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CROSSED POLYMODULES AND FUNDAMENTAL RELATIONS

Murat Alp1, Bijan Davvaz2

In this paper, we introduce the notion of crossed polymodule of poly-
groups and we give some of its properties. Our results extend the classical results
of crossed modules to crossed polymodules. One of the main tools in the study
of polygroups is the fundamental relations. These relations connect polygroups to
groups, and on the other hand, introduce new important classes. So, we consider
a crossed polymodule and by using the concept of fundamental relation, we ob-
tain a crossed module. Moreover, we give a crossed polymodule morphism between
them.
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1. Introduction

Crossed modules and its applications play very important roles in category
theory, homotopy theory, homology and cohomology of groups, Algebra, K-theory
etc. The term of crossed module was introduced by J. H. C. Whitehead in his work
on combinatorial homotopy theory [24]. Loday explored and gave the new direction
to the category of crossed modules by defining equivalent category of cat1-groups
in his work [21]. Norrie gave a good example of crossed module such as Actor
crossed module in [22] . Improving computer softwares and mathematical tools gave
the new directions to the category of crossed modules, category of cat1-groups and
actor crossed modules. All of these categories were calculated by GAP (Group,
Algorithm and Programming) [17] share package XMod [5].

The polygroup theory is a natural generalization of the group theory. In a
group the composition of two elements is an element, while in a polygroup the
composition of two elements is a set. Polygroups have been applied in many area,
such as geometry, lattices, combinatorics and color scheme. There exists a rich
bibliography: publications appeared within 2012 can be found in “Polygroup Theory
and Related Systems” by B. Davvaz [13]. This book contains the principal definitions
endowed with examples and the basic results of the theory.

In this paper, we give a new application of crossed modules. This application
is so important because we use the notion of polygroup to obtain crossed module.
Therefore this application can be taught as a generalization of crossed module on
groups. In the first two sections of the paper, we review some basic facts about
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crossed modules and polygroups that underlie the subsequent material. To define
croosed polymodule, we need the notion of polygroup action. This is given in Section
4. In Section 5, we introduce the notion of crossed polymodules and give some of
their properties. Finally, in Section 6, we consider a crossed polymodule and by
using the concept of fundamental relation, we obtain a croosed module. Then, we
give a crossed polymodule morphism between them.

2. Crossed modules

We mentioned above that crossed modules found too many application areas
such as Brown and Mosa replaced algebras by algebroids and defined crossed module
of algebroids. Actor crossed module of algebroid was defined by Alp. Pullback
crossed module was defined by Brown and Wensley. Pullback crossed module of
algebroids was defined by Alp. Pushout crossed module of profinite groups was
presented by Korkes and Porter. Pushout cat1-profinite groups, Pushout cat1-Lie
algebra and Pushout cat1- commutative algebra were presented by Alp and Gürmen.
To get more idea about category of crossed module and category of cat1-groups we
refer to read [1, 2, 3, 4, 7, 8, 18, 24] and more about we did not mention. To create
a crossed module we need to define an action and a boundary homomorphism. In
this section we recall the group action and definition of crossed module.

Definition 2.1. Let G be a group and Ω be a non-empty set. A (left) group action
is a binary operator τ : G× Ω → Ω that satisfies the following two axioms:

(1) τ(gh, ω) = τ(g, τ(h, ω)), for all g, h ∈ G and ω ∈ Ω,
(2) τ(e, ω) = ω, for all ω ∈ Ω.

For ω ∈ Ω and g ∈ G, we write gω := τ(g, ω).

Definition 2.2. A crossed module X = (M,G, ∂, τ) consists of groups M and G
together with a homomorphism ∂ : M → G and a (left) action τ : G ×M → M on
M , satisfying the conditions:

(1) ∂( gm) = g∂(m)g−1, for all m ∈M and g ∈ G,

(2) ∂(m)m′ = mm′m−1, for all m,m′ ∈M .

The standard examples of crossed modules are inclusion M ↪→ G of a normal
subgroup M of G, the zero homomorphism M → G when M is a G-module, and
any surjection M → G with center central. There is also an important topological
example: if F → E → B is a fibration sequence of pointed spaces, then the induced
homomorphism π1F → π1E of fundamental groups is naturally a crossed module
[6].

