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FUZZY NOETHERIAN AND ARTINIAN RESIDUATED LATTICE

A. Ahadpanah1, L. Torkzadeh2

Residuated lattices play an important role in the study of fuzzy logic. In
the present paper, we introduce the notion of Noetherian and Artinian residuated
lattices and give some characterizations of them. We prove some important the-
orems of rings theory in residuated lattices. After that we define the concept of
fuzzy Noetherian and Artinian residuated lattices and investigate some properties
of them. We determine relationships between Noetherian (Artinian) residuated
lattices and fuzzy Noetherian (Artinian) residuated lattices.
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1. Introduction and Preliminaries

Non-classical logic has become a formal and useful tool for computer science to
deal with uncertain information and fuzzy information. The algebraic counterparts
of some non-classical logics satisfy residuation and those logics can be considered
in a frame of residuated lattices [8]. For example, Hajek’s BL (basic logic [5]),
LukasiewiczsMV (many-valued logic [1]) andMTL (monoidal t-norm based logic [3])
are determined by the class of BL-algebras, MV -algebras and MTL-algebras, re-
spectively. All of these algebras have lattices with residuation as a common support
set. Thus it is very important to investigate properties of algebras with residuation.
Residuated lattices were introduced by Ward and Dilworth in [8]. The filter theory
of the logical algebras plays an important role in the studying of these algebras and
the completeness of the corresponding non-classical logics. At present, the filter the-
ory of residuated lattice has been widely studied, and some important results have
been obtained. In particular, in [7, 10], some types of filters in a residuated lattice
were introduced, and some of their characterizations and relations were presented.
In addition, based on the fuzzy set theory introduced by Zadeh in [9], the related
fuzzy structures of filters in residuated lattice were further studied [10].
In the following, some preliminary theorems and definitions are stated from [4, 7,
8, 10]. In section 3, by defining the notion of Noetherian and Artinian residuated
lattices, we prove the some theorems of rings theory in residuated lattices. We show
that residuated lattice L is Noetherian if and only if every prime filter of the sec-
ond kind of L is finitely generated. In section 4, we introduce the concept of fuzzy
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Noetherian and Artinian residuated lattices by fuzzy filters and investigate some
properties of them.

At first we recall the definition of a residuated lattice. By a residuated lattice,
we mean an algebraic structure L=(L,∧,∨,⊙,→, 0, 1), where
(LR1) (L,∧,∨, 0, 1) is a bounded lattice,
(LR2) (L,⊙, 1) is a commutative monoid with a unit element 1,
(LR3) For all a, b, c ∈ L, c ≤ a→ b if and only if a⊙ c ≤ b.

In [6], residuated lattices are called commutative, integral, residuated l-monoids.
Let L be a residuated lattice. We have the following results.

Theorem 1.1. The following properties hold for all x, y, z ∈ L:
(lr1) x→ x = 1, 1 → x = x,
(lr2) x→ y ≤ (z → x) → (z → y),
(lr3) x→ y ≤ (y → z) → (x→ z),
(lr4) x ≤ y ⇔ x→ y = 1,
(lr5) x→ (y → z) = y → (x→ z) = (x⊙ y) → z,
(lr6) x⊙ (x→ y) ≤ y and x ≤ y → x,
(lr7) If x ≤ y, then y → z ≤ x→ z and z → x ≤ z → y.

We denote the set of natural numbers by N and define a0 = 1 and an =
an−1 ⊙ a, for n ∈ N − {0} and a ∈ A.
A nonempty subset F of L is called a filter of L if
(F1) x ∈ F and x ≤ y imply y ∈ F ,
(F2) for all x and y in F , x⊙ y ∈ F .
The set of all filters of L is denoted by F (L).
The smallest filter of L which contains X, is said to be the filter of L generated
by X and will be denoted by ⟨X⟩. ⟨∅⟩ = {1} and for a nonempty subset X of L,
F ∈ F (L) and a ∈ L we have:
(i) ⟨X⟩ = {x ∈ L : x1 ⊙ x2 ⊙ ...xn ≤ x, for some n ≥ 1 and x1, x2, ..., xn ∈ X}.
(ii) F (a) = ⟨F ∪ {a}⟩ = {x ∈ L : x ≥ f ⊙ an, for some f ∈ F and n ≥ 1}.
F ∈ F (L) is called a finitely generated filter, if F = ⟨x1, x2, ..., xn⟩, for some
x1, x2, ..., xn ∈ L and n ∈ N

