U.P.B. Sci. Bull., Series A, Vol. 87, Iss. 4, 2025 ISSN 1223-7027

ON CO-r-SUBMODULES AND CO-r-NOETHERIAN MODULES

by Unsal Tekir!, Suat Kog?, Secil Ceken® and Violeta Leoreanu-Foteat

In this paper, we investigate some properties and characterizations of co-
r-submodules which is the dual notion of r-submodules. We prove that every nonzero
submodule of a finitely generated module is a co-r-submodule. We investigate when a
submodule N of an R-module M contains a co-r-submodule. Also, we study the further
properties of co-r-Noetherian modules as a generalization of Noetherian modules.
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1. Introduction

Throughout this paper, we focus only on commutative rings with nonzero identity
and nonzero unital modules. Let R always denote such a ring and M denote such an R-
module. In recent years, some new classes of ideals and submodules have been defined and
investigated by various authors (see [1], [9], [13], [19]).

The set of zero-divisors of an R-module M is defined as the set

Z(M):={a € R:am =0 for some 0 #m € M} [g].
For every submodule N of M, the annihilator of N is denoted by anng(N) := {r € R :
rN =0} [g].

Kog¢ and Tekir [I5] introduced the following concept: a proper submodule N of M is
said to be an r-submodule if Z(M/N) C Z(M) [15]. Also, they proved various properties of r-
submodules, which are similar to those of prime submodules and gave a new characterization
of torsion free modules in terms of r-submodules.

In recent years, there have been various studies about r-submodules. For instance,
Anebri et al. investigated ascending and descending chain conditions on r-submodules in
[3] and [4].

Recall that an R-module M is said to satisfy Property (A) if for each finitely generated
ideal I of R contained in Z(M) there exists 0 # m € M such that Im = 0 [I7]. Mahdou et
al. gave a characterization of modules satisfying Property (A) in terms of r-submodules in
[17).

The dual notion of prime submodules was firstly introduced and studied by S. Yassemi
in [21].
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Recall from [21] that a nonzero submodule N of an R-module M is said to be a second
submodule if, for all r € R, rN = 0 or rN = N. If N is a second submodule of M, then
p = anng(N) is a prime ideal of R and N is called a p-second submodule of M [21].

In recent years, second submodules have been studied by various authors in a number
of papers (see for example [6], [7], [10], [11]).

In 2023, F. Farshadifar introduced the dual notion of r-submodules, which is called
co-r-submodule, and studied ascending chain condition on co-r-submodules.

Recall from [20] that the dual notion of zero-divisors of a submodule N of M is
defined as the set W(N) :={r € R:rN # N}. A nonzero submodule N of M is said to be
a co-r-submodule if W(N) C W(M) [13].

Also M is said to be a co-r-Noetherian module if it satisfies the ascending chain
condition on co-r-submodules [13].

Our aim in this paper is to study further properties of co-r-submodules and co-r-
Noetherian modules. Among the other results in this paper, we prove that every nonzero
submodule of a finitely generated module is an co-r-submodule (see Proposition 2.9). We
investigate when a submodule N of an R-module M contains a co-r-submodule (see Theorem
2.18).

We give a characterization of reduced co-r-Noetherian modules via localization (see
Theorem 2.21). We also investigate co-r-Noetherian property for multiplication and comul-
tiplication modules (see Proposition 2.25 and Theorem 2.27).

2. Main Results

Definition 2.1 [13] We say that a non-zero submodule N of an R-module M is a co-r-
submodule of M if for a € R and a submodule K of M, whenever aN C K and aM = M,
then N C K.

Remark 2.2. [I3] Remark 2.3] Let M be an R-module and N be a non-zero submodule of
M. Tt is easily seen that N is a co-r-submodule of M if and only if W(N) C W (M).

Remark 2.3.

(1) It is clear from the definition that every non-zero R-module M is a co-r-submodule of
itself.

(2) If R is an integral domain and N is a non-zero divisible submodule of an R-module M,
then N is a co-r-submodule of M.

(3) Let M be a semisimple R-module. Then every non-zero submodule of M is a co-r-
submodule of M.

