15], using different approaches and assumptions. For instance, the 
results presented in [14] focuses on coupled Linear Matrix Inequalities to design a 
distributed feedback controller to achieve H∞ performances. The aim of [15] is to 
determine a distributed control law for a formation of autonomous vehicles with 
double-integrator dynamics.  

Due to recent developments in communication theory, the applications field 
of distributed systems has been considerably extended. The present paper focuses 
on distributed control features for multi-agent systems. To design the control 
algorithms for networked control systems, the H∞ design method is used, taking 
into consideration potential time delays in the communication channels. 

In this paper, the distributed control characteristics are analyzed for two 
different types of flight formation configurations, with variable number of agents 
and distinct possibilities of interconnection.  To reveal the capabilities of this design 
approach, the presented numerical simulations use the decoupled dynamics of an 
agent. Therefore, the performances of the networked system members for the 
longitudinal motion are analyzed. 

This paper is divided in several sections as follows. A few relevant notions 
regarding H∞ standard problem that are used throughout this work are briefly 
reminded in the second part. The following section concerns on the problem 
formulation, specifying the required steps in centralized and distributed controller 
design. The next part presents the proposed approach illustrated by a comparative 
analysis of two different network configurations. The numerical simulations reveal 
the time evolutions for each agent taking into consideration the time delays in 
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communication channels. The concluding remarks are stated in the last section of 
the paper.  

2. Preliminaries 

Consider a network of identical agents for which the dynamics of each one 
is written as: 

𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵1𝑢𝑢1(𝑡𝑡) + 𝐵𝐵2𝑢𝑢2(𝑡𝑡)  
𝑦𝑦1(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) + 𝐷𝐷𝑢𝑢2(𝑡𝑡) (1) 
𝑦𝑦2(𝑡𝑡) = 𝑥𝑥(𝑡𝑡), 𝑡𝑡 ≥ 0   

where 𝒙𝒙 ∈ ℝ𝒏𝒏 is the state vector, 𝒖𝒖𝟏𝟏 ∈ ℝ𝒎𝒎𝟏𝟏 denotes the exogenous input vector, 
𝒖𝒖𝟐𝟐 ∈ ℝ𝒎𝒎𝟐𝟐 represents the control variable, 𝒚𝒚𝟏𝟏 ∈ ℝ𝒑𝒑𝟏𝟏  is the quality output and 𝒚𝒚𝟐𝟐 
stands for the measured output. Furthermore, two conditions are assumed to be true: 
𝑪𝑪𝑻𝑻𝑫𝑫 = 𝟎𝟎 and 𝑫𝑫𝑻𝑻𝑫𝑫 = 𝑰𝑰. For 𝑫𝑫𝑻𝑻𝑫𝑫 invertible, if the previous assumptions are not 
satisfied, the control variable 𝒖𝒖 can be changed and written as follows: 

𝑢𝑢 = −(𝐷𝐷𝑇𝑇𝐷𝐷)−1𝐷𝐷𝑇𝑇𝐶𝐶𝐶𝐶 + (𝐷𝐷𝑇𝑇𝐷𝐷)−
1
2𝑢𝑢�  (2) 

Thus, the above conditions are fulfilled for the new control variable 𝒖𝒖�. In order to 
determine the solution of the H∞ problem for the system (1), the following theorem 
is proved in [16] for the more general case when the system (1) is corrupted with 
state dependent noise. 
Theorem 1. There exists a state-feedback gain 𝑭𝑭 ∈ ℝ𝒎𝒎𝟐𝟐×𝒏𝒏 so that the closed-loop 
system obtained from (1) with 𝒖𝒖(𝒕𝒕) = 𝑭𝑭𝒚𝒚𝟐𝟐(𝒕𝒕), namely 

𝑥̇𝑥(𝑡𝑡) = (𝐴𝐴 + 𝐵𝐵2𝐹𝐹)𝑥𝑥(𝑡𝑡) + 𝐵𝐵1𝑢𝑢1(𝑡𝑡) (3) 
𝑦𝑦1(𝑡𝑡) = (𝐶𝐶 + 𝐷𝐷𝐷𝐷)𝑥𝑥(𝑡𝑡) 

is stable and it has the property that for 𝒙𝒙(𝟎𝟎) = 𝟎𝟎 and for a given value 𝜸𝜸 > 𝟎𝟎, 

�(|𝑦𝑦1(𝑡𝑡)|2 − 𝛾𝛾2|𝑢𝑢1(𝑡𝑡)|2)
∞

0

𝑑𝑑𝑑𝑑 < 0 (4) 

for all ∀𝒖𝒖𝟏𝟏 ∈ 𝓛𝓛𝟐𝟐([𝟎𝟎,∞),ℝ𝒎𝒎𝟏𝟏) where 𝓛𝓛𝟐𝟐([𝟎𝟎,∞),ℝ𝒎𝒎𝟏𝟏) denotes the space of all 𝒎𝒎𝟏𝟏-
dimensional square-integrable functions 𝒇𝒇(𝒕𝒕) if the Riccati equation 