Lemma 1.1. Let G,F be filters of L and x, y, x1, ..., xn, y1, ..., ym ∈ L. Then the
following statements hold:
(1) x ≤ y implies ⟨y⟩ ⊆ ⟨x⟩.
(2) ⟨x1, ..., xn⟩ ∩ ⟨y1, ..., ym⟩ = ⟨x1 ∨ y1, ..., xn ∨ ym⟩.
(3) If F1, ..., Fk are finitely generated filters of L, then F1 ∩ ... ∩ Fk is a finitely
generated filters of L.
(4) F ⟨x⟩ ∩ F ⟨y⟩ = F ⟨x ∨ y⟩.
(5) If G ⊆ F such that F/G and G are finitely generated filters of L, then F is a
finitely generated filter of L.

A filter F of L is called
(i) a prime filter (PF ), if x→ y ∈ F or y → x ∈ F , for all x, y ∈ L.
(ii) a prime filter of the second kind (PF2), if x ∨ y ∈ F, then x ∈ F or y ∈ F , for
all x, y ∈ L
(iii) A prime filter of the third kind (PF3), (x→ y)∨ (y → x) ∈ F , for all x, y ∈ L.
If filter F is PF , then F is PF2 and PF3. Also filter F of L is PF2 if and only if
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for all F1, F2 ∈ F (L), F = F1 ∩ F2 implies F = F1 or F = F2,
A proper filter M of L is maximal if it is not contained in any other proper filter of
L. We shall denote by Max(L) the set of all maximal filters of L.

Let A and B be residuated lattices. f : A → B is a homomorphism of
residuated lattices if f is a homomorphism of bounded lattices and for every x, y ∈ A
: f(x⊙ y) = f(x)⊙ f(y) and f(x→ y) = f(x) → f(y). Also we have:
(i) If F ∈ F (B), then f−1(F ) ∈ F (A),
(ii) If f is onto and G ∈ F (A), then f(G) ∈ F (B).
A nonempty subset S of L is called ∧-closed system in L if 1 ∈ S and x, y ∈ S
implies x ∧ y ∈ S. On L we consider the relation θs defined by (x, y) ∈ θs if and
only if there is e ∈ S ∩ B(L) such that x ∧ e = y ∧ e, where B(L) is the set of all
Boolean elements of L. The relation θs is a congruence relation on L.
For x ∈ L we denote by x/S the equivalence class of x relative to θS and by L[S] =
L/θS . Clearly, L[S] becomes a residuated lattice. By pS : L → L[S], we denote the
canonical map defined by pS(x) = x/S, for every x ∈ L. We can see that if S is an
∧-closed system such that 0 ∈ S , then L[S] = 0.
A fuzzy set µ of L is called a fuzzy filter of L if it satisfies the following conditions,
for all x, y ∈ L:
(FF1) : µ(x⊙ y) ≥ min{µ(x), µ(y)}.
(FF2) : x ≤ y ⇒ µ(x) ≤ µ(y).
The set of all fuzzy filters of L is denoted by FF(L). A fuzzy set µ of L is a fuzzy
filter of L if and only if the following hold, for all x, y ∈ L:
(FF3) : µ(1) ≥ µ(x).
(FF4) : µ(y) ≥ min{µ(x→ y), µ(x)}.
For t ∈ [0, 1], the set µt := {x ∈ L | µ(x) ≥ t} is called a level subset (with level t
)of µ. A fuzzy set µ of L is a fuzzy filter of L if and only if for any t ∈ [0, 1], the
level set µt is either empty or a filter of L.

2. Noetherian and Artinian residuated lattice

Theorem 2.1. Let L be a residuated lattice. Then the following conditions are
equivalent
1. Every nonempty set of filters of L has a maximal element.
2. Every filter of L is finitely generated.
3. Every ascending sequence of filters of L like F1 ⊆ F2 ⊆ F3 ⊆ ... is stationary.

Proof. 1 → 2) Let F be a filter of L. Consider

T = {G ∈ F (L) | G ⊆ F and G is finitely generated }.

