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NEURAL AND NERVOUS REFLEX NETWORKS: A NEW 
APPROACH TO INTEGRATED CONTROL 

Alexandru M. PANAIT1, Alexandru M. MOREGA2 

Reţelele neuronale sunt privite ca soluţie “exotică” la problemele nelineare 
şi se preferă implementarea lor software pe maşini cu arhitectură clasică, cum ar fi 
maşinile Von Neumann sau echivalente, sau chiar pe controllere specializate, 
denumite “computere neuronale”. Această lucrare reprezita o direcţie alternativă la 
cercetarea reţelelor neuronale artificiale, pentru că propune o implementare 
hardware prin particularizarea un tip special de oscilatoare în inel inventate de 
Mark Tilden. Reţeaua neurală tip Tilden este adaptată pentru a comanda un tracker 
solar, necesitând foarte puţine componente şi având un cost mult mai mic, păstrând 
fiabilitatea, robusteţea şi flexibilitatea soluţiilor clasice ca parametri de bază. Ideea 
originală constă în adaptarea acestei clase de reţele pentru comanda directă de 
poziţionare a unui motor, şi în conceptul de control distribuit în sensul asigurării 
unei anumite autonomii efectorilor din sistemele complexe, folosind circuite cu 
răspuns imediat la modificarile unor parametri monitorizaţi. 

Neural networks have always been regarded as an exotic solution to non-
linear problems and often thought to be more effective as code implemented on a 
classical architecture machine, such as a Von Neumann machine or equivalent, or 
even given a controller class of their own, the “neural computer”. This work 
represents a breakpoint with that line of thought, as it proposes a hardware 
alternative to the neural network implementation, by particularizing a specific type 
of ring oscillator invented by Mark Tilden. The Tilden neural network is adapted to 
drive a solar tracker, requiring only a fraction of the component list and with a 
minimal cost, while keeping robustness and flexibility as core parameters. The 
original idea is adapting this class of neural networks to directly control the 
positioning of a motor, and describing a type of integrated control where distributed 
limited autonomy “slave” controllers also exist, enabling immediate response to 
changes in the monitored parameters. 
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1. Introduction 

Nervous networks are a complementary concept to neural networks. If the 
latter have learning abilities and several information processing levels, nervous 
networks exhibit only a delay generation function and sequence repeating of 
inputs received form a neural network. Complex oscillatory patterns can thus be 
achieved from a single input pulse. The combining of the two systems, the neural 
and nervous network has a synergetic effect, integrating the central control, local 
pattern generators to drive the subsystems, sensors and effectors (actuators, 
motors) in a structure that resembles biologic organisms more than a classical 
automated feedback loop-based control.  

The structures often exhibit emergent behaviors, despite their simplicity 
and lack of programmed elements. Unlike their counterpart, the classical neural 
networks, the reflex networks, both neural and nervous, do not use a pre-
programmed internal representation of the environment, such as look-up tables 
and such, using sensory data as coefficients in the transfer function instead. Thus 
the transfer function is adaptable directly to changes in the structure’s 
environment. These systems are inherently adaptable, while all the classic systems 
are adjustable. The control law in these systems is an arbitrary one, changing in 
reaction to modifications of the data from the sensors, which constructively 
impose the limits of sensory input; the system is in an indifferent (or marginal) 
equilibrium state, ensured by the intrinsic property of self-stabilization found in 
these structures [1, 2, 5, 7]. 

This type of reflex networks is comprised of one or several entities named 
„neurons”, built around a hysteresis invertor or opamp, using an RC group to 
ensure the needed integrating or differentiating characteristic. The type of RC 
group used determines the characteristic and separates NU and NVs [8]. 

The transfer function of these artificial neurons has all the well-known 
properties: sigmoid shape, refractory period when no excitation can occur, 
inhibitory or activator effect (positive or negative-going output pulses). By the 
nature of these neurons we differentiate between nervous and neural networks. 
Mixed-type reflex networks do exist also, but they can be regarded as neural and 
nervous interconnected networks. Reflex networks of any kind must have at least 
one loop. In a way, they are equivalent to what the classical theory calls 
“degenerate networks”. The neural reflex networks used in this application exhibit 
the property of square signal generation, having a variable fill factor and 
frequency, based on input from sensors or inhibitory/excitatory connections.  

Nervous reflex networks, by contrast, do not generate pulses by 
themselves, they need an external pulse generator but once they are connected, 
they repeat the pulse without significant losses and modulate it, creating complex 



Neural and nervous reflex networks: a new approach to integrated control             161 

oscillatory patterns, depending on their structure, input, and influencing 
connections with sensors. 