𝐴𝐴𝑇𝑇𝑋𝑋 + 𝑋𝑋𝑋𝑋 + 𝛾𝛾−2𝑋𝑋𝐵𝐵1𝐵𝐵1𝑇𝑇𝑋𝑋 − 𝑋𝑋𝐵𝐵2𝐵𝐵2𝑇𝑇𝑋𝑋 + 𝐶𝐶𝑇𝑇𝐶𝐶 = 0 (5) 

has a stabilizing solution 𝑿𝑿 ≥ 𝟎𝟎 and 

𝐹𝐹 = −𝐵𝐵2𝑇𝑇𝑋𝑋. (6) 
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3. Multi agent systems state feedback H∞ Control; Centralized and 
Distributed Structures 

Consider a network consisting of 𝑵𝑵 identical agents with dynamics of form 
(1), namely: 

𝑥𝑥𝚤̇𝚤(𝑡𝑡) = 𝐴𝐴𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝐵𝐵1𝑢𝑢1𝑖𝑖(𝑡𝑡) + 𝐵𝐵2𝑢𝑢2𝑖𝑖(𝑡𝑡)  
𝑦𝑦1𝑖𝑖(𝑡𝑡) = 𝐶𝐶𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝐷𝐷𝑢𝑢2𝑖𝑖(𝑡𝑡) (7) 
𝑦𝑦2𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑡𝑡 ≥ 0, 𝑖𝑖 = 1, … ,𝑁𝑁   

holding the two conditions 𝑪𝑪𝑻𝑻𝑫𝑫 = 𝟎𝟎 and 𝑫𝑫𝑻𝑻𝑫𝑫 = 𝑰𝑰. The above dynamic system can 
be written in a compact form as: 

𝑥𝑥�̇(𝑡𝑡) = 𝐴̃𝐴𝑥𝑥�(𝑡𝑡) + 𝐵𝐵�1𝑢𝑢�1(𝑡𝑡) + 𝐵𝐵�2𝑢𝑢�2(𝑡𝑡)  
𝑦𝑦�1(𝑡𝑡) = 𝐶̃𝐶𝑥𝑥�(𝑡𝑡) + 𝐷𝐷�𝑢𝑢�2(𝑡𝑡) (8) 
𝑦𝑦�2(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡), 𝑡𝑡 ≥ 0   

where 𝑨𝑨� = 𝑰𝑰𝑵𝑵 ⊗ 𝑨𝑨,  𝑩𝑩�𝟏𝟏 = 𝑰𝑰𝑵𝑵 ⊗ 𝑩𝑩𝟏𝟏,𝑩𝑩�𝟐𝟐 = 𝑰𝑰𝑵𝑵 ⊗ 𝑩𝑩𝟐𝟐,𝑪𝑪� = 𝑰𝑰𝑵𝑵 ⊗ 𝑪𝑪, 𝑫𝑫� = 𝑰𝑰𝑵𝑵 ⊗
𝑫𝑫,𝒙𝒙� = �𝒙𝒙𝟏𝟏𝑻𝑻 …𝒙𝒙𝑵𝑵𝑻𝑻 �

𝑻𝑻
, 𝒖𝒖�𝟏𝟏 = �𝒖𝒖𝟏𝟏𝟏𝟏

𝑻𝑻 …𝒖𝒖𝟏𝟏𝑵𝑵
𝑻𝑻 �

𝑻𝑻
, 𝒖𝒖�𝟐𝟐 = �𝒖𝒖𝟐𝟐𝟏𝟏

𝑻𝑻 …𝒖𝒖𝟐𝟐𝑵𝑵
𝑻𝑻 �

𝑻𝑻
, 𝒚𝒚�𝟏𝟏 =

�𝒚𝒚𝟏𝟏𝟏𝟏
𝑻𝑻 …𝒚𝒚𝟏𝟏𝑵𝑵

𝑻𝑻 �
𝑻𝑻

,  𝒚𝒚�𝟐𝟐 = �𝒚𝒚𝟐𝟐𝟏𝟏
𝑻𝑻 …𝒚𝒚𝟐𝟐𝑵𝑵

𝑻𝑻 �
𝑻𝑻

, where ⊗ denotes the Kronecker product.  
For 𝜸𝜸 > 𝟎𝟎, the following cost function is defined: 

𝐽𝐽�𝑢𝑢11 , … ,𝑢𝑢1𝑁𝑁 , 𝑢𝑢21 , … ,𝑢𝑢2𝑁𝑁� = ∫ [∑ (|𝑦𝑦1𝑖𝑖(𝑡𝑡)|2 − 𝛾𝛾2|𝑢𝑢1𝑖𝑖(𝑡𝑡)|2)  𝑁𝑁
𝑖𝑖=1

∞
0 +

+ 1
2
∑ ∑ (𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑗𝑗(𝑡𝑡))𝑇𝑇𝑄𝑄𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑗𝑗(𝑡𝑡))]𝑑𝑑𝑑𝑑  

(9) 

where 𝑸𝑸𝒊𝒊𝒊𝒊, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, … ,𝑵𝑵 are positive semidefinite weighting matrices. Using the 
previous notations, one may check that (9) can be rewritten as follows:  

𝐽𝐽(𝑢𝑢�1,𝑢𝑢�2) = ��|𝑦𝑦�1(𝑡𝑡)|2 − 𝛾𝛾2|𝑢𝑢�1(𝑡𝑡)|2 + 𝑥𝑥�𝑇𝑇(𝑡𝑡)𝑄𝑄�𝑥𝑥�(𝑡𝑡)�
∞

0

𝑑𝑑𝑑𝑑

= � �𝑥𝑥�𝑇𝑇(𝑡𝑡)𝑄𝑄�𝑥𝑥�(𝑡𝑡) − 𝛾𝛾2𝑢𝑢�1𝑇𝑇(𝑡𝑡)𝑢𝑢�1(𝑡𝑡) + 𝑢𝑢�2𝑇𝑇(𝑡𝑡)𝑢𝑢�2(𝑡𝑡)�
∞

0

𝑑𝑑𝑑𝑑 

(10) 

with  

𝑄𝑄�𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑇𝑇𝐶𝐶 + � 𝑄𝑄𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

 
(11) 

𝑄𝑄�𝑖𝑖𝑖𝑖 = −𝑄𝑄𝑖𝑖𝑖𝑖, 𝑖𝑖 ≠ 𝑗𝑗, 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁. 