Since ⟨1⟩ ∈ T , by hypothesis T has a maximal element G. Thus G ⊆ F and
G = ⟨x1, ..., xn⟩, for some x1, ..., xn ∈ L. We prove that G = F . On the contrary
there exist x ∈ F such that x ̸∈ G. Hence G ⊂ ⟨x1, ..., xn, x⟩ ⊆ F , which is a
contradiction with maximality G. Therefore G = F , and F is a finitely generated
filter of L.
2 → 3) Let F1 ⊆ F2 ⊆ ... be an increasing sequence of filters of L. Then F =

∪∞
i=1 Fi

is finitely generated and so F = ⟨x1, ..., xn⟩, for some x1, ..., xn ∈ L. Thus there exist
i1, ..., in ∈ N such that xj ∈ Fij , for 1 ≤ j ≤ n. Now by hypothesis, there exists
m ∈ N , 1 ≤ m ≤ n such that x1, ..., xn ∈ Fim . Hence Fim = F and we get that
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Fim = Fk for all k ≥ im, Therefore the chain is stationary.
3 → 1) Let T be a nonempty set of filters of L which does not have a maximal
element. Then there exists F1 ∈ T , since T does not have a maximal element,
there exists F2 ∈ T such that F1 ⊂ F2. By continuing this method, we obtain
the ascending sequence F1 ⊂ F2 ⊂ F3 ⊂ ..., that is not stationary. The proof is
complete. �
Definition 2.1. A residuated L is called Noetherian if it satisfies any one of the
conditions of Theorem 2.1.

Example 2.1.
(i) Any finite residuated lattice is Noetherian.
(ii) Let A = [0, 1]. Define ⊙ and → as follow, for all x, y ∈ A,

x⊙ y = min{x, y}, x→ y =

{
1 if x ≤ y
y if x > y

Then (A,∧,∨,⊙,→, 0, 1) is a residuated lattice and all filters of A are in the from
of [x, 1], for x ∈ [0, 1]. Let {xn}∞n=1 be a strictly decreasing sequence in [0, 1]. Put
Fn = [xn, 1] for all n ∈ N . Then the ascending sequence F1 ⊂ F2 ⊂ ... is not
stationary. So A is not a Noetherian residuated lattice.
(iii) Let A = [0, 1]. Define ⊙ and → as follow, for all x, y ∈ A,

x⊙ y = max{0, x+ y − 1}, x→ y = min{1, 1− x+ y}

Then (A,∧,∨,⊙,→, 0, 1) is a residuated lattice and it is easy to see that the only
filters of A are {1} and [0, 1]. So A is a Noetherian residuated lattice.

Proposition 2.1. Let 1 → L1 →φ L2 →ψ L3 → 1 be an exact sequence of residu-
ated lattices and L1, L3 be two Noetherian residuated lattices. Then L2 is Noether-
ian.

Proof. Let F1 ⊆ F2 ⊆ ... be an ascending sequence of filters of L2. Since ψ is onto,
then ψ(F1) ⊆ ψ(F2) ⊆ ... is an ascending sequence of filters of L3 and φ−1(F1) ⊆
φ−1(F2) ⊆ ... is an ascending sequence of filters of L1. Now L1, L3 are Noetherian,
there exists m,n ∈ N such that ψ(Fi) = ψ(Fm) and φ−1(Fj) = φ−1(Fn), for all
i ≥ m, j ≥ n. Put k = max{m,n}. Then Fk ⊆ Fi, for all i ≥ k. It is sufficient to
prove that Fi ⊆ Fk, for all i ≥ k. Let x ∈ Fi, for i ≥ k. Then ψ(x) ∈ ψ(Fi) = ψ(Fk),
and so ψ(x) = ψ(a), for some a ∈ Fk. We get ψ(a→ x) = ψ(a) → ψ(x) = 1, that is
a→ x ∈ Ker(ψ) = Im(φ). Hence there exists á ∈ L1 such that a→ x = φ(á).
On the other hand, x ∈ Fi implies that a→ x ∈ Fi, by Theorem 1.1. Then

φ(á) ∈ Fi ⇒ á ∈ φ−1(Fi) = φ−1(Fk) ⇒ φ(á) ∈ Fk ⇒ a→ x ∈ Fk.