The current stage of development for reflex neural and nervous networks 
has only recently passed enthusiast experimentation phase. In 1999, a scientific 
military report commissioned by DARPA for the US Army evaluated the 
technology and found it to be unsuitable for its intended military use, because the 
governing equations of the neural networks were not yet determined and budget 
cuts stopped the project in an early phase [2]. Independent studies have been 
conducted since and a basis of operation was outlined; the present paper 
establishes the needed formulae and procedures to precisely design such a 
network and describes a simple application in which such a construct is used to 
control a simple solar tracker, currently under works.  

2. Operation of neural and nervous reflex networks 

The two studied types of reflex neurons, as described by their creator, M, 
Tilden et al. [1] and Rietman and Willis [2], can be classified by the response to 
the input pulse in integrating (NV’s as in Nervous neurons) and differentiating 
(NU’s as in neural/cortical structures). 

Let us analyze the simple NV integrating neuron. This structure has the 
following layout (fig 1.1). To induce a refractory state, similar to that of biological 
neurons, hysteresis trigger-Schmidt invertors of the 74HC14 series were used [1]. 

The logic state change in these NV neurons has the following 
particularities: 

• A circuit time constant τ = RC  exists, and it gives its refractory 
period. The refractory period, like its analogue in biology, 
represents the time after a transition of the output in which any 
other input is ignored. In this case, from the inactive „1” logic state 
of the output, a transition to the „0” logic state can occur if the 
neuron has received a pulse on the input port, A, (see fig. 1) as a 
positive-going TTL/CMOS pulse, and it is not in its refractory 
period. 

• A descending front of the input signal having a duration less than τ, 
works as a neuron reset, causing the output to go inactive („1” 
logic state, the NV neurons are active-low devices). 

A descending front of the input signal having a duration lower than τ, 
works as a neuron reset, causing the output to go inactive („1” logic state, the NV 
neurons are active-low devices). 

These properties can be demonstrated using a simple experimental setup, 
consisting in a function generator (pulse injector in this case), neural board, power 
supply and oscilloscope. By connecting the logic pulser in the polarizing node B 
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of a neuron in the loop, we can observe its response to induced square wave 
oscillations having variable frequencies, and to constant potentials. 
 

Fig.1 Structure of a NV neuron A = input, B = polarizing node, C = output. 
 

The experiment concluded that: injecting a square wave oscillation having 
a period smaller than the circuit time constant τ, leads to a similar oscillation of 
the output, but in antiphrasis to the input. Increasing the frequency until it is 
greater than τ, and thus the resonant frequency of the neuron, we witness the 
neuron entering the refractory stage. The refractory stage is relative, as it depends 
on the intensity of the injected stimulus, just like in biology. Injecting a fast pulse 
in the polarizing node B, or setting it to a high potential, the output C (fig. 1) has a 
transition to the active state. If we increase the frequency over a certain value we 
will find the critical point from beyond which the neuron does not entry the active 
state anymore, regardless of the stimulus (respecting the voltages within the safe 
operating limits for the neural network, given by the 74HCT 14’s specifications). 

Using the fact that the NU-ring structure is unidirectional, and utilizing the 
weight matrix – eq. 1, in [2] – yields 
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We point out that W has the weights wn−1,n = −1, because of the inverting 
functions of each neuron, coupled with a delay given by the RC constant of the 
circuit. A static analysis is needed to assess the time stability, because frequency 
stability is ensured by the existence of an absolute refractory period that equals 
the circuit time constant τ = RC . It will be shown that the NU-network stability is 
an intrinsic property. The weight matrix structure for the NU neurons shows that 
each neuron n has direct connections only to the next neuron n +1( ) and that the 
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network is cyclic, the output of the neuron n being connected to the input of 
neuron 1 forming a uni-directional ring structure. 

 

Fig.2 A Lab View simulation of the output signal’s power spectrum for a NV neuron. 
Although it contains a wide range of frequencies, it is not infinite since it represents a 

sigmoid function.