Centralized and distributed h∞ state feedback control laws for multi-agent […] networks     83 

Choosing 𝑸𝑸𝒊𝒊𝒊𝒊 of form 𝑸𝑸𝒊𝒊𝒊𝒊 = 𝑷𝑷𝑻𝑻𝑷𝑷, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, … ,𝑵𝑵, 𝒊𝒊 ≠ 𝒋𝒋 with 𝑷𝑷 ≥ 𝟎𝟎, the 
matrix 𝑸𝑸�  becomes: 

𝑄𝑄� = �
𝐶𝐶𝑇𝑇𝐶𝐶 + (𝑁𝑁 − 1)𝑃𝑃𝑇𝑇𝑃𝑃

−𝑃𝑃𝑇𝑇𝑃𝑃
⋮

−𝑃𝑃𝑇𝑇𝑃𝑃

−𝑃𝑃𝑇𝑇𝑃𝑃
𝐶𝐶𝑇𝑇𝐶𝐶 + (𝑁𝑁 − 1)𝑃𝑃𝑇𝑇𝑃𝑃

⋮
−𝑃𝑃𝑇𝑇𝑃𝑃

⋯
⋯
⋱
⋯

−𝑃𝑃𝑇𝑇𝑃𝑃
−𝑃𝑃𝑇𝑇𝑃𝑃
⋮

𝐶𝐶𝑇𝑇𝐶𝐶 + (𝑁𝑁 − 1)𝑃𝑃𝑇𝑇𝑃𝑃
� (12) 

Following [16], we can define 𝓟𝓟� ∈ ℝ𝒏𝒏∙𝑵𝑵×𝒏𝒏∙𝑵𝑵 satisfying the equality 

 𝒫𝒫�𝑇𝑇𝒫𝒫� = 𝑄𝑄� − 𝐼𝐼𝑁𝑁 ⊗ 𝐶𝐶𝑇𝑇𝐶𝐶. (13) 

Then direct algebraic computations show that the cost function (10) may be 
rewritten as 

𝐽𝐽(𝑢𝑢�1,𝑢𝑢�2) = � (|𝑧̃𝑧(𝑡𝑡)|2 − 𝛾𝛾2|𝑢𝑢�1(𝑡𝑡)|2
∞

0
)𝑑𝑑𝑑𝑑 (14) 

where 𝒛𝒛�(𝒕𝒕) = 𝓒𝓒�𝒙𝒙�(𝒕𝒕) + 𝓓𝓓�𝒖𝒖�𝟐𝟐(𝒕𝒕) and where  

𝒞̃𝒞 ∶= � 𝒫𝒫�
𝐼𝐼𝑁𝑁 ⊗ 𝐶𝐶

� and 𝒟𝒟� ∶= �
𝑂𝑂𝑛𝑛∙𝑁𝑁×𝑚𝑚2∙𝑁𝑁

𝐼𝐼𝑁𝑁 ⊗ 𝐷𝐷
� (15) 

The matrices 𝓒𝓒� and 𝓓𝓓�  defined above satisfy the conditions 𝓒𝓒�𝑻𝑻𝓓𝓓� = 𝟎𝟎 and 𝓓𝓓�𝑻𝑻𝓓𝓓� = 𝑰𝑰 
and thus one may use Theorem 1 for the multi-agent system 

𝑥𝑥�̇(𝑡𝑡) = 𝐴̃𝐴𝑥𝑥�(𝑡𝑡) + 𝐵𝐵�1𝑢𝑢�1(𝑡𝑡) + 𝐵𝐵�2𝑢𝑢�2(𝑡𝑡) 
(16) 𝑧̃𝑧(𝑡𝑡) = 𝒞̃𝒞𝑥𝑥�(𝑡𝑡) +  𝒟𝒟�𝑢𝑢�2(𝑡𝑡) 

𝑦𝑦�2(𝑡𝑡) = 𝑥𝑥�(𝑡𝑡), 𝑡𝑡 ≥ 0   

Using a similar reasoning as in [16] where it was assumed that the agents 
dynamics include state-dependent noises, one obtains the following result 
concerning the structure of the centralized H∞ controller. 
Theorem 2. There exists 𝑭𝑭� ∈ ℝ𝒎𝒎𝟐𝟐𝑵𝑵×𝒏𝒏𝒏𝒏 so that the closed loop system obtained from 
(16) with 𝒖𝒖�(𝒕𝒕) = 𝑭𝑭�𝒙𝒙�(𝒕𝒕), namely  