Now since a ∈ Fk, we get that x ∈ Fk. Hence Fi ⊆ Fk, that is Fk = Fi, for all i ≥ k.
Therefore L2 is Noetherian. �
Proposition 2.2. Any homomorphic image of a Noetherian residuated lattice is
Noetherian.

Proof. The proof is easy. �
By the following example we show that the converse of Proposition 2.2 may

not be true.
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Example 2.2. Consider the residuated lattice A in Example 2.1 part(ii)and S =
B(A). Then pS : A→ A[S] is onto, A[S] is Noetherian, while A is not Noetherian.

Corollary 2.1. Let L be a Noetherian residuated lattice and F ∈ F (L). Then L/F
is Noetherian.

Corollary 2.2. If L is a Noetherian residuated lattice, then L[S] is Noetherian.

By Propositions 2.1 and 2.2, we have the following corollary.

Corollary 2.3. L1, L2 are two Noetherian residuated lattices if and only if L1×L2

is a Noetherian residuated lattice.

Lemma 2.1. Let F be a finitely generated filter of L and L/F be Noetherian. Then
every G ∈ F (A) containing F is finitely generated.

Proof. Let G ∈ F (A) and F ⊆ G. Then G/F is a filter of L/F and so it is finitely
generated. Therefore G is a finitely generated filter, by Lemma 1.1. �
Corollary 2.4. If L/⟨a⟩ is Noetherian, for all 1 ̸= a ∈ F , then L is Noetherian.

Theorem 2.2. In a Noetherian residuated lattice L every filter is a finite intersec-
tion of prime filters of the second kind of L.

Proof. Suppose not; then the set T of filters of L for which the theorem is false
is not empty, hence has a maximal element F . Since F is not PF2, there exist
F1, F2 ∈ F (L) such that F = F1

∩
F2, F1 ⊃ F and F2 ⊃ F . Hence each of F1 and

F2 is a finite intersection of PF2s and therefore F ̸∈ T , which is a contraction. �
In the following example, we show that the above theorem for prime filters

and prime filters of the third kind may not be true.

Example 2.3. Let L = {0, a, b, c, 1} with 0 < a, b < c < 1, but a, b are incomparable.
L becomes a residuated lattice relative to the following operations:

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

The set of all PF s and PF3s are {{a, c, 1}, {b, c, 1}} and {{a, c, 1}, {b, c, 1}, {c, 1}}
respectively.
{1} is a filter of L while we can not write it in the form of finite intersection of PFs
or PF3s of L.

Theorem 2.3. L is a Noetherian residuated lattice if and only if every prime filter
of the second kind of L is finitely generated.

Proof. Let every prime filter of the second kind of L be finitely generated. Consider
T = {F ∈ F (A) | F is not finitely generated}. If T is a nonempty set, we show
that T has a maximal element, by the Zorn’s Lemma. Let {Fi}i∈I be a sequence
of elements of T . Put F = ∪i∈IFi, now we show that F ∈ T . If F is finitely
generated, then F = ⟨x1, x2, ..., xk⟩, x1, x2, ..., xk ∈ L. Since {Fi}i∈I is a sequence,
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we can obtain Fj such that x1, x2, ..., xk ∈ Fj . Thus F = ⟨x1, x2, ..., xk⟩ ⊆ Fj ⊆ F ,
and so Fj = ⟨x1, x2, ..., xk⟩ that is a contraction. Hence F is an upper bound for
{Fi}i∈I . Therefore by the Zorn’s Lemma T has a maximal element P . Now we
show that P is PF2. Let P don’t be PF2, then there exist P1, P2 ∈ F (L) such that
P = P1

∩
P2, P1 ⊃ P and P2 ⊃ P . Hence each of P1 and P2 is finitely generated

and so P is finitely generated, by Lemma 1.1, which is a contraction. Then P is
PF2, by hypothesis we get that P is finitely generated and so P ̸∈ T . Therefore T
is empty. The proof of the converse is clear by Theorem 2.1. �

Lemma 2.2. Let L be a Noetherian residuated lattice and φ : L → L be an onto
homomorphism. Then φ is isomorphism.

