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ANALYTICAL AND NUMERICAL APPROACH FOR LOAD
CAPACITY OF A SINGLE SQUARE CELL FROM A
TEXTURED SURFACE

V. MARIAN, M. PASCOVICI, Tr. CICONE"

Texturarea suprafetelor lubrifiate contribuie la reducerea coeficientului de
frecare si a ratei de uzare a suprafetelor. Lucrarea de fatd prezintd un studiu
analitic si numeric al fortei portante si al coeficientului de frecare in cazul unei
degajari de forma patratd, degajare realizata de reguld prin procedeul
Jfotolitografic. Modelul analitic este bazat pe liniarizarea distributiei de presiuni iar
modelul numeric se bazeaza pe utilizarea metodei diferentelor finite. Este prezentata
de asemenea o comparatie a rezultatelor obtinute prin cele doud metode. Se
constatd o bund corelatie intre rezultatele obtinute prin metoda analitica §i cele
obtinute prin metoda numericad.

Lubricated textured surfaces reduce the friction coefficient and the surface
wear rate. The present work is dedicated to the analytical and numerical study of
load capacity and friction coefficient of a single, square dimple, typical for textured
surfaces realized by lithography. The analytical model is based on the pressure
linearization while the numerical model on the finite difference method. A
comparison between the results obtained by the two methods is presented. It is
shown that the results obtained by the analytical method are close to the results
obtained by the numerical method.

Keywords:  Hydrodynamic Lubrication, Textured Surfaces, Parallel Slider,
Finite Difference Method

Introduction

The important role played by roughness in fluid film applications has been
recognized since the beginning of modern studies in lubrication. However, only in
the last decade, controlled roughness was systematically analyzed as a possible
mechanism for lift-off effects, for nominally parallel sliding surfaces. This
evolution reflected by the great number of recent papers (see Fig. 10 (created by
the authors)) is correlated with the recent developments of new and improved
techniques for creating surfaces with controlled microstructure or patterns.
Indentation, chemical etching, micromachining, laser ablation, LIGA processes,
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etc., have recently become available for large scale production of textured
surfaces. These techniques for “surface texturing” allow creation of well defined
“dimples” regularly distributed on the surface.

It is generally accepted that surface texturing can be benefic for lubricated
pairs in several ways: increased capacity, reduced friction, increased film stiffness
or providing a lubricant storage [2], [6]. On a micro-scale, dimples on textured
surfaces have the same effects as the pocket in step bearings [15] or an inclined
pad [5].

The geometry of a dimple can take various configurations, function of the
technique used for texturing. Cylindrical, conical, spherical or parallelepiped
configurations are typical models for real dimples.
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Fig. 1 Number of published papers related to surface texturing

A review of the present state-of-the art for textured surfaces modeling
show that few papers present numerical solutions for pressure generation in the
case of square dimples and an analytical solution has not been yet developed.

Wang et al. [14] presents the first analytical approach based on standard
Rayleigh step bearing model. However, the use of the equations for an infinite pad
is questionable. They conclude that for cylindrical dimples there exists a
theoretical optimum of 40% in the dimple area ratio.

Brizmer and co-workers present in a series of papers a numerical solution
for Reynolds equation for spherical dimples, obtained by laser techniques [6].

Siripuram et al. [12] and Burstein et al. [7] present the effect of different
dimple geometry (including the square dimples) on the load carrying capacity of
mechanical seals.
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The present work is dedicated to the study of load capacity of a single,
square dimple typical for textured surfaces realized by lithography [1] [10]. This
procedure allows a better control of the depth of each dimple in respect with

classical laser-textured technique.

The analysis is performed using two models: a simple analytical model
and a more complex, 2D numerical model. Reported to the literature presented
above the original part of the article is the analytical solution who offers a fast and
reliable method for determining the load capacity and the friction coefficient. The
results predicted with each of the models are compared and conclusions on

optimum design parameters are obtained.