3. Equations and mathematical formalization of the design 

For the transfer function in a neural network usually a sigmoid function is 
used, written as 

 σ x( )=
1

1+ e−ax
,                                                     (2) 

 
where a is a parameter named steepness that gives the incline of the sigmoid 
function, but the analysis of the practical examples indicate a sufficiently good 
approximation of the model by using  that proposed by Blum and Wang in 1995, 
using a function that expresses transitions in such a structure 

 Ψ x( )= 2 σ x( )− 0.5[ ]=
1− e−ax

1+ e−ax .                                                 (3) 

Let us consider a loop of n neurons, and agree to note the states of each 
neuron „i” at the moment t = p  by xp

i( ), and let the transition function be 
F : Xn → X n  having X = 0,1{ } as the set of possible states. Under these 
assumptions, X n  gives the state space for the n-neuron structure. We can thus 
write 
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 F(xp+1
(1) ,...xp+n

(n ) ) = ( f (xp +1
(1) ),... f (xp+n

(n ) )) ,                                         (4) 
 

and if we accept f = Ψ, where Ψ is given by eq. (3), we can describe a constraint 
for a stable state of the network: the neural network described by eq. (4) is stable 
as long as the f = Ψ function has at least one periodic point. That is equivalent to 
inferring that in the given network, at least one oscillation of a given frequency 
occurs. The harmonics of this oscillation are possible only if the equation eq. (4) 
has several fixed points. For eq. (4) to have a periodic point, it must have a 
minimum period with q < n  and q | n, and if a point x = x 1( ), x 2( ),..x n( )( ) is a 

periodic point, then any point x i( ) with  i =1Kn  must be a fixed point for the f 
function. 
 By analyzing Ψ, we conclude that for a ≤ 2 (steepness parameter for the 
sigmoid transfer function) the equation has an attractor in the solution space, in 
(0, 0...0), and it is also the only periodic point; however, for a ≥ 2 the function has 
a large number of periodic points, (3n), that also describes the number of the 
network’s oscillation modes (possible harmonics). Out of these possible modes, 
only 2n  are stable, the rest being saddle points. 
 The NU and NV neural networks are a class of self-stabilizing structures. 
In these structures the marginal stability is manifested, the system evolving on the 
edge of chaos, in the calculated saddle points, leading to their saturation. The 
saturation is a process that physically manifests itself by the apparition of a large 
number of harmonics and the entry of all the neurons in the refractory state for an 
undetermined period of time. Needless to say, this rends the neural network non 
operational [2]. From this point on, we will refer to a stable oscillation in the 
network as a „process”. 
 There is a way to stop this situation form occurring, by building and 
coupling a process injector/initiator, that has the role to suppress the harmonics, 
bringing the network back to stable state. This process „pacemaker” injects in one 
network node a frequency that is far lower than the RC threshold of the refractory 
period, and establishes a rhythm for the base oscillation of the network. This 
rhythm can be modified by injecting signals in the B (polarization) nodes of the 
neurons in the network (fig. 1) where the sensors will be connected. 

4. Neural and Nervous Reflex Controllers 

Considering the structure for a NV neuron, discussed earlier, by switching 
the resistor and capacitor components we find a similar structure, but having 
different properties. This newfound structure is an analogue of the neurons in the 
central nervous system; we shall call it a „ nervous neuron”, or NV, by contrast to 
the neural neuron, or NU. This nervous neuron can also form ring oscillator 
structures, but as it has an increased immunity to noise and it is difficult to 
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influence (as it has an integrating behavior and it suppresses noise, vs. the 
differentiating one in the NU) is least suited to be connected to sensors. It excels 
however in forming pulse-generating structures, and transmitting those pulses in 
neural networks. 

The basis application for these structures is the construction of „pattern 
generators” similar to those in biologic organisms, and having similar functions, 
in coordinating complex cyclic functions (as the walking sequences for example), 
that imply a coordination of several elements, effectors, etc by the NV neurons. A 
neural controller built upon this paradigm means one or several rhythm 
generators, sensors and several nervous structures. Its functioning is unique by the 
fact that it does not use programmed routines and microprocessors, but reacts 
adaptively to the environment using sensory input as weights for its neurons. A 
prototype of this system is functioning in the IEM laboratory and will control a 
solar tracker. Results from preliminary testing are presented below. 

The network operation can be synthesized in what follows: the neuron in 
fig 3.1 consists in a trigger-Schmidt inverter having a hysteresis of approx 0.7 V, 
built on a CMOS 4093 series chip, powered at 5 V, and an RC low pass filter, that 
confers the assembly a differentiating behavior. The time constant for R = 5,1 MΩ 
and C = 0.01 µF is 178 ms. These values were used by DARPA military experts 
in the assessment of the neural networks of this type, and were replicated by the 
author. Other configurations using other values and the 74HCxx series chips have 
been tested. The switching thresholds are 2.9 V and 2.2 V, when the IC is 
powered at 5 V. This neural structure accepts both excitatory and inhibitory inputs 
(i.e., positive and negative, high and low logic pulses in the B biasing node). 