Proof. We have Ker(φ) ⊆ Ker(φ2) ⊆ ... an increasing sequence of filters of L. So
by hypothesis, there exists m ∈ N such that Ker(φi) = Ker(φm), ∀ i ≥ m. Let a ∈
Ker(φ). Then φ(a) = 1. Since φ is onto, there is b ∈ A such that a = φm(b). Hence
φm+1(b) = φ(a) = 1, so b ∈ Ker(φm+1) = Ker(φn). Thus a = φn(b) = 1, therefore
Ker(φ) = 1. i.e φ is one to one, by hypothesis we get that φ is isomorphism. �

Theorem 2.4. Let L be a residuated lattice. Then the following conditions are
equivalent
1. Every nonempty set of filters of L has a minimal element,
2. Every decreasing sequence of filters of L like F1 ⊇ F2 ⊇ ... is stationary.

Proof. The proof is similar to the proof of Theorem 2.1. �

Definition 2.2. A residuated L is called Artinian if it satisfies any one of the
conditions of Theorem 2.4.

Consider Example 2.1. The residuated lattices of part (i) and (iii) are Ar-
tinian, while the residuated lattice of part (ii) is not Artinian.

Note: Propositions 2.1 and 2.2 and Corollaries 2.1, 2.2 and 2.3 are true for Ar-
tinian.

Theorem 2.5. Let L be a Artinian residuated lattice. Then Max(L) is a finite set.

Proof. Let
T = {F ∈ F (L) | F is a finite intersection of maximal filters of L}.

Since Max(L) ̸= ∅, by hypothesis T has a minimal element F , so there exist
M1,M2, ...,Mk such that F = M1 ∩ ... ∩ Mk. Consider M ∈ Max(L). Since F
is minimal element of T , so M1 ∩ ...∩Mk = F =M ∩F ⊆M . By M ∈Max(L), we
obtain M is PF2. Therefore there exist i ∈ N Such that Mi ⊆M , and we conclude
M =Mi. Thus Max(L) = {M1, ...,Mk}, that is Max(L) is finite. �

We recall the notion of an ordinal sum of residuated lattices. For two residu-
ated lattices A1 and A2 with A1 ∩ A2 = {1}, we set A = A1 ∪ A2. On A we define
the operations ⊙ and → as follows

x⊙ y =

 x⊙i y if x, y ∈ Ai, i = 1, 2,
x if x ∈ A1 \ {1}, y ∈ A2,
y if y ∈ A1 \ {1}, x ∈ A2.
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x→ y =

 x→i y if x, y ∈ Ai, i = 1, 2,
y if y ∈ A1 \ {1}, x ∈ A2,
1 if x ∈ A1 \ {1}, y ∈ A2.

Then A is a residuated lattice and we denote the ordinal sum A = A1 ⊕A2.
It is easy to check that G ∈ F (A1 ⊕ A2) if and only if G ∈ F (A2) or G = F ∪ A2,
for some F ∈ F (A1).
It is easy to check that A1 and A2 are Artinian (Noetherian) if and only if A1 ⊕A2

is Artinian (Noetherian).

3. Fuzzy Artinian and Fuzzy Noetherian residuated lattice

Definition 3.1. A residuated lattice L is said to be a fuzzy Noetherian (Artinian)
if for every ascending sequence µ1 ⊆ µ2 ⊆ ...(decreasing sequence µ1 ⊇ µ2 ⊇ ...) of
fuzzy filters of L there is a natural number n such that for all i ≥ n, µi = µn. L
is said to satisfy the fuzzy maximal(minimal) condition if every nonempty subset of
fuzzy filters of L has a maximal(minimal) element.

Theorem 3.1. If L is a fuzzy Noetherian (Artinian) residuated lattice, then L is
Noetherian (Artinian).

Proof. Let F1 ⊆ F2 ⊆ ... be an ascending sequence of filters of L. We obtain
χF1 ⊆ χF2 ⊆ ... and so by hypothesis there is n ∈ N such that χFi = χFn for all
i ≥ n. Thus we can conclude that Fi = Fn, for all i ≥ n. �

The converse of the above theorem is not true general.

Example 3.1. Consider the residuated lattice of Example 2.1 part (iii). Define for
all i ∈ N µi : A→ A by:

µi(x) =

{
1− 1

i if x = 1,
0 if x ̸= 1.