3. Polygroups

Suppose that H is a nonempty set and P∗(H) is the set of all nonempty sub-
sets of H. Then, we can consider maps of the following type: fi : H ×H → P∗(H),
where i ∈ {1, 2, . . . , n} and n is a positive integer. The maps fi are called (bi-
nary) hyperoperations. For all x, y of H, fi(x, y) is called the (binary) hyperproduct
of x and y. An algebraic system (H, f1, . . . , fn) is called a (binary) hyperstruc-
ture. Usually, n = 1 or n = 2. Under certain conditions, imposed to the maps fi,
we obtain the so-called semihypergroups, hypergroups, hyperrings or hyperfields.
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Sometimes, external hyperoperations are considered, which are maps of the follow-
ing type: h : R × H → P∗(H), where R ̸= H. An example of a hyperstructure,
endowed both with an internal hyperoperation and an external hyperoperation is
the so-called hypermodule. Applications of hypergroups appear in special subclasses
like polygroups that they were studied by Comer [9], also see [13, 14, 15]. Specially,
Comer and Davvaz developed the algebraic theory for polygroups. A polygroup is
a completely regular, reversible in itself multigroup.

Definition 3.1. [9] A polygroup is a multi-valued system M =< P, ◦, e,−1>, with
e ∈ P , −1 : P −→ P , ◦ : P × P −→ P∗(P ), where the following axioms hold for all
x, y, z in P :

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z),
(2) e ◦ x = x ◦ e = x,
(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

In the above definition, P∗(P ) is the set of all the non-empty subsets of P ,
and if x ∈ P and A,B are non-empty subsets of P , then A ◦ B =

∪
a∈A,b∈B

a ◦ b,

x◦B = {x}◦B and A◦x = A◦{x}. The following elementary facts about polygroups
follow easily from the axioms: e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e and (x−1)−1 = x. In
the rest of this section we present the facts about polygroups that underlie the
subsequent material. For further discussion of polygroups, we refer to Davvaz’s
book [13]. Many important examples of polygroups are collected in [13] such as
Double coset algebra, Prenowitz algebras, Conjugacy class polygroups, Character
polygroups, Extension of polygroups, and Chromatic polygroups. Here, we recall
one of them.

Example 3.1. Suppose that H is a subgroup of a group G. Define a system
G//H =< {HgH | g ∈ G}, ∗,H,−I >, where (HgH)−I = Hg−1H and

(Hg1H) ∗ (Hg2H) = {Hg1hg2H |h ∈ H}.
The algebra of double cosets G//H is a polygroup.

Lemma 3.1. Every group is a polygroup.

If K is a non-empty subset of P , then K is called a subpolygroup of P if e ∈ K
and < K, ◦, e,−1> is a polygroup. The subpolygroup N of P is said to be normal
in P if a−1 ◦ N ◦ a ⊆ N , for every a ∈ P . If N is a normal subpolygroup of P ,
the following elementary facts follows easily from the axioms: (1) N ◦ a = a ◦ N ,
for all a ∈ P ; (2) (N ◦ a) ◦ (N ◦ b) = N ◦ a ◦ b, for all a, b ∈ P ; (3) N ◦ a = N ◦ b,
for all b ∈ N ◦ a. If N is a normal subpolygroup of P , then < P/N, •, N,−I > is a
polygroup, where N ◦ a • B ◦ b = {N ◦ c | c ∈ N ◦ a ◦ b} and (N ◦ a)−I = N ◦ a−1

[13]. There are several kinds of homomorphisms between polygroups [13]. In this
paper, we apply only the notion of strong homomorphisms. Let < P, ◦, e,−1> and
< P ′, ⋆, e,−1> be two polygroups. A mapping ϕ from P into P ′ is said to be a strong
homomorphism if ϕ(e) = e and for all a, b ∈ P, ϕ(a ◦ b) = ϕ(a) ⋆ϕ(b), for all a, b ∈ P.
A strong homomorphism ϕ is said to be an isomorphism if ϕ is one to one and onto.
Two polygroups P and P ′ are said to be isomorphic if there is an isomorphism from
P onto P ′. The defining condition for a strong homomorphism is also valid for sets,
i.e., if A,B are nonempty subsets of P , then it follows that f(A ◦B) = f(A) ⋆ f(B).
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If ϕ is a strong homomorphism from P into P ′, then the kernel of ϕ is defined as
usual, i.e., kerϕ = {x ∈ P |ϕ(x) = e}. It is easy to see that kerϕ is a subpolygroup
of P but in general is not normal. We say that ϕ is a kernel-closed homomorphism
if x ◦ x−1 ⊆ kerϕ, for all x ∈ P. If ϕ is a kernel-closed homomorphism, then kerϕ is
normal and P/kerϕ ∼= Imϕ [13].