𝑥𝑥�̇(𝑡𝑡) = (𝐴̃𝐴 + 𝐵𝐵�2𝐹𝐹�)𝑥𝑥�(𝑡𝑡) + 𝐵𝐵�1𝑢𝑢�1(𝑡𝑡) 
(17) 𝑧̃𝑧(𝑡𝑡) = (𝐶̃𝐶 + 𝐷𝐷�𝐹𝐹�)𝑥𝑥�(𝑡𝑡) 

has the property that for 𝒙𝒙�(𝟎𝟎) = 𝟎𝟎 and for a given value 𝜸𝜸 > 𝟎𝟎, 
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�(|𝑧̃𝑧(𝑡𝑡)|2 − 𝛾𝛾2|𝑢𝑢�1(𝑡𝑡)|2)
∞

0

𝑑𝑑𝑑𝑑 < 0 (18) 

for all 𝒖𝒖�𝟏𝟏 ∈ 𝓛𝓛𝒖𝒖𝟏𝟏
𝟐𝟐 ([𝟎𝟎,∞),ℝ𝒎𝒎𝟏𝟏𝑵𝑵) if the Riccati type equation  

𝐴̃𝐴𝑇𝑇𝑋𝑋� + 𝑋𝑋�𝐴̃𝐴 + 𝛾𝛾−2𝑋𝑋�𝐵𝐵�1𝐵𝐵�1𝑇𝑇𝑋𝑋� − 𝑋𝑋�𝐵𝐵�2𝐵𝐵�2𝑇𝑇𝑋𝑋� + 𝑄𝑄�𝑇𝑇𝑄𝑄� = 0 (19) 

has a stabilizing solution  𝑿𝑿� ≥ 𝟎𝟎, and in this case,  

𝐹𝐹� = −𝐵𝐵�2𝑇𝑇𝑋𝑋�. (20) 

Furthermore, the stabilizing solution of the Riccati type equation (19) has 
the following structure: 

𝑋𝑋� =

⎣
⎢
⎢
⎡𝑋𝑋
�1 𝑋𝑋�2
𝑋𝑋�2 𝑋𝑋�1

⋯ 𝑋𝑋�2
⋯ 𝑋𝑋�2

⋮ ⋮
𝑋𝑋�2 𝑋𝑋�2

⋱ ⋮
⋯ 𝑋𝑋�1⎦

⎥
⎥
⎤
 (21) 

where 𝑿𝑿�𝟏𝟏 = 𝑿𝑿𝟏𝟏 + (𝑵𝑵− 𝟏𝟏)𝑿𝑿𝟐𝟐 and 𝑿𝑿𝟏𝟏 is the stabilizing positive semidefinite 
solution of the Riccati equation  

𝐴𝐴𝑇𝑇𝑋𝑋1 + 𝑋𝑋1𝐴𝐴 + 𝑋𝑋1(𝛾𝛾−2𝐵𝐵1𝐵𝐵1𝑇𝑇 − 𝐵𝐵2𝐵𝐵2𝑇𝑇)𝑋𝑋1 + 𝐶𝐶𝑇𝑇𝐶𝐶 = 0 (22) 

and  𝑿𝑿�𝟐𝟐 = 𝑿𝑿𝟐𝟐, where 𝑿𝑿𝟐𝟐 is the stabilizing solution of the following Riccati 
equation: 

(𝐴𝐴 + (𝛾𝛾−2𝐵𝐵1𝐵𝐵1𝑇𝑇 − 𝐵𝐵2𝐵𝐵2𝑇𝑇)𝑋𝑋1)𝑇𝑇𝑋𝑋2 + 𝑋𝑋2(𝐴𝐴 + (𝛾𝛾−2𝐵𝐵1𝐵𝐵1𝑇𝑇 − 𝐵𝐵2𝐵𝐵2𝑇𝑇)𝑋𝑋1)
+ 𝑁𝑁𝑋𝑋2(𝛾𝛾−2𝐵𝐵1𝐵𝐵1𝑇𝑇 − 𝐵𝐵2𝐵𝐵2𝑇𝑇)𝑋𝑋2 + 𝑃𝑃𝑇𝑇𝑃𝑃 = 0. (23) 

Then the centralized H∞ state-feedback gain of the multi-agent system has 
the expression 

𝐹𝐹� = �

𝐹𝐹1 𝐹𝐹2
𝐹𝐹2 𝐹𝐹1

⋯ 𝐹𝐹2
⋯ 𝐹𝐹2

⋮ ⋮
𝐹𝐹2 𝐹𝐹2

⋱ ⋮
⋯ 𝐹𝐹1

�, (24) 

where 

𝐹𝐹1 = −𝐵𝐵2𝑇𝑇(𝑋𝑋1 + (𝑁𝑁 − 1)𝑋𝑋2) (25) 
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𝐹𝐹2 = 𝐵𝐵2𝑇𝑇𝑋𝑋2. 