Definition 2.4. [I8] A proper submodule N of an R-module M is called a pure submodule
of M if rN =rM NN for every r € R.

Remark 2.5. It is clear that if N is a non-zero pure submodule of M, then N is a co-r-
submodule of M.

Definition 2.6. [I12] An R-module M is said to be a multiplication module if each submodule
N of M has the form N = IM for some ideal I of R .

Remark 2.7. It is well-known that M is a multiplication module if and only if N = (N :
M)M for every submodule N of M (see [12]).

Proposition 2.8. [I3] Theorem 2.4] Every non-zero submodule of a multiplication module
is a co-r-submodule.

Proposition 2.9. FEvery nonzero submodule N of a finitely generated R-module M is a
co-r-submodule.
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Proof. Let M be a finitely generated R-module and /N be a nonzero submodule of M. Assume
that there exists a € W(N)\W(M). Then it is clear that aM = M. Since M is finitely
generated, by [8l Corollary 2.5], there exists * € R such that (1 + za)M = 0 and so

(I1+za)N =0.
This implies that N = xaN C aN and so N = aN, a contradiction. Hence, we have
W(N) CW(M). O

Proposition 2.10. Let M be an R-module. Then the following hold.

(1) [13, Remark 2.3] If N is a co-r-submodule of M, then anng(N) C W (M).

(2) [13, Proposition 2.6] The sum of an arbitrary non-empty set of co-r-submodules of an
R-module M is a co-r-submodule.

Proposition 2.11. [I3] Proposition 2.11] Let N be a non-zero submodule of an R-module
M. Then the following are equivalent.

(1) N is a co-r-submodule.

(2) (0:pr a)+ N = (N :p a) for every a € R\W(M).

(3) aN = N for every a € R\W(M).

Recall from [I6], an R-module M is said to be an a-reduced module where a is an
endomorphism of R with «(1) =1, if for any a € R and m € M,
(1) a®>m = 0 implies Rm NaM = 0.
(2) am = 0 if and only if a(a)m = 0.
If « is the identity map on R, then M is called a reduced module [16]. By [16, Lemma 1.2],
M is a reduced module if and only if for any a € R and m € M, a?m = 0 implies that
am = 0.

Proposition 2.12. Let M be a reduced module and N be a nonzero submodule of M. If N
is a co-r-submodule, then N = (N :pr a) for each a € R\W (M).

Proof. Assume that M is a reduced module and N is a co-r-submodule of M. Then, by
Proposition 2.12, we have (0 :pr a) + N = (N :ps a) for each a € R\W(M). In order to
complete the proof, it is enough to show that (0 :ps a) = 0 for each a € R\W(M). Let
m* € (0 :pr a). Then we have am* = 0. Since a ¢ W(M), aM = M and so m* = am’ for
some m’ € M. This implies that am* = a?m’ = 0. As M is reduced, we conclude that
m* = am’ = 0 and thus (0 :p; a) = 0. Therefore, N = (N :js a), as required. O

Recall that a proper submodule N of M is said to be a prime submodule if am € N,
where @ € R and m € M, then either a € (N : M) or m € N. Note that a submodule
N of M is a prime submodule if and only if N = (N :js a) for each a € R\(N : M). As an
immediate consequence of Proposition 2.12 we give the following explicit result.

Corollary 2.13. Assume that M is a reduced module and N is a nonzero submodule of
M with W(M) C (N : M). If N is a co-r-submodule, then N is prime.

Definition 2.14. Let S be a non-empty subset of R. We say that .S is a co-r-multiplicatively
closed subset of R if R\W (M) C S and ab € S for every a € R\W (M) and b € S.

Proposition 2.15. If N is a co-r-submodule of M, then R\anng(N) is a co-r-multiplicatively
closed subset of R.

Proof. Since N is a co-r-submodule of M, by Proposition 2.10 (1), we have R\W (M) C
R\anng(N). Let a € R\W (M) and b € R\anng(N). a € R\W (M) and W(N) C W(M)
(since N is a co-r-submodule of M) implies aN = N. Assume that ab € anng(N). Then
abN =0 and aN = N.