4. Polygroup action

By using the concept of generalized permutation, in [11], Davvaz defined per-
mutation polygroups and action of a polygroup on a set. For the definition of crossed
polymodule, we need the notion of polygroup action.

Definition 4.1. [11] Let P =< P, ◦, e,−1> be a polygroup and Ω be a non-empty set.
A map α : P × Ω → P∗(Ω) is called a (left) polygroup action on Ω if the following
axioms hold:

(1) α(e, ω) = {ω} = ω, for all ω ∈ Ω,
(2) α(h, α(g, ω)) =

∪
x∈h◦g

α(x, ω), for all g, h ∈ P and ω ∈ Ω,

(3)
∪

ω∈Ω
α(g, ω) = Ω, for all g ∈ P ,

(4) for all g ∈ P , x ∈ α(g, y) ⇒ y ∈ α(g−1, x).

From the second condition, we get
∪

ω0∈α(g,ω)
α(h, ω0) =

∪
x∈h◦g

α(x, ω). For ω ∈

Ω, we write gω := α(g, ω). Therefore, we have

(1) eω = ω,
(2) h( gω) = h◦gω, where gA =

∪
a∈A

ga and Bω =
∪
b∈B

bω, for all A ⊆ Ω and

B ⊆ P ,
(3)

∪
ω∈Ω

gω = Ω,

(4) for all g ∈ P , a ∈ gb⇒ b ∈ g−1
a.

Example 4.1. Suppose that < P, ◦, e,−1> is a polygroup. Then, P acts on itself if
we define gx := x ◦ g−1 or gx := g ◦ x, for all x, g ∈ P .

Example 4.2. Suppose that < P, ◦, e,−1> is a polygroup. Then, P acts on itself by
conjugation. Indeed, if we consider the map α : P ×P → P∗(P ) by α(g, x) = gx :=
g ◦ x ◦ g−1, then

(1) ex = x,
(2) h( gx) = h(g ◦ x ◦ g−1) = h ◦ g ◦ x ◦ g−1 ◦ h−1 = (h ◦ g) ◦ x ◦ (h ◦ g)−1 =∪

b∈h◦g
(b ◦ x ◦ b−1) =

∪
b∈h◦g

bx = h◦gx,

(3)
∪
x∈P

gx =
∪
x∈P

g ◦ x ◦ g−1 = P ,

(4) if a ∈ gb = g ◦ b ◦ g−1, then g ∈ a ◦ g ◦ b−1 and hence b−1 ∈ g−1 ◦ a−1 ◦ g. This
implies that b ∈ g−1 ◦ a ◦ g.

Example 4.3. Suppose that < P, ◦, e,−1> is a polygroup and N is a normal sub-
polygroup of P . Let Ω denote the set of all right cosets N ◦ x (x ∈ P ). We define
g(N ◦ x) = {N ◦ z | z ∈ N ◦ x ◦ g−1}. Then, we have a (left) polygroup action on Ω.
Indeed, we have
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(1) e(N ◦ x) = N ◦ x,
(2) h ( g(N ◦ x)) = h

(
{N ◦ z | z ∈ N ◦ x ◦ g−1}

)
=

∪
z∈N◦x◦g−1

{N ◦ t | t ∈ N ◦ z ◦

h−1} = {N ◦ t | t ∈ N ◦ x ◦ g−1 ◦ h−1} =
∪

a∈h◦g

a(N ◦ x) = h◦g(N ◦ x),

(3) suppose that N ◦y ∈ Ω, where y ∈ P . For every g ∈ P , there exists a ∈ P such
that y ∈ a ◦ g−1. This implies that y ∈ N ◦ a ◦ g−1 and so N ◦ y ∈ g(N ◦ a).
Therefore, N ◦ y ∈

∪
N◦x∈Ω

g(N ◦ x),

(4) we show that N ◦x ∈ g(N ◦y) ⇒ N ◦y ∈ g−1
(N ◦x). Since N ◦x ∈ {N ◦z | z ∈

N ◦ y ◦ g−1}, there exists z0 ∈ N ◦ y ◦ g−1 such that N ◦ x = N ◦ z0. From
z0 ∈ N ◦y ◦g−1, we obtain g−1 ∈ y−1 ◦N ◦ z0. Hence, y−1 ∈ g−1 ◦ z−1

0 ◦N and

so y ∈ N ◦z0◦g. Therefore, y ∈ N ◦x◦g which implies that N ◦y ∈ g−1
(N ◦x).

