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SOME KINETIC-MOLECULAR CONSIDERATIONS
ON GAS-PISTON INTERACTION AND THEIR
IMPLICATIONS AT MACROSCOPIC SCALE

Arpad TOROK', Stoian PETRESCU?, Gheorghe POPESCU®, Michel FEIDT*

The present study aims to offer a microscopic description of the
behavioral pattern of a gas system interacting with a mobile wall based on Clausius
model and on its ensuing models. Starting from this analysis, the first part of this
study comes to validate the equations published in the early works in Finite Speed
Thermodynamics, while the second part deals with the interaction between the gas
system and a mobile wall set off at a certain angle to its moving trajectory. The
study conclusions are applies to the analysis of the interaction between gas or vapor
systems and the mobile units of rotating devices.
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1. Introduction

Referring to the kinetic-molecular theory or to quantum mechanics has
always been a way to provide convincing arguments in the hypothesis validation
for macroscopic behavior of systems or in the interpretation of experimental
results. A similar approach has been undertaken since the early stage of
formulating the principles of Thermodynamics by Clausius who drew up the first
coherent, well structured, kinetic-molecular model for the gas systems in
thermodynamic equilibrium.

The elementary displacement (or deformation) of the mobile frontier of the
gas system’s causes an elementary variation dJ of the volume of the system,
reflected in the value of the elementary mechanical work JL=p-dV carried out by
the system upon the environment, or the other way round. For gases, this transfer
of mechanical energy is always accompanied by thermal interactions (system
temperature variation and/or heat exchange with its environment) according to the
first principle of thermodynamics. For reversible evolutions:

dUrevzéQrev - OLyev= éQrev -pdV (])
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where OL,.,= p-dV stands for the work carried out/ consumed in a reversible
conversion.

But, since real processes are irreversible, this equation, as well as the
whole Classical Thermodynamics, is applicable within a limited framework of
action for thermodynamic processes. As it studies processes with a development
speed close to zero, Reversible Thermodynamics does not make any references to
the transport speed for mass, energy, and entropy, very important aspects for
thermo-technicians. There are two approaches that can be used to obtain this type
of data ([3], [4]):

- by studying of the microscopic behavior of particles and applying methods of
statistical mediation

- by studying the macroscopic behavior of the system while taking into
consideration the pairs of forces and thermodynamic flows as requested by the
Irreversible Phenomenological Thermodynamics.

For the study of the gas-piston interaction in thermodynamic processes
with w as the finite speed of the system, Stoicescu and Petrescu proposed 4
models ([1], [2], [3], [4]), two of which are of kinetic nature, while the other two
are of a phenomenological type, and obtained the following for the work carried
out/ consumed in an irreversible conversion:

a) in the elementary kinetic-molecular model suggested by Sommerfeld [7] and
Macke[8], L. Stoicescu and S. Petrescu [1, 2] found, in 1964, the first expression
for the Irreversible Mechanical Work with finite speed:

2
8Ly = Dy -{uﬂﬂlzi...]dr/, (2)
C C

where p,,; labels the instantaneous average pressure inside the system, a=2, b=5
b) in the advanced kinetic-molecular model, built on Maxwell-Boltzmann’s
distribution and on accepting the finite relaxation time, in 1971, S. Petrescu [9]
found, the second expression for the Irreversible Mechanical Work with finite
speed :

3)
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where a=2,764;b=3; d=1,283

¢) in the phenomenological model founded on the transmission of the pressure
waves at the speed of sound, L. Stoicescu and S. Petrescu demonstrated in 1964,
the expression [1,2] :

éZ’ir=pm,i'|:1_—|_%:|'d1/=pm,[.[lik‘]\l].dl/ (4)

where =3k, k=Cy/C, is the adiabatic exponent, ¢ = [3RT, . is the average

molecular speed, 7,,; is the average instantaneous temperature, and M is the Mach
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number corresponding to the flow thrmodynamic conditions. This expression is
very important because it correlates for the first time, the a parameter with the
adiabatic exponent k, making possible to calculate it not only for monatomic gas
(where k = 1.66), but for the diatomic (k= 1.4) and polyatomic (k= 1.3) gas also.
d) in the model based on the Irreversible Linear Phenomenological
Thermodynamics [10, 11], [12] found in 1969, the fourth expression for the
Irreversible Mechanical Work with finite speed :

éz‘irzpm,i.(liKl.W).dV (5)

where g =% _-__4

(< 3RT,

m.i

is a constant influenced by the properties and the

average temperature of the gas, but which can only be calculated based on
experiments or based by a structural theory [that is, the equation (2), (3) or (4)].