It follows that abN = bN = 0 and so b € anng(N), a contradiction. Hence, ab €
R\anng(N), as required. O
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Proposition 2.16. Suppose that N is a nonzero submodule of M. Then N is a co-r-
submodule if and only if R\W(N) is a co-r-multiplicatively closed subset of R.

Proof. Assume that R\W(N) is a co-r-multiplicatively closed subset of R. Then R\W (M) C
R\W(N) and so W(N) C W(M).

Conversely, assume that N is a co-r-submodule of M. Then W(N) C W (M) and
so R\W(M) C R\W(N). Let a € R\W(M) and b € R\W(N). Now, we will show that
ab € R\W(N).

If ab € W(N), then abN # N. Since b € R\W(N), we have bN = N and thus
abN = aN # N and this yields that « € W(N). As N is a co-r-submodule, W(N) C W (M)
and so a € W(M), a contradiction.

Hence ab € R\W(N), that is, R\W(N) is a co-r-multiplicatively closed subset of
R. O

Definition 2.17. Let T be a co-r-multiplicatively closed subset of R and 7™ be a non-
empty subset of M. We say that T* is a T-closed subset of M if ax € T* for each a € T
and x € T™*.

The following theorem is the dual result of [I5, Theorem 4].

Theorem 2.18. Let T be a co-r-multiplicatively closed subset of R and T™ be a T-closed
subset of M. Suppose that N is a submodule of M with N UT* = M. Then there exists a
co-r-submodule L of M such that L C N and LUT* = M.

Proof. Let W := {L’: L' is a submodule of M with L' C N and L' UT* = M}. Then ¥ # ()
as N € U. By Zorn’s Lemma, ¥ has a minimal element, say L. Suppose that L is not a
co-r-submodule of M. Then there exists an a € R such that aL # L and aM = M. By the
minimality of L, we have aL UT™ # M. Therefore, there exists m € M such that m & aL
and m ¢ T™.

Since aM = M, we have m = ax for some x € M. m ¢ aL implies x ¢ L. It follows
that x € T*. Since T™ is a T-closed subset of M, we have m = ax € T, a contradiction.
Therefore, L is a co-r-submodule of M. O

Definition 2.19. Let M be an R-module. If M satisfies ascending chain condition on
co-r-submodules, then M is called co-r-Noetherian module.

Let M be an R-module and S a multiplicatively closed subset of R. Then S™'M
denotes the quotient module of M. Note that S™'M is both an R-module and S™'R-
module. 0g-1,; denotes the zero element of S~'M.

The natural R-homomorphism 7 : M — S™'M is defined as w(m) = 2 for each
m € M. We use the notation K¢ to denote 7~ !(K) for a submodule K of S~'M and N¢ to
denote the submodule generated by 7(N). It is well-known that K° = K for a submodule
K of S71M [§].

Lemma 2.20. Let M be an R-module and S = R\W(M). If L is a non-zero submodule of
S=IM, then #=1(L) is a co-r-submodule of M.

Proof. We have m=1(L) = L¢ # 0 because if L¢ = 0, then we would have L°® = L = (0g-1,;),
a contradiction. Put 7=1(L) := N. Let a € R\W(M). We will show that aN = N. Let
z € N. Then z = ay for some y € M. We have m(z) = £ € L. Then ¥ = 1% ¢ [,

This shows that y € 7~*(L) = N. Thus z = ay € aN and so aN = N. Therefore, N
is a co-r-submodule of M. |

Theorem 2.21. Let M be an R-module. Let us consider the following two assertions.
(1) M is a co-r-Noetherian R-module.
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(2) S™M is a Noetherian S~ R-module, where S = R\W (M).
Then (1) implies (2). If M is a reduced R-module, then (2) implies (1).

Proof. (1) = (2) Suppose that M is a co-r-Noetherian module and let
LyCLyC---CL,C---

be an ascending chain of S~! R-submodules of S~' M. Consider the natural R-homomorphism
7w previously defined. By Lemma 2.20 we have the following ascending chain of co-r-
submodules of M :

7 (L) S (L) S-S (L) C -

As M is a co-r-Noetherian module, then there exists k € Z* such that 7=1(L;,) =
7~ Y(Ly,) for all n > k. We fix an integer n > k and we show that L, = L;. By the above
chain, we have Ly C L,.