5. Crossed polymodules

Now, in this section, we give the notion of crossed polymodule. To define
a crossed module, we need the notion of polygroup action and boundary strong
homomorphism.

Definition 5.1. A crossed polymodule X = (C,P, ∂, α) consists of polygroups <
C, ⋆, e,−1> and < P, ◦, e,−1> together with a strong homomorphism ∂ : C → P and
a (left) action α : P × C → P∗(C) on C, satisfying the conditions:

(1) ∂( pc) = p ◦ ∂(c) ◦ p−1, for all c ∈ C and p ∈ P ,

(2) ∂(c)c′ = c ⋆ c′ ⋆ c−1, for all c, c′ ∈ C.

When we wish to emphasize the codomain P , we call X a crossed P -polymodule.
The strong homomorphism ∂ : C → P is called the boundary, while the polygroups
C and P are referred to as, respectively, the top polygroup and the base of the crossed
polymodule. A structure with the same data as a crossed polymodule and satisfying
the first condition of Definition 5.1 but not the second condition is called a precrossed
polymodule.

Example 5.1. A conjugation crossed polymodule is an inclusion of a normal sub-
polygroup N of P , with action given by conjugation. In particular, for any polygroup
P the identity map IdP : P → P is a crossed polymodule with the action of P on
itself by conjugation. Indeed, there are two canonical ways in which a polygroup P
may be regarded as a crossed polymodule: via the identity map or via the inclusion
of the trivial subpolygroup.

Example 5.2. If C is a P -polymodule, then there is a well defined action α of
P on C. This together with the zero homomorphism yields a crossed polymodule
(C,P, 0, α).

Theorem 5.1. Every crossed module is a crossed polymodule.

Proof. By using Lemma 3.1, the proof is straightforward. �
The crossed polymodule axioms impose some restriction on the kernel and

image of boundary strong homomorphism.

Proposition 5.1. Let X = (C,P, ∂, α) be a crossed polymodule. Then, ∂(C) is a
normal subpolygroup of P .
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Proof. Clearly, ∂(C) = {∂(c) | c ∈ C} is a subpolygroup of P . Suppose that
x ∈ ∂(C) and p ∈ P . Then, x = ∂(c) for some c ∈ C and p ◦ ∂(c) ◦ p−1 = ∂( pc).
Now, pc ⊆ C, and so p ◦ ∂(c) ◦ p−1 ⊆ ∂(C). �

Note that Proposition 5.1 depends only on the first condition of Definition 5.1.
So, it is true for any precrossed polymodule.

The centralizer C(A) of a subset A of a polygroup P is the set of elements
P which commute with all elements of P . In particular, C(P ) is written Z(P ) and
called the center of P and is abelian. Any subset of Z(P ) is called central in P .

Proposition 5.2. Let X = (C,P, ∂, α) be a crossed polymodule. Then, ker∂ is
central in C.

Proof. It is easy to see that ker∂ is a subpolygroup of C. Suppose that c ∈ C and
k ∈ ker∂. We have ∂(k)c = k ⋆ c ⋆ k−1, but ∂(k) = e, hence ∂(k)c = ec = c.
Therefore, k ⋆ c ⋆ k−1 is singleton. Thus, c ⋆ k = k ⋆ c ⋆ k−1 ⋆ k. Since e ∈ k−1 ⋆ k, we
conclude that k ⋆ c ⊆ c ⋆ k. Similarly, k−1 ⋆ c = k−1 ⋆ k ⋆ c ⋆ k−1. Since e ∈ k−1 ⋆ k,
we conclude that c ⋆ k−1 ⊆ k−1 ⋆ c, for all k ∈ ker∂. Hence, c ⋆ k ⊆ k ⋆ c. �

Let < P, ◦, e,−1> be a polygroup. We define the relation β∗P as the smallest
equivalence relation on P such that the quotient P/β∗P , the set of all equivalence
classes, is a group. In this case β∗P is called the fundamental equivalence relation on
P and P/β∗

P is called the fundamental group. The product ⊙ in P/β∗P is defined as
follows: β∗P (x)⊙β∗P (y) = β∗P (z), for all z ∈ β∗P (x)◦β∗(y). This relation is introduced
by Koskas [19] and studied mainly by Corsini [10], Leoreanu-Fotea [20] and Freni [16]
concerning hypergroups, Vougiouklis [23] concerning Hv-groups, Davvaz concerning
polygroups [12], and many others. We consider the relation βP as follows:

x βP y ⇔ there exist z1, . . . zn such that {x, y} ⊆ ◦
n∏

i=1
zi.