Nomenclature

F— load capacity
Fy— friction force

2
F — dimensionless load, il -
nUL

F, - dimensionless friction force,

7
nur’
h— film thickness
h— dimensionless film thickness,

h/h,,
h,, — minimal film thickness (film
thickness on the lands)

¢ —  dimple characteristic dimension

L — cell characteristic dimension
p— pressure

Pmax — Maximum pressure
2

m

p — dimensionless pressure,

1. General assumptions

P — Maximum dimensionless

pressure
Q- rate of flow

s — dimple depth

s - dimensionless dimple depth, s/,
U— sliding velocity

x— longitudinal Cartesian coordinate
y— lateral Cartesian coordinate

X — dimensionless longitudinal
coordinate, x/L

y — dimensionless lateral coordinate,

/L

n— dynamic viscosity

A — discretization step

pi— dimple area density, (*/L

- friction coefficient

A - “dimensionless” friction
_F
coefficient, —=

A uniform textured surface is considered so that a single dimple can be
isolated with the associated neighboring lands, forming a square cell, of
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characteristic length, L. Neglecting the interactions between dimples, the analysis
can be restricted at a single dimple. The dimple surface is assumed square and its
depth s, uniform, (Fig. 2). The area covered by the dimple reported to the area of
the cell defines the dimple area density, p. The mating surface is assumed plane,
perfectly smooth and parallel to the textured surface.

Linearised
pressure
distribution

Entrance zone Exit zone

z L
X i

Fig. 2 Pressure distribution for the analytical model

The present analysis is based on the typical assumptions of fluid film
lubrication, as follows:

(1) The fluid is Newtonian, incompressible, in laminar and isothermal flow,
without slip at solid boundaries;

(2) Constant pressure across the film thickness;

(3) Neglected inertia effects;

(4) Zero pressure at the boundaries of the cell.

2. Analytical model

A simple analytical model to calculate hydrodynamic pressure generated
by a single dimple can be obtained using a simplified pressure distribution.

Each dimple is assumed to be antisymmetric, that is, the pressure is
negative in the entrance zone and positive in the exit zone (Fig. 3). Assuming a
cavitation pressure equal to zero, the pressure on the entrance zone does not
generate load capacity and consequently the leading half of the dimple can be
considered as a classical Rayleigh pocket-step bearing. A linear pressure
distribution can be assumed on both longitudinal and lateral directions (Fig. 2).
Consequently, the load capacity can be written in terms of maximum pressure,
generated at step border:
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F= Do+ 2P =2 n

The maximum pressure yields equating the flow rate in the dimple with
the flow rate on the land. After some algebra calculi there results:

3nUs!

(h, +s) + L=t 2L h>
¢ L—t

Proax = 2

In dimensionless form, the maximum pressure is

N
Pinax = 1\/§t—s 3)
(s+1)° +| — P, 2

o i

By substituting Eq. (2) in (1) one can obtain the load capacity:

FepPo(y © (4)
6 2L
or in dimensionless form:
FoPos [y, 40 (5)
6 2

In Fig. 3 the load capacity is plotted as function of two geometric
dimensionless parameters: s and p,.
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dimensionless dimple depth, s

Fig. 3 Dimensionless force distribution
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From Fig. 3 one can see that the load capacity has a maximum which can

be easily obtained by solving, for s and ps, the system of equations:
(6)

9 F-o

p,
o —
—F=0 7
os 2
Using a simple numerical procedure there results p,*=0.6, s *=1.33 and

correspondingly, the maximum dimensionless load F__ = 0.033.
Considering that there is no friction in the negative pressure zone, the

@®)

friction force is:
2 2 2
(L =) qUL | pts

7 |-
/ 2h, 2(h, +s) 2
or in dimensionless coordinates:
= |F hm 1 E D
Bl S P P ©)
nUL” 2 2(+s) 2
The “dimensionless” friction coefficient is:
F, uL
—_ 1y
F h,
The distribution of the friction coefficient function of the main parameters
of the cell is presented in Fig. 4.
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Fig. 4 Dimensionless friction coefficient distribution
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From Fig. 4 one can see that the friction has a minimum which can be
easily obtained solving, for s and p,, the system of equations:

0
— =0 11
apt” (11)
0
—10=0 12
= (12)

Using also a simple numerical procedure there results p,*=0.74, 5*=1.58
and correspondingly, the dimensionless friction coefficient z i, = 11.75.

3. Numerical Model

A more accurate analysis of performance characteristics of a single cell
with a square dimple can be done solving numerically the Reynolds equation on
each part of the cell and using a flow rate conservation law at the borders of the
dimple. As the surfaces are nominally parallel, the Reynolds equation takes the
simple form of Laplace Equation

2 2
8p+8p:
ox> oy’

0 (13)

As for the analytical model the boundary conditions are zero pressure on
each limit of a cell. A classical finite differences scheme is used. The equations of
fluid flow are:

1{1 h"3(p'k'_p'/1')
X =—| UAh 4oLty Dkl 14
P 2(2 v 127 (14)
1 h" 13(pi jok  Pin j+k)
.o = — 2 > 5 15
le,],k 2{ 1277 ( )

where Ox;; is the flow on a half of the finite volume side in x direction (k=0-
upper side, k=1-lower side), Qy;;  is the flow on a half of the finite volume side in
v direction (k=0-left, k/=1-right side), A;; is the fluid film thickness of a finite
volume having the nodes coordinate (i,j), (i,j+1), (i+1,j+1), (it1,j).