In the present study we are going to analyze the gas-piston interaction in
thermodynamic processes with the finite speed w of the piston relying on the
Clausius’ kinetic-molecular model. This model was used by Clausius to determine
the analytical expressions of temperature, internal energy, and pressure for a
system of prefect gases in equilibrium, depending on the total number and the
speed of the inside molecules. Thus, our approach is using the same type of
systems but, because of the piston’s finite speed, the thermodynamic processes
taking place during this interaction are not in equilibrium. Therefore, we will take
into consideration the finite speed of the piston and the finite time to be sent the
changes of intensive parameters: the state variables we are going to operate with
are no longer global (defined for the system as a whole), but local, defined for
limited areas within the system and for which the maximal differences in values
taken from different spots of the area are much lower than the variables’ value
itself. The systems in non-equilibrium can be characterized by a certain
distribution of all the state parameters, at a certain moment (a currently field for
that parameter). In each micro-area of this kind, at a certain moment in time, local
parameters are uniformly distributed and, in these circumstances, the equations of
Reversible Thermodynamics can be applied to the variables. The entire system
can be described by outlining a system of averages for the momentary
(instantaneous) state parameters, calculated from the system as a whole, at a
certain point in time, on the particular local parameters. The instantaneous state
parameters are not arbitrary calculating quantities since they have a precise
physical relevance: if in the instant when these average values are measured there
is a sudden break in the thermodynamic force causing the loss of equilibrium,
then, after a period of relaxation, a state of thermodynamic equilibrium, defined
by the very same instantaneous average parameters, will be restored in the system

([31, [41, [5D-
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2. The gas-piston interaction in Clausius’ kinetic-molecular model

This kinetic-molecular model [3] applies to perfect gases. For real gases,
the conclusions drawn based on these abstract considerations are closer to
experimental results when the gas state’s deviation from the curve of saturated
vapors (warm, rarefied gases) is more pronounced. The remarks below are valid
for monatomic gases and for the translation movement of polyatomic molecules.

We will consider a cylinder with volume V where there is a total number N
of monatomic molecules of a perfect gas, with various speed values from a
minimum speed threshold C; and a maximum one Cy. We assume that all
molecules can have, on a continuous scale, any speed value within this range.
From the set of real numbers, we will select a range from a minimum value
smaller than C; and a maximum value larger than Cy where we can separate a
number 7 of equal intervals with an individual width dC. We will label C; (i=1, 2,
..., n) the average value of speed inside the interval [(i-1)-dC, i-dC) and N; the
sum of molecules with a speed value inside the above mentioned interval. As a
direct consequence of the elementary disorder principle, the extreme values of the
speed vectors C; have a uniform distribution on a sphere with the radius C; (Fig.
1) in a three-dimensional orthogonal space. The total number N;y of molecules
with the speed C; and set at the angle 8 from axis X-X’ of the piston (in any plane
containing the axis, as # can endorse values between 0 and 7) was calculated by
Clausius as:

N.
dN, 4 =7’sin 6-do (6)

Because of the elementary chaos, the molecules inside the cylinder had a
homogenous density defined by the following equation:

N,
p,g:dNiﬂ/szsinH-dé’ @)

If after collision a certain number of molecules changes its trajectory and leaves
the cluster, they are immediately replaced by an equal number of molecules
migrated from other clusters.

Fig. 2. is a representation of a distribution on # directions of the molecules
at speed C;, both for expansion and compression. If in a time unit the piston
covers the distance w, and the molecules, a distance C;, the distance between the
piston and each molecule, measured on X-X’ axis, will vary in the same time unit
with C; -cos@ £ w .
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Fig. 2. The kinetic-molecular model of expansion (A) and compression (B) for the processes
where the piston has a finite speed

The + sign pertains to a piston movement in the direction of the compression,
while the — sign will indicate a movement in the direction of the expansion. In
Clausius’ model, the gas pressure is caused by the impulse fluctuation of the
molecules colliding against an area unit in a restrained timeframe. For a unique
molecule, he calculated that the impulse fluctuation is equal to 2m-C;-cos 6, where
m is the mass of the molecule. If the surface against which the molecules collide is
moving at a speed w, as it happens with the piston, the impulse fluctuation of one
molecule will equal 2m(C; - cos@ +w) if compression happens, and 2m(C; - cos0 -
w) if expansion takes place.