Freni in [16] proved that for hypergroups β = β∗. Since polygroups are certain
subclass of hypergroups, we have β∗P = βP . The kernel of the canonical map φP :
P −→ P/β∗P is called the core of P and is denoted by ωP . Here we also denote by
ωP the unit of P/β∗P . It is easy to prove that the following statements: ωP = β∗P (e)
and β∗P (x)

−1 = β∗P (x
−1), for all x ∈ P .

Lemma 5.1. ωP is a subpolygroup of P .

Proof. Suppose that x, y ∈ ωP are arbitrary. Then, β∗P (x) = β∗P (y) = ωP . So,
β∗P (x◦y) = β∗P (x)⊙β∗P (y) = ωP and β∗P (x

−1) = ωP . Therefore, we obtain x◦y ⊆ ωP

and x−1 ∈ ωP . �

Lemma 5.2. For every p ∈ P , p ◦ p−1 ⊆ ωp.

Proof. Suppose that x ∈ p ◦ p−1 is arbitrary. Since e ∈ p ◦ p−1, β∗P (e) = β∗P (x) and
so ωP = β∗P (x) which implies that x ∈ ωP . �

Throughout the paper, we denote the binary operations of the fundamental
groups P/β∗

P and C/β∗C by ⊙ and ⊗, respectively.
Now, we can consider another notion of the kernel of a strong homomorphism

of polygroups. Let < P, ◦, e,−1> and < C, ⋆, e,−1> be two polygroups and ∂ : C →



Crossed polymodules and fundamental relations 135

P be a strong homomorphism. The core-kernel of ∂ is defined by

ker∗∂ = {x ∈ C | ∂(x) ∈ ωP }.

Lemma 5.3. ker∗∂ is a normal subpolygroup of C.

Proof. Suppose that x, y ∈ ker∗∂ are arbitrary. Then, ∂(x), ∂(y) ∈ ωP . By Lemma
5.1, ωP is a subpolygroup of P , so ∂(x ◦ y) = ∂(x) ◦ ∂(y) ⊆ ωP and ∂(x−1) ∈ ωP .
Thus, x ⋆ y ⊆ ker∗∂ and x−1 ∈ ker∗∂. Now, assume that c ∈ C and x ∈ ker∗∂ are
arbitrary. We show that ∂(c ⋆x⋆c−1) = ∂(c)◦∂(x)◦∂(c−1) ⊆ ωP . In order to show
this, we have

β∗P (∂(c) ◦ ∂(x) ◦ ∂(c−1)) = β∗P (∂(c))⊙ β∗P (∂(x))⊙ β∗P (∂(c
−1))

= β∗P (∂(c))⊙ ωP ⊙ β∗P (∂(c
−1))

= β∗P (∂(c))⊙ β∗P (∂(c
−1))

= β∗P (∂(c) ◦ ∂(c−1))

= β∗P (∂(c ⋆ c
−1))

= β∗P (∂(e)) (since e ∈ c ⋆ c−1)

= β∗P (e) = ωP ,

which implies that ∂(c) ◦ ∂(x) ◦ ∂(c−1) ⊆ ωP . �
Theorem 5.2. Let X = (C,P, ∂, α) be a crossed polymodule. Then, ker∗∂ is a
P/∂(C)-polymodule.