For the converse, take ™ € L,, where m € M, s € R\W(M). Since sM = M,

m = sm’ for some m’ € M. It follows that = = ‘":/ = "Tl/ = w(m') € L, and so

m' € m1(L,) = 7 1(L;). Thus mT/ = 2 € L. Hence, L, = Lj. Thus S~IM is a
Noetherian S~!R-module.

(2) = (1) Suppose that S™1M is a Noetherian S~!R-module. Take any ascending
chain of co-r-submodules Ny C Ny C --- C N, C --- of M. Then, by hypothesis, there is a
k € Z1 such that S™'N, = S™IN,, for all n > k.

We fix an integer n > k. Note that N, C N,,. Let m € N,. Then there exists an
element s € R\W (M) such that m € (Ny :pr s). Since M is reduced, by Proposition 2.12,
we have Ny = (Nj :p s). Hence m € Ny and, thus N,, = Ni. This shows that M is a
co-r-Noetherian module. O

In the previous theorem, if we remove the condition "M is a reduced module”, then
(2) = (1) may be wrong. See the following example derived from [13, Example 3.7].

Example 2.22. Let p be a prime number and consider Z-module

M = Z(p™) x Q, where Z(p>) = {z € Q/Z : x = (r/p') + Z for some r € Z and
t € NU{0}} is the Priifer group.

Then note that M is a divisible Z-module, so by Example 2.28, every nonzero sub-
module of M is a co-r-submodule of M. Also note that

<1+Z>XQ§<12+Z>><(@Q~--§<1n+Z>><Qg~-~
p p p

is a strictly ascending chain of co-r-submodules of M.

Thus, M is not a co-r-Noetherian R-module.

On the other hand, note that Z\W (M) = Z\{0} and S~!Z-module S~!M is isomor-
phic to Q-module Q.

Thus, S~'Z-module S™'M is a Noetherian module.

Let S be a multiplicatively closed subset of R and M be an R-module. An increasing
sequence (Ny),, o5+ of submodules of M is called S-stationary if there exists a positive integer
k and s € S such that for each n > k, sN,, C Ny [14].

Proposition 2.23. Let M be an R-module and S be a multiplicatively closed subset of R
such that SOW (M) = 0. If every ascending chain of co-r-submodules of M is S-stationary,
then M is a co-r-Noetherian module.

Proof. Let N C Ny C --- C N, C --- be an ascending chain of co-r-submodules of M.
Then, by hypothesis, there exists an s € S and k € Z* such that sN,, C N, for all n > k.
Since S C R\W (M), sN,, = N,, by Proposition 2.11. Thus N,, = Ny, for all n > k and this
shows that M is a co-r-Noetherian module. O
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Recall from [2] that a multiplicatively closed subset S of R is said to satisfy the
mazimal multiple condition if there exists an s € S such that t|s for all ¢ € S.

Note that every finite multiplicatively closed set S of R and the set of all units in R
are examples of multiplicatively closed sets satisfying the maximal multiple condition.

Theorem 2.24. Let M be an R-module such that S = R\W (M) satisfies the mazimal
multiple condition. Then the following are equivalent:

(1) M is a co-r-Noetherian R-module.

(2) S7'M is a Noetherian S~ R-module.

Proof. (1) = (2) It follows from Theorem 2.21.

(2) = (1) Suppose that Ny C Ny C --- C N, C --- is an ascending chain of co-r-
submodules of M. Then by assumption, there exists k € Zt such that S~ N, = S~ N,, for
all n > k. Let m € N,,. Then we have 7 € S~IN,, = S7'N,, and this yields tm € Ny, for
some t € R\W(M).

Since R\W (M) satisfies maximal multiple condition, there exists s € S such that ¢|s
for each t € S. Then we have sm € Nj and so sN,, C Ni. Thus every ascending chain of
co-r-submodules of M is S-staionary. Then by Proposition 2.23, M is a co-r-Noetherian
module. |

Note that in Example 2.22, S = R\W (M) = Z\{0} does not satisfy the maximal
multiple condition. In Example 2.22, although S~'Z-module S~ M is a Noetherian module,
M is not a co-r-Noetherian Z-module. This shows that the condition ”.S = R\W (M) satisfies
the maximal multiple condition” in the previous theorem is necessary.