 In the following, one will focus the attention on the distributed controller 
of the multi-agent system. The systems interconnection is defined by graph theory, 
the communication way between agents being described by a matrix form. 
Therefore, a data communication network is established between its agents, defined 
as a graph described by the pair 𝓖𝓖 = (𝓥𝓥,𝑬𝑬) where 𝓥𝓥 represents the set of nodes that 
define the network agents, 𝓥𝓥 = {𝟏𝟏,𝟐𝟐, … ,𝑵𝑵}, and 𝑬𝑬 ⊆ 𝓥𝓥 × 𝓥𝓥 is the set of edges that 
represent the interconnection between a pair of members, 𝑬𝑬 ⊆ {(𝒊𝒊, 𝒋𝒋): 𝒊𝒊, 𝒋𝒋 ∈ 𝓥𝓥, 𝒋𝒋 ≠
𝒊𝒊}. Each edge is marked by a pair of different nodes (𝓥𝓥𝒊𝒊,𝓥𝓥𝒋𝒋). If �𝓥𝓥𝒊𝒊,𝓥𝓥𝒋𝒋� ∈ 𝑬𝑬 ⇔
�𝓥𝓥𝒋𝒋,𝓥𝓥𝒊𝒊� ∈ 𝑬𝑬, the graph is called symmetric (undirected) [18].  

Several notions regarding graph theory and matrix properties are treated in 
[18], [19], [20]. Some necessary specific matrix forms are briefly mentioned in this 
section. According to [8], if 𝒊𝒊, 𝒋𝒋 ∈ 𝓥𝓥 and 𝒊𝒊, 𝒋𝒋 ∈ 𝑬𝑬, then the agent 𝒊𝒊 and the agent 𝒋𝒋 
indicate two adjacent nodes. 

The degree matrix, denoted 𝓓𝓓(𝓖𝓖) ∈ ℝ𝑵𝑵×𝑵𝑵, is a diagonal matrix consisting 
of the number of connections for each agent. The adjacency matrix, 𝓐𝓐(𝓖𝓖) ∈ ℝ𝑵𝑵×𝑵𝑵, 
indicates the mode of connection between the nodes, namely if the pair of agents is 
interconnected. The Laplacian matrix, 𝑳𝑳(𝓖𝓖) ∈ ℝ𝑵𝑵×𝑵𝑵, defines the connection way 
of the graph, given by 𝑳𝑳(𝓖𝓖) = 𝓓𝓓(𝓖𝓖) −𝓐𝓐(𝓖𝓖). These matrix forms are explained as 
follows:  

𝒟𝒟(𝒢𝒢) = �𝑑𝑑𝑑𝑑𝑑𝑑(𝒱𝒱𝑖𝑖), 𝑖𝑖 = 𝑗𝑗
0, 𝑖𝑖 ≠ 𝑗𝑗 ;       𝒜𝒜(𝒢𝒢) = �

𝑎𝑎𝑖𝑖𝑖𝑖 = 0,      ∀𝑖𝑖 ∈ 𝒱𝒱
𝑎𝑎𝑖𝑖𝑖𝑖 = 0, (𝑖𝑖, 𝑗𝑗) ∉ 𝐸𝐸,∀𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱, 𝑖𝑖 ≠ 𝑗𝑗
𝑎𝑎𝑖𝑖𝑖𝑖 = 1, (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸,∀𝑖𝑖, 𝑗𝑗 ∈ 𝒱𝒱, 𝑖𝑖 ≠ 𝑗𝑗 

; 

𝐿𝐿(𝒢𝒢) = �
𝑑𝑑𝑑𝑑𝑑𝑑 (𝒱𝒱𝑖𝑖), 𝑖𝑖 = 𝑗𝑗

−1, 𝑖𝑖 ≠ 𝑗𝑗, �𝒱𝒱𝑖𝑖 ,𝒱𝒱𝑗𝑗� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

(26) 

The distributed control requires a certain structure, rather, the information 
transmission is possible only between certain agents. Due to the limited 
interconnection between agents, the feedback gain expression may be written using 
the adjacency matrix defined above, as follows: 

𝐹𝐹�𝐷𝐷 = 𝐼𝐼𝑁𝑁 ⊗ 𝐹𝐹1 + 𝒜𝒜(𝒢𝒢) ⊗𝐹𝐹2 (27) 

 The presence of null terms in the adjacency matrix introduces a new feature, 
namely, if the obtained distributed controller guarantees the system stability and the 
required H∞ performances. Adopting as in [9] the parameterization  

𝐹𝐹�𝐷𝐷 = 𝐼𝐼𝑁𝑁 ⊗ 𝐹𝐹1 + 𝑎𝑎𝐼𝐼𝑁𝑁 ⊗ 𝐹𝐹2 + 𝑏𝑏𝑏𝑏(𝒢𝒢) ⊗𝐹𝐹2 (28) 
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one will determine the domain of the parameters 𝒂𝒂 and 𝒃𝒃 for which the multi-agent 
closed loop system is stable. One can notice that for 𝒂𝒂 = 𝟎𝟎 and 𝒃𝒃 = 𝟏𝟏, the gain 
expressed in (28) coincides with (24). Using the expressions (25), it follows that: 

𝐹𝐹�𝐷𝐷 = −𝐼𝐼𝑁𝑁 ⊗ (𝐵𝐵2𝑇𝑇𝑋𝑋1) − ((𝑁𝑁𝐿𝐿 − 1 − 𝑎𝑎)𝐼𝐼𝑁𝑁 − 𝑏𝑏𝑏𝑏(𝒢𝒢)) ⊗ (𝐵𝐵2𝑇𝑇𝑋𝑋2) (29) 

where 𝑵𝑵𝑳𝑳 = 𝟏𝟏 + 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 and 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 is the maximum number of connections for an 
agent.  
Denoting 𝓝𝓝𝒂𝒂,𝒃𝒃 = (𝑵𝑵𝑳𝑳 − 𝟏𝟏 − 𝒂𝒂)𝑰𝑰𝑵𝑵 − 𝒃𝒃𝒃𝒃(𝓖𝓖), the above expression becomes: 