It is clear that µi is a fuzzy filter of A for all i ≥ 1, and µ1 ⊂ µ2 ⊂ ... . So A is
Noetherian while it is not fuzzy Noetherian.

Theorem 3.2. L is a fuzzy Noetherian (Artinian) residuated lattice, if and only if
L satisfies the fuzzy maximal (minimal) condition.

Proof. If L does not satisfy the fuzzy maximal condition, then there is a nonempty
set ϑ of fuzzy filters of L such that ϑ dose not have a maximal element. Thus we
can select µi, i = 1, 2, ... satisfying µ1 ⊆ ... ⊆ µn ⊆ ... and for all i ∈ N, µi ̸= µi+1,
this is a contradiction.
Conversely, let µ1 ⊆ µ2 ⊆ ... be a sequence of fuzzy filters of L. Since L satisfies the
fuzzy maximal condition, L has a maximal element µn. Then µi = µn for all i ≥ n.
Therefore L is a fuzzy Noetherian residuated lattice. �

Corollary 3.1. If L satisfies the fuzzy maximal (minimal) condition, then L is
Noetherian (Artinian).

Theorem 3.3. L is Noetherian if and only if for all µ ∈ FF (L), ∅ ̸= µt is finitely
generated, for all t ∈ [0, 1].
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Proof. Let L be Noetherian. Then for all µ ∈ FF (L), ∅ ̸= µt ∈ F (L), and so µt is
finitely generated, for all t ∈ [0, 1]. Conversely, let F be a filter of L. We show that
F is finitely generated. Consider

µ(x) =

{
1
2 if x ∈ F,
0 if x ̸∈ F.

Thus µ ∈ FF (L) and µ 1
2
= F . Then by hypothesis F is finitely generated and so L

is Noetherian. �

Theorem 3.4. The following statements are equivalent.
(i) L is Noetherian,
(ii) Im(µ) is well ordered.

Proof. (i) → (ii) If Im(µ) is not well ordered, then there is {si}i∈N of Im(µ) such
that ... < s2 < s1. We get the ascending sequence µs1 ⊂ µs2 ⊂ ..., which is not
stationary, it is not true by (i).
(ii) → (i) Suppose there is a strictly increasing sequence G1 ⊂ G2 ⊂ ... of filters of
L which is not stationary. Define µ on L by:

µ(x) =

{
1
k if k = min{r ∈ N | x ∈ Gr},
0 if x ̸∈ Gn, ∀n ≥ 1.

We prove that µ ∈ FF (L). Since 1 ∈ Gn, for all n ≥ 1 we have 1 = µ(1) ≥ µ(x)
for all x ∈ L, so (FF3) hold. For proof of (FF4), we consider two cases for y ∈ L.
Case 1: y ̸∈ Gn, for all n ≥ 1, Case 2: y ∈ Gn, where n = min{r ∈ N | x ∈ Gr}.
In case 1, µ(y) = 0 . Now we consider the following two cases:
(i) x → y ̸∈ Gn, for all n ≥ 1. Thus µ(x → y) = 0, we get that µ(y) = 0 =
min{µ(x→ y), µ(x)}.
(ii) x→ y ∈ Gm, m = min{r ∈ N | x ∈ Gr}. Since y ̸∈ Gn, for all n ≥ 1 and Gn is
a filter of L, then x ̸∈ Gn, for all n ≥ 1. Thus µ(y) = 0 = min{µ(x→ y), µ(x)}.
In case 2, µ(y) = 1

n . Since y ≤ x → y, so x → y ∈ Gm, for all m ≥ n. Thus

µ(x → y) = 1
t , for t ≤ n. If x ̸∈ Gn for all n, then µ(y) = 1

n ≥ 0 = min{µ(x →
y), µ(x)}. Now let x ∈ Gs where s = min{r ∈ N | x ∈ Gr}. If t = n, then by
considering s ≤ n or s > n, we have µ(y) = 1

n ≥ min{µ(x → y), µ(x)}. Now let
t < n. We show that s ≥ n. Suppose s < n, we have x → y ∈ Gt and x ∈ Gs.
Thus y ∈ Gk for k < n, which is not true. Hence s ≥ n, since n > t, we obtain
µ(y) = 1

n ≥ 1
s = min{µ(x → y), µ(x)}. Therefore µ ∈ FF (L) and Im(µ) is not well

ordered. �

By using Proposition 3.16 of [2], we have the following Theorem.