Recall from [I5] that a proper ideal I of R is called an r-ideal if ab € I and anng(a) =
0, then b € I for all a,b € R. Recall from [3] that a ring R is said to be r-Artinian if it
satisfies descending chain condition on r-ideals.

An R-module M is said to be a comultiplication module if each submodule N of M
has the form N = (0 :p; I) for some ideal I of R.

According to [5 Lemma 3.7], an R-module M is a comultiplication module if and
only if for each submodule N of M, N = (0 :pr anngr(N)).

Proposition 2.25. Let R be an r-Artinian ring and M be a comultiplication R-module
such that W (M) C Z(R). Then M is a co-r-Noetherian module.

Proof. Let Ny C Ny C --- C N, C --- be an ascending chain of co-r-submodules of M.
Since W(M) C Z(R), one can see that anng(N;) is an r-ideal of R for each i.

Since R is an r-Artinian ring, there exists k € ZT such that anngr(N,) = anng(Ny)
for all n > k. As M is a comultiplication module, this implies that N,, = N}, for all n > k.
Thus M is a co-r-Noetherian module. O

Proposition 2.26. Let M be a co-r-Noetherian module. Then, for every co-r-submodule
N of M and every family of co-r-submodules {Ki}ica of N, > ,cn Ky = N implies that
Yica Ki = N for some finite subset A" of A.

Proof. Let N be a co-r-submodule of M and {K;};ca be a family of co-r-submodules of N
such that ZieA K; = N. The fact that N is a co-r-submodule of M implies that K; is a
co-r-submodule of M for all i € A. Now, set

F={>";cn Ki: A is a finite subset of A}.

By Proposition 2.10-(2) and the hypothesis, F has a maximal element N' = %", . K;.
Let j € A\A’. Then N’ C N’ + K;. The maximality of N’ implies that N’ + K; = N’ and
so K; € N'. Thus N C N’ which implies that N' =3, _,, K; = N. O

The following result can be found in [I3}, Theorem 3.9]. However, we shall give it with
a different proof.
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Theorem 2.27. Let R be a ring satisfying ascending chain condition on r-ideals and M be
a multiplication R-module with W (M) C Z(R). Then M is a Noetherian R-module.

Proof. Let Ny C Ny C --- C N, C --- be an ascending chain of co-r-submodules of M.
Since M is multiplication module, we can write N; = (N; :g M )M for each i. Now, we will
show that (N; :g M) is an r-ideal of R. Let ab € (N; :g M) with a € R\Z(R).

Then, by assumption, aM = M. Tt follows that abM = bM C N; and so b € (N; :r
M). Thus (N7 :g M) C (Ny :g M) C --- C (N, :g M) C --- is an ascending chain of
r-ideals of R. By the hypothesis, there exists m € Z* such that (N; :g M) = (N,, :r M)
for each ¢ > m.

Since M is a multiplication module, this gives that N; = N,, for each i > m. Thus
M is a co-r-Noetherian module. By Proposition 2.8, M is a Noetherian R-module. O

The condition "M is a multiplication module” can not be removed from Theorem
2.27. See the following example.

Example 2.28. Consider the Z-module Z(p™) where p is a prime number and Z(p*°) is
the Priifer group. Then clearly Z(p*) is not a multiplication Z-module and W (Z(p>)) =
0= 2(Z).

Also note that Z satisfies ascending chain condition on r-ideals since it is a domain.
However, Z(p*°) is not a Noetherian Z-module.

3. Conclusions

In this paper, we give some new properties and characterizations of co-r-submodules
and co-r-Noetherian modules. We prove that every nonzero submodule of a finitely gener-
ated module is an co-r-submodule. We investigate when a submodule N of an R-module
M contains a co-r-submodule. We give a characterization of reduced co-r-Noetherian mod-
ules via localization. We also investigate co-r-Noetherian property for multiplication and
comultiplication modules.
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