From an energetic point of view, the perfectly elastic collision with a fixed
surface at a temperature equal to the one of the gas does not result in a change of
the molecular speed module (of their kinetic energy). Therefore, there is no
influence on the temperature of the neighboring areas. For perfectly elastic
collisions with a mobile piston, the impulse variation determines, for
compression, an increase in the molecules’ speed module, and for expansion, a
decrease in this module. This triggers, in the first instance, a temperature increase
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in the area immediately neighboring the piston, and a corresponding decrease in
the latter case. . For very slow movements of the piston (the case of Reversible
Thermodynamics), the changes in the molecular speed module (and,
consequently, in the local temperature of the gas) are of low amplitude, and the
difference will significantly decrease after a small number of intermolecular
collisions, while the corresponding kinetic energy will regularly diffuse through
the entire mass of the system, leading to a uniform change in temperature and
pressure for the system as a whole. In the case of finite speed of the piston, the
variation of the molecular velocity due to the interaction of molecules with the
piston (ie local temperature changes in the neighboring areas) has a higher
magnitude as the piston speed is higher. The leveling process of a system’s
temperatures and pressures until the establishment of global values as a result of
molecular agitation is also taking place at a finite speed which leads to the
formation, inside the system, of fields of temperatures and pressures. For
reciprocating compressors and expanders, due to their symmetrical structure, the
temperature and pressure fields will organize in a monotonous decreasingly array,
in parallel planes to the surface of the piston.

The pressure exerted on the piston is the result of the energy transmitted to
the molecules through the collisions between them and the piston and it will be
determined by their impulse variation in a time unit on one unit of the piston’s
surface. For the expansion case, all molecules in cluster dN; ¢ interacting with the
piston in a time unit are located in a straight cylinder with one base supported by
the piston, while the other base is situated at a distance of C; - cosd - w. The
volume of this cylinder is of S'( C; - cos@ - w), where S is the area of the piston.
Inside this volume, many molecules will collide with the piston after one, or
several collisions with the walls of the enclosure. But these collisions are perfectly
elastic and symmetrical to the perpendicular on the wall (Figure 3.). Therefore,
the molecules do not alter their speed module. The change in the angle formed by
the movement direction with the wall of the cylinder, from 8 to -6, does not lead
to a change in the angle formed with the X-X’ axis, and neither to the leave of NV, ¢
cluster. Thus, the pressure P;p exerted on the piston by the molecules of this
cluster, in a time unit, is defined as the product of the impulse variation of one
molecule 4P;4 , the volume of the cylinder where the molecules getting to the
piston are located, and the density py of the inside molecules hitting the piston in
this time unit, product which is then divided by the area of the piston:

P, :éZm(Ci cos@-w)S(C, cosH—w);;sinH-dH: N’V'm(C,. cos@—w)’ sin@-do ®)

1
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Fig. 3. Perfectly elastic collision between a molecule and the wall

As shown in Fig. 2., the molecules with the axial component of their speed
smaller that the speed w of the piston (€ <« , where cosa = w/C;) will not get to
hit the piston. Therefore, in order to determine the pressure exerted by all the
molecules with speed C;, regardless of their trajectories, we will integrate the
equation (8) for & within the range 0 and «.:

2a 2 2 3
=N cos0- 2| sing-ap =2t CL
N C v C,

The value of the pressure exerted by the gas on the piston is calculated as
the sum of the pressures exerted by all the molecules, regardless of their speed:

PﬁZE:Z—N ;’;C (]_Ej ©)

In Clausius’ model, the pressure exerted by the gas on the fixed piston is
calculated as:

i

N,m-C; (NC2+N2C2+ AN+ (10)

R=2l75

In a first approx1mat10n, if we consider that all molecules have the same
speed C, equal to the root-mean-square speed, then:

C:\/(N1C12+N2C22+-~'+Nici2+"'):\/szCi2 :\/ZNI'C"Z (11)

Ny +N,+..+ N, +.. >N, N

Equation (9) becomes:

3
P =3P (1--} 2P N=f,,P, (12)
L9 3V
B

The pressure P, is the gas pressure inside the cylinder. In Finite Speed
Thermodynamics, it is the average instantaneous pressure p,,; , computed as the
mean of all local pressures at a certain moment in time, and it carries the value of
the pressure that would appear in the system if at that specific moment the piston

stopped moving.
For the compression case, the molecules interacting with the piston in a
time unit are located inside a straight cylinder with the base coinciding with the
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surface of the piston and the height defined by C; - cos@ - w. The volume of this
cylinder is equal to S(C; -cos@ + w), where S is the area of the piston. The pressure
P; g exerted by these molecules on the piston in a time unit is defined as the
product of the impulse variation of one molecule 4P; g, the volume of the cylinder
where the molecules interacting with the piston are located, and the density py of
the molecules from this group, divided by the area of the piston. But, as shown in
Figure 2., inside this cylinder there are two categories of molecules with a
dissimilar behavior from the point of view of impulse variation: the ones heading
towards the piston (where 0<8 <n/2), where AP; g9 =2m(C,cos@+w) and the ones
pulling back from the piston with an axial component of speed smaller than the
speed of the piston, which means that they will be reached by the piston (where
1/2<6 <n-a, with the cosa = w/C;) . For the latter molecular group, where 6>m/2,
the speed projection on axis X-X’ gets a negative value. Therefore, the equation
AP; g = accurately defines the impulse variation also in this
situation. Thus, for 0<@<mn/2 +«a we have:

Py :éZrn(Ci cos¢9+W)S(C,cos9+w)-%sin9-d6’:#(C[ cos@+w)’ sin6-do

2 -« 2 2 y
p=Ne G o0+ 2| sing-ap =2t 1 (13)
Voo C 3V C

Under the circumstances of the previous assumption (all molecules have the same

speed), the pressure exerted by the piston is calculated by summing up the
pressures exerted by all the molecules:

N, -m- C w’ow w)’
P, P=) —/—— 43043 2 oY 14
Z Z V ( C C Cj] ( Cj ﬂm( m,i ( )

i i i
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The result allows us to introduce a new formula for calculating the mechanical
work occurring during the finite speed gas-piston interaction:

3
L, = P .[uﬁ} -dv (15)
C

The formula we found has a simple format and the coefficients in the equation are
close to the ones in equation (3), derived from the Maxwell-Boltzmann
distribution model.

If we divide the sums from equations (9) and (14) by N, we get the
following mathematical expression:

P, ZP NZ}N m-C} [iw

3
FJ , where the + sign is applicable to
compression, while the — sign pertains to expansion.

i
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In this equation, % represents just the probability for the molecular speed

to be included in the interval [(i-1)-dC, i-dC]. Statistical Thermodynamics and
Quantum Physics propose several distribution equations for calculating this
probability depending on the state of the system (e.g. for low temperatures, the
distribution Bose-Einstein is applied to bosons and the Fermi-Dirac one, to
fermions). In Clausius’ model, the distribution of energetic states is defined by the
Boltzmann’s distribution equation used by Maxwell to derive the speed
distribution equation: the probability for the speed of a molecule to reach the
value C; in a system in equilibrium is:

2 mC;?

Jz 47-C;”-e *#T  where kg is Boltzmann’s constant. (16)

_m
27 ky T

The relationship defined by Maxwell is valid only for systems in
equilibrium. We will consider that the piston moves in small strokes, each of them
being followed by a short period of relaxation needed before the equilibrium can
be reinstalled [2]. Thus, we can apply this formula for the case under our analysis.
In the next paragraph we will prove that this hypothesis is not mandatory.

3 mC 3
2 2kgr M- C w
P E P = NE [27[ K ] “Ar-C”- 5 731/ (1iCJ =

i
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m- N m T2k T
—4r c' .e B 17
R14 (27[ kg Tj z [ l] 47

2-k,T
m
For pressure calculation, it is also important to have the square-mean speed value:

NCZ \/7 \f (19)

If the total number n of speed intervals is very high, the sum in equation (17)
becomes an integral and C; becomes the continuous variable c:

P(c:Ci):[

where, , = (18) is the speed with the highest probability of happening.