Theorem 3.5. L is Noetherian and Artinian, if and only if Im(µ) is finite, for all
µ ∈ FF (L).

Proof. Let µ ∈ FF (L) and Im(µ) be infinite. Then there exists a strictly increasing
or decreasing sequence {si}i∈N , where si ∈ Im(µ), for all i ∈ N . Suppose {si}i∈N
is strictly increasing sequence. It is clear that µsi are filters of L for i ≥ 1 and
µs1 ⊃ µs2 ⊃ ... . This sequence is not stationary, which is a contradiction with
Artinian. If {si}i∈N is a decreasing sequence, similar to the above argument, by
Noetherian, we can prove theorem.
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Conversely, let L don’t be Artinian. Then there is a strictly descending sequence
L = A0 ⊃ A1 ⊃ A2 ⊃ ... of filters of L which is not stationary. Define µ on L by:

µ(x) =

{
r
r+1 if x ∈ Ar \Ar+1, r = 0, 1, 2, ..

1 if x ∈
∩∞
r=0Ar.

We prove that µ ∈ FF (L). Since 1 ∈
∩∞
r=0Ar, we have 1 = µ(1) ≥ µ(x) for all

x ∈ L, so (FF3) hold. For proof of (FF4), we consider two cases for y ∈ L.
Case 1: y ∈

∩∞
r=0Ar, Case 2: y ∈ Ar \Ar+1 for some r ≥ 0.

In case 1, µ(y) = 1 and so µ(y) ≥ min{µ(x→ y), µ(x)}.
In case 2, µ(y) = r

r+1 . Now we consider the following two cases:

(i) x → y ̸∈ Ar+1. Since y ≤ x → y and y ∈ Ar, so x → y ∈ Ar, that is
µ(x→ y) = r

r+1 .

If x ∈
∩∞
r=0Ar, then µ(y) ≥ min{µ(x→ y), µ(x)}.

If x ∈ Aj \Aj+1 for some j ≥ 0, then by considering j ≤ r or j > r, we can conclude
that µ(y) ≥ min{µ(x→ y), µ(x)}.
(ii) x → y ∈ Ar+1. Since y ̸∈ Ar+1 and Ar+1 is a filter of L, then x ̸∈ Ar+1. Thus
there is j ≤ r, such that x ∈ Aj \Aj+1.

If x → y ∈
∩∞
r=0Ar, then µ(x → y) = 1. Hence µ(y) = r

r+1 ≥ j
j+1 = min{µ(x →

y), µ(x)}.
If x → y ∈ Ak \ Ak+1, then k > r and so k > j. We can get that µ(y) = r

r+1 ≥
j
j+1 = min{µ(x→ y), µ(x)}.
Therefore µ ∈ FF (L), while Im(µ) is infinite, which is a contradiction.
Now let L don’t be Noetherian. Then there is a strictly increasing sequence {1} =
A0 ⊂ A1 ⊂ A2 ⊂ ... of filters of L which is not stationary. Define ν on L by:

ν(x) =


1
r+1 if x ∈ Ar+1 \Ar, r = 0, 1, 2, ..,

1 if x = 1,
0 if x ∈ L \

∪∞
r=0Ar.

We can check that ν ∈ FF (L). Since Im(ν) is infinite, we obtain a contradiction. �

4. Conclusion

Filters theory play an important role in studying logical systems and the re-
lated algebraic structures. In this paper, we introduce Noetherian and Artinian
residuated lattices, by filters, and derive some of their characterizations. We prove
that in an Artinian residuated lattice the set of all maximal filters is finite. Then we
define fuzzy Noetherian and Artinian residuated lattices and investigate relations
between fuzzy Noetherian (Artinian) residuated lattices and Noetherian (Artinian)
residuated lattices. It is our hope that this work would other foundations for further
study of the theory of residuated lattices.
In our future work we are going to find the relation between fuzzy Noetherian resid-
uated lattices and fuzzy Artinian residuated lattices. Also we will investigate Noe-
therian and Artinian in other algebraic structures.
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