𝐹𝐹�𝐷𝐷 = −𝐼𝐼𝑁𝑁 ⊗ (𝐵𝐵2𝑇𝑇𝑋𝑋1) −𝒩𝒩𝑎𝑎,𝑏𝑏 ⊗ (𝐵𝐵2𝑇𝑇𝑋𝑋2). (30) 

Taking into account that 𝑩𝑩�𝟐𝟐(𝓝𝓝𝒂𝒂,𝒃𝒃 ⊗ (𝑩𝑩𝟐𝟐
𝑻𝑻𝑿𝑿𝟐𝟐)) = 𝓝𝓝𝒂𝒂,𝒃𝒃 ⊗ (𝑩𝑩𝟐𝟐𝑩𝑩𝟐𝟐

𝑻𝑻𝑿𝑿𝟐𝟐), it 
follows that: 

𝐴̃𝐴𝐷𝐷 = 𝐼𝐼𝑁𝑁 ⊗ (𝐴𝐴 − 𝐵𝐵2𝐵𝐵2𝑇𝑇𝑋𝑋1) −𝒩𝒩𝑎𝑎,𝑏𝑏 ⊗ (𝐵𝐵2𝐵𝐵2𝑇𝑇𝑋𝑋2). (31) 

In order to determine the domain (𝒂𝒂,𝒃𝒃) for which the matrix 𝑨𝑨�𝑫𝑫 is Hurwitz 
one may use Proposition 2 of [9] which states that if 𝑨𝑨� = 𝑰𝑰𝒏𝒏⨂𝑨𝑨 and 𝑪𝑪� = 𝑩𝑩⨂𝑪𝑪 
where 𝑨𝑨,𝑪𝑪 ∈ ℝ𝒎𝒎×𝒎𝒎 and 𝑩𝑩 ∈ ℝ𝒏𝒏×𝒏𝒏, then 𝜦𝜦(𝑨𝑨� + 𝑪𝑪�) = ⋃ 𝜦𝜦(𝑨𝑨+ 𝝀𝝀𝒊𝒊(𝑩𝑩)𝑪𝑪)𝒏𝒏

𝒊𝒊=𝟏𝟏  in 
which 𝜦𝜦(∙) denotes the spectrum of (∙) and 𝝀𝝀𝒊𝒊(𝑩𝑩) stands for the 𝒊𝒊 − 𝒕𝒕𝒕𝒕 eigenvalue 
of 𝑩𝑩. Denoting by 𝝀𝝀𝒊𝒊, 𝒊𝒊 = 𝟏𝟏, … ,𝑵𝑵 the eigenvalues of 𝓝𝓝𝒂𝒂,𝒃𝒃, from the above-
mentioned result it follows that  

𝜦𝜦(𝑨𝑨�𝑫𝑫) = ⋃ 𝜦𝜦𝑵𝑵
𝒊𝒊=𝟏𝟏 �𝑨𝑨 − 𝑩𝑩𝟐𝟐𝑩𝑩𝟐𝟐

𝑻𝑻𝑿𝑿𝟏𝟏 − 𝝀𝝀𝒊𝒊𝑩𝑩𝟐𝟐𝑩𝑩𝟐𝟐
𝑻𝑻𝑿𝑿𝟐𝟐�.                 

(32) 

On the other hand, using the definition of 𝓝𝓝𝒂𝒂,𝒃𝒃 it results that its eigenvalues 
have the expressions: 

𝜆𝜆𝑖𝑖 = 𝑁𝑁𝐿𝐿 − 1 − 𝑎𝑎 − 𝑏𝑏𝜇𝜇𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁 (33) 

where 𝝁𝝁𝒊𝒊, 𝒊𝒊 = 𝟏𝟏, … ,𝑵𝑵 denote the eigenvalues of the adjacency matrix 𝓐𝓐(𝓖𝓖). Then 
the following algorithm proposed in [16] is used to determine the two parameters.  
Step 1. Determine 𝜹𝜹𝟏𝟏 < 𝟎𝟎 and 𝜹𝜹𝟐𝟐 > 𝟎𝟎 such that 𝜦𝜦�𝑨𝑨�𝑫𝑫� ∈ ℂ−,∀𝜹𝜹 ∈ [𝜹𝜹𝟏𝟏,𝜹𝜹𝟐𝟐]; 
Step 2. Solve the systems of inequalities: 

𝛿𝛿1 + 1 − 𝑁𝑁𝐿𝐿 + 𝑎𝑎 + 𝑏𝑏𝜇𝜇2 < 0  
𝛿𝛿2 + 1 − 𝑁𝑁𝐿𝐿 + 𝑎𝑎 + 𝑏𝑏𝜇𝜇1 > 0 (34) 
𝑏𝑏 > 0   

and  
𝛿𝛿1 + 1 − 𝑁𝑁𝐿𝐿 + 𝑎𝑎 + 𝑏𝑏𝜇𝜇1 < 0  
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𝛿𝛿2 + 1 − 𝑁𝑁𝐿𝐿 + 𝑎𝑎 + 𝑏𝑏𝜇𝜇2 > 0 (35) 
𝑏𝑏 < 0   

where 𝝁𝝁𝟏𝟏 = 𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊𝝁𝝁𝒊𝒊 and 𝝁𝝁𝟐𝟐 = 𝒎𝒎𝒎𝒎𝒎𝒎𝒊𝒊𝝁𝝁𝒊𝒊.  
Although time delays represent a recently treated subject, the challenge 

consists in developing command algorithms for multi-agent systems taking into 
consideration their influences on the behavior of its members. According to [17], 
the delays in the communication channels are defined as the time difference 
between the moment when the information is transmitted and the one when it is 
correctly received. Hence, in order to analyze their influence, one considers the 
first-order delay modeled using the Padé approximation, whose transfer function is 
defined as follows: 