Proof. The action of P on C induces an action of P on ker∗∂. It is sufficient
to check that pk ⊆ ker∗∂ whenever k ∈ ker∗∂. In order to show this, we have
∂( pk) = p ◦ ∂(k) ◦ p−1. So,

β∗P (p ◦ ∂(k) ◦ p−1) = β∗P (p)⊙ β∗P (∂(k))⊙ β∗P (p
−1)

= β∗P (p)⊙ ωP ⊙ β∗P (p
−1)

= β∗P (p)⊙ β∗P (p
−1)

= ωP ,

which implies that p ◦ ∂(k) ◦ p−1 ⊆ ωP . Hence, ∂( pk) ⊆ ωP and so pk ⊆ ker∗∂.
Therefore, ker∗∂ is a P -polymodule. From Proposition 5.1, ∂(C) is a normal sub-
polygroup of P , so P/∂(C) is defined. The action of P on ker∗∂ induces an action

of P/∂(C) on ker∗∂ by φ(p)k = pk, for p ∈ P , k ∈ ker∗∂ and φ : P → P/∂(C)
the cannonical map. This is well defined since if q ∈ P with φ(p) = φ(q), then
qk = φ(q)k = { xk | x ∈ φ(q)} = { xk | x ∈ φ(p)} = φ(p)k = pk. �

Note that Theorem 5.2 uses the second condition of Definition 5.1, so it need
not be true of a general precrossed polymodule.

Definition 5.2. We say that (A,B, ∂′, α′) is a subcrossed polymodule of the crossed
polymodule (C,P, ∂, α) if

(1) A is a subpolygroup of C, and B is a subpolygroup of P ,
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(2) ∂′ is the restriction of ∂ to A,
(3) the action of B on A is induced by the action of P on C.

A subcrossed polymodule (A,B, ∂′, α′) of (C,P, ∂, α) is normal if

(1) B is a normal subpolygroup of P ,
(2) pa ⊆ A, for all p ∈ P and a ∈ A,
(3) bc ⋆ c−1 ⊆ A, for all b ∈ B and c ∈ C.

Definition 5.3. Let X = (C,P, ∂, α) and X′ = (C ′, P ′, ∂′, α′) be two crossed poly-
modules. A crossed polymodule morphism

< θ, ϕ >: (C,P, ∂, α) → (C ′, P ′, ∂′, α′)

is a commutative diagram of strong homomorphisms of polygroups

C
θ //

∂
��

C ′

∂′

��
P

ϕ
// P ′

such that for all p ∈ P and c ∈ C, we have

θ( pc) = ϕ(p)θ(c).

We say that < θ, ϕ > is an isomorphism if θ and ϕ are both isomorphisms. Sim-
ilarly, we can define monomorphism, epimorphism and automorphism of crossed
polymodules.

6. Crossed modules derived from crossed polymodules

In this section, we consider a crossed polymodule and by using the concept
of fundamental relation, we obtain a croosed module. Then, we give a crossed
polymodule morphism between them.

Proposition 6.1. Let < C, ⋆, e,−1> and < P, ◦, e,−1> be two polygroups and let
∂ : C → P be a strong homomorphism. Then, ∂ induces a group homomorphism
D : C/β∗C → P/β∗P by setting

D(β∗C(c)) = β∗P (∂(c)), forall c ∈ C.

Proof. First, we prove that D is well defined. Suppose that β∗C(c1) = β∗C(c2). Then,

there exist a1, . . . , an such that {c1, c2} ⊆ ⋆
n∏

i=1
ai. So,

{∂(c1), ∂(c2)} ⊆ ∂

(
⋆

n∏
i=1

ai

)
= ◦

n∏
i=1

∂(ai).

Hence, ∂(c1) β
∗
P ∂(c2), which implies that D (β∗C(c1)) = D (β∗C(c2)). Now, we have

D(β∗C(c1)⊗ β∗C(c2)) = D(β∗C(c1 ⋆ c2)) = β∗P (∂(c1 ⋆ c2))

= β∗P (∂(c1) ◦ ∂(c2)) = β∗P (∂(c1))⊙ β∗P (∂(c2))

= D(β∗C(c1))⊙D(β∗C(c2)).

�
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We say the action of P on C is productive, if for all c ∈ C and p ∈ P there
exist c1, . . . , cn in C such that pc = c1 ⋆ . . . ⋆ cn.

Example 6.1. The action defined in Examples 4.1 and 4.2 are productive.

Let < C, ⋆, e,−1> and < P, ◦, e,−1> be two polygroups and let α : P × C →
P∗(C) be a productive action on C. We define the map ψ : P/β∗P × P/β∗C →
P∗(P/β∗C) as usual manner:

ψ(β∗P (p), β
∗
C(c)) = {β∗C(x) | x ∈

∪
y ∈ β∗

C(c)
z ∈ β∗

P (p)

zy}.