The Laplace equation on the parallel surfaces is:

1
bi;= Z (pi—l,j +DijatPiat pi+1,j) (16)
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For the discontinuity points the flow conservation is used (Fig. 5).

Pi-vj1 Pi-vj Pi-vj+1
QYij11 | QVivjo
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Control Volume

Fig. 5 Finite difference model

The shear tension on a grid element is:

— T it 1 Nhij
T. . 2 —_—_ 2
710 h .2

L,J

(ﬁi,ﬁl - ﬁi,j + l_7i+l,j+1 - ]_7i+1,j) (17)
The dimensionless friction force becomes:
_  F.h L
F, =—n = [ [z avdy (18)
00

A Gauss-Seidel algorithm with over-relaxation has been implemented in a
FORTRAN code.

4. Results and discussion

A first step of the numerical analysis was dedicated to the study of the
convergence and consistency of the finite differences scheme. A standard
procedure consisting of performing the numerical analysis on several successively
finer grids has been used to define the discretization error. Five successive grids
have been used and the error has been defined in terms of load capacity:

F;xact

g=100.—FZ
F

exact
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where the “exact” solution was considered the value corresponding to the
finest grid. A typical result is plotted in Fig. 6.
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Fig. 6 Relative error evolution function of grid density

It is shown that the solution presents an asymptotic convergence to a
“theoretical” value. The number of nodes chosen for the further simulations is 64,
producing a relative error of 1.45%.

Fig. 7 Dimensionless pressure distribution on a square cell
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In Fig. 7 the dimensionless pressure distribution is presented on a square
dimple with the following characteristics: s =1, p/~=0.25. In the zones where the
pressure distribution is negative, the cavitation phenomenon appears. Therefore,
in the calculation of the load carrying capacity only the positive values of the
pressure distribution are considered.

A comparison between the results obtained by the analytical and numerical
method is considered in Fig. 8 and Fig. 9 by varying the texture density and the
dimensionless depth of the dimple. In both cases only the positive pressures are
considered to contribute to the load carrying capacity. The variation intervals of
the two parameters were chosen to cover the cases encountered in practice. The
values of the fixed parameters are the optimal values obtained for the analytical
solution (5 =1.33 and p~=0.6 for load capacity and s =1.58 and p~=0.74 for friction
coefficient).

@ (b)
0.04 0.04 :
|analytical | .numerlcall
0.03 /At\o ' 0.03
} F 0.02

F 0.02
/ numerical |ana|yticm
0.01 0.01
_ 4’ t=0.6
§=133 0 [rZ|

0.00 \

0.1 0.3 0.5 0.7 0 05 1 52
area density of dimples, p; dimensionless dimple depth, s

Fig. 8 Load capacity distribution function of cell parameters
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Fig. 9 Friction coefficient distribution function of cell parameters
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It can be observed that there is a good correlation between the values of
the analytical solution and the values of the numerical one. However, the
analytical solution can be used to provide an approximate value of the load
capacity while the numerical solution can be utilized to obtain a closer value of
the real load capacity.

For a dimensionless dimple depth of 1.33, the analytical and numerical
curves present a maximum dimensionless load for p=0.56 (Fig. 8, (a)). For a
constant p~=0.56, the analytical curve presents a maximum at s=1.3 while the
numerical solution at 5 =1.1 (Fig. 8 (b)).

Both numerical and analytical solutions present the same optimal values to

achieve a minimal friction coefficient (p~0.74, s=1.58).
It can also be remarked that the optimal values in terms of load capacity
are not the same as the optimal values of friction coefficient.

Conclusions

The theoretical modeling of a textured cell represents the first step in
understanding the phenomena involved in the lubrication of textured surfaces,
creating the premises of modeling a textured surface pair. The present paper
analyses the load capacity and friction loss for a single, square dimple, using two
models: a simplified analytical one and a more complex numerical model.
Parametric analyses have revealed optimal load capacity and friction coefficient
function for two important dimple parameters: area density and dimple depth. It is
found that the textured density which maximizes the load carrying capacity of the
cell is 0.6 while the dimensionless height of the dimple is 1.33. The parameters
which minimize the friction coefficient are s *=1.58 and p,*=0.74.

Comparisons between predicted analytical and numerical performance
characteristics have shown good correlation, with differences within 10%.
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