3
P = m3VN S P(c)-c? ( %j -dc By developing (20)
}w 3 me?
P :4E.M[szjc4.[lﬂj ST g
WV \2m-ky-T) 3 c
C2 Cz C2 C2
m-N ©, 2 “ 2 2 2

. 4 _ 2 12 V2
=—-—-vp3- Ic4-e P -dci3jw-c3-e ’ -dc+3jw2-cz-e P dc+‘[c w e '? .de
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The integrals in the parenthesis from the right member are gamma functions [7] of
{H - F(m—ﬂ) ,wheree n=2 and a = Lz . Therefore:
funl n

\4
na "

type: J:o x"e™ dx =

P

2 3
w w w

Based on this result we get a new equation for the calculation of the work
in the compression and expansion processes with finite speed:

2 3
6L, = P .{1iﬂ+bl2idl3}.dl/, where a=2,764;b=3; d=1,382
C C C

As expected, the coefficients are identical to the ones from equation (3),
which were obtained based on the same hypotheses. The coefficient of the third-
order term in equation (21) cumulates the contributions of the third-order term and
of all the terms of superior order in equation (3). Also, by comparing equations (5)
and (21), we notice that the Maxwell-Boltzmann distribution facilitates the

| reduction of irreversibilities caused by the finite speed of the piston.

3. The finite speed gas-piston interaction at an y angle from the
movement trajectory

According to (1) and (4), the simplified mathematical expression of the
first thermodynamic principle takes the following form:

dU;,=0Q;, — OL,= 0Q; — pm,i'[iimﬁ—y}:|-dl/ where p,; is the average

instantaneous pressure of the gas inside the cylinder and has the meaning of the
pressure that would appear in the system at a certain moment if, in that instant, the
piston suddenly stopped. This is one of the main operating parameters in the
Thermodynamics with Finite Speed, which came to replace the equilibrium
pressure p, typical to Classical Thermodynamics, and equation (21) is the
equation that underlies this new branch of Irreversible Thermodynamics.

Based on Clausius’ model described in the previous section, we will
analyze how equation (21) can be applied to the interaction between the gas and
the piston, when its surface is set at an inclined angle y, as shown for the cone-
shaped piston in Figure 6A. In this situation, the speed vector w, with an axial

| direction, will have a normal component at the surface of the piston:



Some kinetic-molecular considerations on gas-piston interaction and their implications ... 123

wy,=w-cosy. Fig. 6B describes the uniform distribution, on all directions, for the
speeds ¢ of the gas molecules (by taking further the Clausius’ model). The
direction and the speed module of a molecule after collision with the piston are
calculated as the vectorial sum of ¢’ vector (corresponding to the speed direction
after the collision with a stationary piston) and the speed vector of the piston.

A

K
0% B

(A) B)
Fig. 6. The interaction between the gas and the sloped piston
(A) compressor: 1 cylinder cover, 2 cone shaped piston; (B) sphere of speed extremities

It should be noticed that the molecules following the same motion course
as the piston towards an elementary surface d4 crossed by an X-X’ axis,
perpendicular to the surface of the piston, will be accelerated after the collision
(because the speed vector module will increase), while the molecules shifting
towards this surface from the opposite direction will be slowed down (the speed
vector module will decrease). In Figure 7 we highlighted one direction, offset to
the left of O-X axis at an y+f angle, where the speed vector module does not
suffer any changes after the collision (the speed vector for the molecules adopting
this course will have, after collision, one extremity placed on the same sphere).
The additional deviation S is caused by the speed of the piston motion and equals
p=arcsin(w/2c). 1t is obvious that for w«c the course of a molecule moving on a
trajectory deviated to the left of the O-X axis at an y angle will have, after
collision, a similar direction as the O-A axis, perpendicular to the motion course
of the piston, and the extremities of the speed

Fig. 7. The changes in the speed of the molecules depending on the angle of incidence
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vectors will remain on the same sphere. Therefore, there are molecules slowed
down from the collision with the piston, even during a compressing process, and
these molecules have, before the collision, the direction angle included in the
interval (0, 7/2- y -f). The other molecules are accelerated. For w«c, f converges
to 0, therefore, the interval turns to (0, 7/2- y).