By definition of β∗C , since the action of P on C is productive, we conclude that
ψ(β∗P (p), β

∗
C(c) is singleton, i.e., we have

ψ : P/β∗P × P/β∗C → P/β∗C ,

ψ(β∗P (p), β
∗
C(c)) = β∗C(x), for all x ∈

∪
y ∈ β∗

C(c)
z ∈ β∗

P (p)

zy.

We denote ψ(β∗P (p), β
∗
C(c)) =

[β∗
P (p)] [β∗C(c)].

Proposition 6.2. Let < C, ⋆, e,−1> and < P, ◦, e,−1> be two polygroups and let
α : P ×C → P∗(C) be a productive action on C. Then, ψ is an action of the group
P/β∗P on the group P/β∗C .

Proof. Suppose that g, h ∈ P and c ∈ C. Then, we have

ψ(β∗P (h)⊙ β∗P (g), β
∗
C(c)) = ψ(β∗P (h ◦ g), β∗

C(c))

= [β∗
P (h◦g)] [β∗C(c)] ,

and

ψ(β∗P (h), ψ(β
∗
P (g), β

∗
C(c)) = ψ

(
β∗P (h),

[β∗
P (g)] [β∗C(c)]

)
= [β∗

P (h)]
(
[β∗

P (g)] [β∗C(c)]
)
.

By condition (2) of Definition 4.1, we have h( gc) = h◦gc. Now, it is not difficult
to see that

[β∗
P (h◦g)] [β∗C(c)] =

[β∗
P (h)]

(
[β∗

P (g)] [β∗C(c)]
)
.

�

Theorem 6.1. Let X = (C,P, ∂, α) be a crosed polymodule such that the action of
P on C is productive. Then, X = (C/β∗C , P/β

∗
P ,D, ψ) is a crossed module.
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Proof. By Propositions 6.1 and 6.2, it is enough to show that the conditions of
Definition 2.2 hold. Suppose that c ∈ C and p ∈ P are arbitrary. Then, we have

[β∗
P (p)]D ([β∗C(c)]) = D ([β∗C(z]) , for all z ∈ pc

= β∗P (∂(z)), for all z ∈ pc

= β∗P (∂(
pc))

= β∗P (p ◦ ∂(c) ◦ p−1)

= β∗P (p)⊙ β∗P (∂(c))⊙ β∗P (p
−1)

= β∗P (p)⊙D(β∗C(c))⊙ (β∗P (p))
−1 .

So, the first condition of Definition 2.2 holds. For the second condition, suppose
that c, c′ ∈ C are arbitrary. Then, we have

[D(β∗
C(c))] [β∗C(c

′)] = [β∗
P (∂(c))] [β∗C(c

′)]

= β∗C(z), for all z ∈ ∂(c)c′

= β∗C(z), for all z ∈ c ⋆ c′ ⋆ c

= β∗C(c ⋆ c
′ ⋆ c)

= β∗C(c)⊗ β∗C(c
′)⊗ β∗C(c).

�
Theorem 6.2. Let X = (C,P, ∂, α) be a crossed polymodule, φC and φP be canonical
maps. Then, < φC , φP > is a crossed polymodules morphism.

Proof. Note that according to Theorem 5.1, we can consider (C/β∗C , P/β
∗
P ,D, ψ) as

a crossed polymodule. We show that the following diagram is commutative.

C
φC //

∂

��

C/β∗C

D

��
P φP

// P/β∗P

Indeed, we have DφC(c) = D (β∗C(c)) = β∗P (∂(c)) = φP∂(c), for all c ∈ C. Moreover,

φC(
pc) = β∗C(

pc) = [β∗
P (p)] [β∗C(c)] =

φP (p)φC(c),

for all c ∈ C and p ∈ P . Therefore, < φC , φP > is a crossed polymodules morphism.
�

The following example gives us another crossed module structure on the fun-
damental groups.

Example 6.2. Suppose that < P, ◦, e,−1> is any polygroup. Then, P/β∗P is a group.
Suppose that Aut (P/β∗P ) its group of automorphisms. There is an obvious action
α of Aut (P/β∗P ) on P/β∗P , and a group homomorphism ∂ : P/β∗P → Aut (P/β∗P )
sending each β∗P (p) ∈ P/β∗P to the inner automorphism of conjugation by β∗P (p).
These together form a crossed module (P/β∗

P , Aut (P/β
∗
P ) , ∂, α).
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