𝑒𝑒−𝜏𝜏𝜏𝜏 ≃
2 − 𝜏𝜏𝜏𝜏
2 + 𝜏𝜏𝜏𝜏

 (36) 

where 𝝉𝝉 is the time delay. Since the term 𝒙𝒙𝒊𝒊(𝒕𝒕 − 𝝉𝝉) is needed, it is obtained as:  

𝑥𝑥𝑖𝑖(𝑡𝑡 − 𝜏𝜏) =
4
𝜏𝜏
𝑥𝑥𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡) (37) 

with 𝒙𝒙𝒑𝒑𝒊𝒊 – the state vector of the Padé approximation for agent 𝒊𝒊 and  𝒙̇𝒙𝒑𝒑𝒊𝒊(𝒕𝒕) =
−𝟐𝟐

𝝉𝝉
𝒙𝒙𝒑𝒑𝒊𝒊(𝒕𝒕) + 𝒙𝒙𝒊𝒊(𝒕𝒕). 

4. Case studies 

 This part includes a comparative analysis of the time evolutions for each 
agent. The influence of time delays in case of increasing the number of members 
and modifying their interconnection is studied. Therefore, the two different network 
configurations presented in Fig. 1 are considered.  

 

Fig. 1 Network configurations 

In order to emphasize the characteristics of this approach, the numerical 
simulations use the decoupled dynamics of the system. In references as [21], [22], 
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the complete dynamics of an agent is elaborated. Furthermore, the linearized model 
of an air vehicle given in [23] is considered. Thus, the performances of the agents 
are analyzed for the longitudinal dynamics characterized by the state vector 𝒙𝒙 =
[𝒖𝒖 𝒘𝒘 𝒒𝒒 𝜽𝜽 𝒉𝒉]𝑻𝑻 approximated by the linear system: 

[𝑢̇𝑢 𝑤̇𝑤 𝑞̇𝑞 𝜃̇𝜃 ℎ̇]𝑇𝑇 = 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑢𝑢 𝑤𝑤 𝑞𝑞 𝜃𝜃 ℎ]𝑇𝑇 + 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝛿𝛿𝐸𝐸 𝛿𝛿𝑇𝑇]𝑇𝑇 (38) 

The capacity of the agents to maintain imposed values for certain states (𝒖𝒖 
and 𝒉𝒉) is guaranteed by the introduction of the integrators whose states are denoted 
by 𝜼𝜼𝟏𝟏 and 𝜼𝜼𝟐𝟐. The resulting system of form (1) is written as: 

�
𝑥̇𝑥
𝜂̇𝜂1
𝜂̇𝜂2
� =  �

𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 0
−𝐶𝐶𝑢𝑢 0 0
−𝐶𝐶ℎ 0 0

�
���������

𝐴𝐴

�
𝑥𝑥
𝜂𝜂1
𝜂𝜂2
� + �

0 0
1 0
0 1

�
�����

𝐵𝐵1

�
𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑐𝑐𝑐𝑐𝑐𝑐� + �

𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
0
0

�
�����

𝐵𝐵2

�𝛿𝛿𝐸𝐸𝛿𝛿𝑇𝑇
� 

�

𝜂𝜂1
𝜂𝜂2
𝛿𝛿𝐸𝐸
𝛿𝛿𝑇𝑇

� = �
0
0

1 0
0 1

0
0

0 0
0 0

� �
𝑥𝑥
𝜂𝜂1
𝜂𝜂2
� + �

0 0
0 0
1 0
0 1

� �𝛿𝛿𝐸𝐸𝛿𝛿𝑇𝑇
� 

𝑦𝑦2 = [𝑥𝑥𝑇𝑇 𝜂𝜂1 𝜂𝜂2]𝑇𝑇 

(39) 

Defining the system in this way, one can check that the two conditions 
𝑪𝑪𝑻𝑻𝑫𝑫 = 𝟎𝟎 and 𝑫𝑫𝑻𝑻𝑫𝑫 = 𝑰𝑰 are fulfilled. The adjacency matrix corresponding to the 
configuration in Fig. 1a is given below. 