By decomposition of the vectors ¢ and W along two axes, one normal to the
surface of the piston, the other one tangent to it, the sum of the two speed values
can be done by adding their components. It should be noticed that, for the
molecules travelling towards the piston from the direction opposite its motion
course at an angle from the surface of the piston smaller than z/2- y —f, the normal
components of the speeds are always oriented in the same direction (therefore, the
component of the resultant is the sum of normal components of the two types of
speed), while the tangential components have different directions (therefore, the
component of the resultant will equal the difference between the components of
the two types of speed). The pressure exerted by the gas on the piston is
influenced only by the normal components of the speeds. The instantaneous
pressure exerted by the gas on the piston at a certain moment in time is
determined by the mean of the elementary pressures, exerted on all the elementary
surfaces of the piston interacting with the gas at the same instant (conditioned by
the impulse variations of all the molecules colliding against the corresponding
elementary surface). Thus, for a surface of the piston at an y angle from the
motion course, the gas-piston interaction takes place in exactly the same way as
when the compression is performed by a straight piston moving at a smaller speed
(reduced by a cosy coefficient), but with an area enlarged by the multiplication
with a //cosy coefficient. As a result, all the conclusions drawn in the previous
paragraph for an 4 area of the piston are valid for all the portions on the surface of
any mobile organ where we can infer that the speed and the positioning to the
motion course are not modified in the time unit taken into consideration, if the
speed w is replaced by an equivalent speed w-cos v :

3
P, =P, .[1 ¥ W} , or, if a=arcsinw/c : (22)
’ ’ c

. . 3
P, =P, -(1tsina-cos 7) = P, ~[1 + sm(a i 7/); sm(a — }/)} )
where P,; and P, are the local pressures on an elementary surface of the piston
and, respectively, from a gaseous area close to this surface, area where we can
suppose a uniform gas pressure. For the compressor in Fig. 4, as well as for other
types of compressors for witch the orientation of the piston to the direction of
motion remains the same during the compression, or the expansion, relationship
(22) is valid for the whole surface of the piston. Therefore :
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3
w-Ccosy
P =P, .[1 i_} (23)

C

These conclusions suggest one of the methods that the undesirable consequences
of irreversibility due to finite speed of the piston can be reduced: building
compressors with an uniform sloped piston surface or with a shaped surface.

Generally speaking, the surface of the mobile organ from rotating
compressors is a curved surface (which can be represented in a three-dimensional
system) whose area, orientation to the direction of motion, and speed, changes
from one point to another and from one moment to another. In these
circumstances, calculating the impact of the finite speed of the mobile organ on
the development of processes inside the system is a difficult task that requires for
solving, numerical methods. For high speed values of the piston, equation (22)
must be included in the set of equations describing the behavior of the system.
When the surface of the piston is set at a y angle from the motion course (Fig. 8),
we have already stated, some of the gas molecules is accelerated, while another
part is slowed down. For small speed values of the piston (w«c), the axis
separating the directions of the molecules accelerated by the piston from the
slowed down ones is normal to the motion course and set at an y angle from the
normal to the surface. For higher speed values of the piston, this angle increases
by a f=arcsin(w/2c) value. The kinetic energy of the slowed down molecules
decreases, which may lead to the formation of local regions with lower
temperature. But, if we accept the hypothesis of chaotic molecular distribution,
the kinetic energy of all the accelerated molecules surpasses the energy of the
slowed down ones. As shown in Fig. 8, the courses of the molecules with a kinetic
energy variation mutually compensated are settled on both sides of a direction
offset to the left by a y+p angle from the normal to the surface of the piston.

Fig. 8. The tire of speed extremities after interacting with a sloped piston

Therefore, all molecules with a kinetic energy remains unbalanced after the
collision with the piston take a direction characterized by the angle 8 included in
the interval (z-2y-2f,%). For w«c, meaning that f—0, the interval shrinks and gets
the opening 2 y : (z-2y,m). The more pronounced the slope of the surface of the
piston from the perpendicular on the motion course is (y angle is narrowing), the
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less powerful the energy exchange between the gas system and the piston, which
leads to a slower temperature increase for the system.

5. Conclusions

Even if it was conceived more than 150 years ago, Clausius’ kinetic-
molecular model is far from having exhausted all its potential. In the current
study, we relied on this model to validate once more the accuracy of the equations
underlying the development of the Thermodynamics with Finite Speed and we
deduced, for the straight piston, two new formulas, easy to use. For the bent
piston, the derived equations allow the analysis of irreversibilitis that arise, for the
finite speed of the piston, in rotary compressors and in reciprocating compressors
with shaped piston. The microscopic analysis made on the transformation of
kinetic energy into thermal energy, offers the prospect of a better understanding of
the processes taking place in thermoacoustic devices and in Hilsch-Ranke tubes.
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