𝒜𝒜(𝒢𝒢) =  �
0 1
1 0

1 0
0 1

1 0
0 1

0 1
1 0

� (40) 

In order to obtain the distributed controller, the Riccati equations (22) and 
(23) are solved for 𝜸𝜸 = 𝟏𝟏𝟏𝟏𝟏𝟏. The set of parameters (𝒂𝒂,𝒃𝒃) satisfying the inequalities 
(34) are 𝒂𝒂 = 𝟐𝟐 and 𝒃𝒃 = 𝟎𝟎.𝟏𝟏, with 𝜹𝜹𝟏𝟏 = −𝟎𝟎.𝟑𝟑, 𝜹𝜹𝟐𝟐 = 𝟎𝟎.𝟑𝟑. The stability of the 
network is proved by 𝑹𝑹𝑹𝑹(𝝀𝝀) < 𝟎𝟎 for the eigenvalues of the matrix (31) 
corresponding to the closed loop system. The distributed controller obtained for this 
configuration has the following structure: 

𝐹𝐹� = �

𝐹𝐹1 𝐹𝐹2
𝐹𝐹2 𝐹𝐹1

𝐹𝐹2 0
0 𝐹𝐹2

𝐹𝐹2 0
0 𝐹𝐹2

𝐹𝐹1 𝐹𝐹2
𝐹𝐹2 𝐹𝐹1

� (41) 
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For the obtained simulations, null initial conditions (altitudes and velocities) 
of the agents are considered. The performances of the controller are to achieve and 
maintain certain imposed constrains (𝒉𝒉 = 𝟏𝟏𝟏𝟏 𝒎𝒎 and 𝒖𝒖 = 𝟑𝟑 𝒎𝒎/𝒔𝒔) during flight 
simulation. The time evolutions are identical for all members due to the equal 
number of connections for each agent and the same initial conditions. The offset 
described by the red line (denoted by the index 𝑫𝑫) is caused by the introduction of 
time delay in the communication channels. The delay has been introduced using the 
Padé approximation (36) with 𝝉𝝉 = 𝟎𝟎.𝟏𝟏𝟏𝟏 𝒔𝒔𝒔𝒔𝒔𝒔. These features are illustrated in the 
comparative representations of velocity (Fig. 2) and altitude (Fig. 3). 

  
Fig. 2 Time response of velocity        Fig. 3 Time response of altitude 

For the configuration in Fig. 1b where 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 7, the way of agents’ 
interconnection is defined by the following adjacency matrix.  

 

𝒜𝒜(𝒢𝒢) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 1
1 0 0
1 0 0

1 1 1
0 1 1
0 0 0

1 1 0 0
1 1 1 1
0 0 0 0

1 0 0
1 1 0
1 1 0

0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

1 1 0
1 1 0
0
0

1
1

0
0

0 0 0
0 0 0
0
0

0
0

0
0

0 0 0 0
0 0 0 0
0
0

0
0

0 0
0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (42) 

The values of the parameters for which inequalities (34) hold are: 𝑎𝑎 =
6.92, 𝑏𝑏 = 0.15, 𝛿𝛿1 = −0.5, 𝛿𝛿2 = 0.5. The structure of the distributed controller is 
obtained of form (43). 

Analyzing the configuration in Fig. 1b, one can see that agent 1, with the 
maximum number of connections, is not connected with agents 9 and 10. This fact 
is denoted by the terms 𝐹𝐹�(1,9) = 0 and 𝐹𝐹�(1,10) = 0 in the controller structure. For 
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all positions corresponding to failure communication, the related terms in form (43) 
are null. 

𝐹𝐹� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐹𝐹1
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
0
0

𝐹𝐹2
𝐹𝐹1
0
0
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2
𝐹𝐹2

𝐹𝐹2
0
𝐹𝐹1
0
0
0
0
0
0
0

𝐹𝐹2
0
0
𝐹𝐹1
0
0
0
0
0
0

𝐹𝐹2
𝐹𝐹2
0
0
𝐹𝐹1
0
0
0
0
0

𝐹𝐹2
𝐹𝐹2
0
0
0
𝐹𝐹1
0
0
0
0

𝐹𝐹2
𝐹𝐹2
0
0
0
0
𝐹𝐹1
0
0
0

𝐹𝐹2
𝐹𝐹2
0
0
0
0
0
𝐹𝐹1
0
0

0
𝐹𝐹2
0
0
0
0
0
0
𝐹𝐹1
0

0
𝐹𝐹2
0
0
0
0
0
0
0
𝐹𝐹1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (43) 

Maintaining the same imposed conditions, the comparative time 
representations of the two states (altitude and velocity) illustrated in Fig. 4 and Fig. 
5 are obtained. One can note the offset caused by the time delay, without affecting 
the network stability and the achievement of imposed objectives. 

     
     Fig. 4 Comparative time response of velocity        Fig. 5 Comparative time response of altitude 

5. Conclusions 

The present paper focuses on the solution of H∞ problem for multi-agent 
systems. The distributed controller design takes into consideration the presence of 
time delays in communication channels. The numerical results presented in this 
work assume the comparative analysis of the agents’ behavior. In order to highlight 
the characteristics of the obtained controller, two different configurations with 
variable numbers of agents and with distinct interconnection possibilities are 
considered.   

The new issue introduced by the failure communication refers to the 
capability of the designed controller to guarantee the system stability. Regarding 
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the structure of distributed controller for both analyzed configurations, it can be 
observed that the absence of connections between agents according to the 
corresponding adjacency matrices is denoted by the null terms in the gain matrices.  

The results show the influence of time delays on the two states stabilization, 
their introduction being described by the offset between the case with 
communication delays and the ideal one. Regarding the required time to stabilize at 
certain imposed values, the sensitivity of the latter configuration to time delays is 
observed, for which slower evolutions are identified. Furthermore, it is proved that 
regardless the presence or absence of time delays, the multi-agent system stability 
is obtained.   
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