In the relaxed state (absence of input) the output is in high logic state; if a 
signal strong enough or lasts enough to charge the capacitor (threshold 
implementation), the voltage in point B on the diagram 1 becomes positive and 
the output of the inverter goes low, and the capacitor will discharge through the 
resistor to ground. In this state the neuron is active (transmits a negative-going 
pulse at its output). Then, after the capacitor discharges, the neuron output goes 
high again, yielding 

Vin = Vh ⋅ u t − t1( )− u t − t0( )[ ],                                    (5) 
 
where Vh is the output in high state (in this case 5 V) and u(t) is the step unit 
function, centered in 0 
 

u(t) = 0,   t < 0,   u(t) =1,  t > 0 ,                                 (5) 
 
describes the functioning of the neuron and the input the following neuron in the 
loop receives. The neuron active time (active signal front) is 
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 t2 − t1 = −RC ⋅VtHL
V

H
⋅ 1− e− t1 − t0( ) RC( )( )[ ],                                 (6) 

 
where 

• RC is the time constant of the circuit; 
• VtHL

 is the negative-going front threshold; 
• VH is the positive going front threshold; 
• t1 and t0 are the moments of pulse injection, initial and final. 

 
We found that a long pulse applied to the input outputs a long pulse, and a 

shorter one will output a shorter pulse. A consequence of this fact is that in some 
neural networks of this type, the faster pulses can „catch up” with the slower ones 
and cause a temporary instability of the network, followed by a re-establishing of 
the equilibrium of the oscillation in another configuration (frequency and pattern). 
In general, injecting a pulse in the network having one stable oscillation pattern, 
leads to the change of the equilibrium state, and establishing of a new limit cycle, 
having the following expression for its duration [eq. (7) describes the time for one 
pulse to propagate along the network] 
 

 T = NtLH + NtHL + NRC + Tr ,                                              (7) 
Where 
 

• N = the number of neurons in the loop; 
• tLH = transition time, low-high; 
• tHL= transition time, high-low; 
• RC= the time constant of the circuit; 
• Tr = period of the injected pulse (it affects only one cycle of the pulse as it 

travels along, altering the time constant of the affected neuron). 
 Shifts in frequency can be observed as long as the pulse is active, and the 
network normally returns to the idle state when sensory input is not active. 
Starting from a simple network as described in [1, 2] and using these 
observations, the authors have built and tested a phototropic motor controller that 
can be used in solar tracking applications (fig.3). These findings are in 
concordance with [5]. 
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Fig.3. The neural controller designed using the eqs. (1)-(7). The inputs, marked “sensor” on 

the diagram, show the connection points for a differential photodiode bridge light sensor (not 
shown). The ports marked IO 1-4 are the controller’s outputs that need to be buffered before 

connecting one monopolar stepping motor.

5. Testing the neural reflex controller 

Using eqs. (1)-(7) and a simple experimental setup consisting in a logic 
pulser, neural board, power supply and a PC-interfaced multiscope, we have 
found that for each neuron, the oscillation of a known time constant τ = RC  is 
delayed by the switching times of the used circuit, and, overall, a mean value for 
the delays of the RC groups can be observed. The frequency was measured using 
the following experimental set-up: PC, digital oscilloscope with serial interface 
(RS 232), at 9.6Kbaud, measuring two channels simultaneously, one live and one 
not connected (connected to a dummy resistor NOT in the circuit for noise level 
measurements), and a quad core of four NV neurons and one NU neuron for pulse 
initialization/stabilizing behavior. The equation 7 gives the period for the free 

oscillation of the network, T =
1

0,22
= 4,(45) – ignoring the very small switching 

times. The frequency value, at the network initialization was about 3.33 Hz (under 
the influence of the NU node having a 0.4 Hz frequency- ten times lower than the 
network itself), which was rapidly amortized and the network stabilized at 
4.40Hz, in about two minutes form start-up. The supply voltage ripple was low, 
below 0.01 mV (tracking stabilization power source), and can be neglected, the 
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schematic having a capacitor type filter consisting of two capacitors in parallel 
over the supply lines, a 10 µF one and a 1 pF one for high frequency suppression). 
 

Fig. 4. Experimental set-up, the neural controller on a quick board. 
 

The next stage is the direct light sensors coupling, and the analysis of the 
network behavior under light gradients will be studied. Modifying the output 
waveform by frequency/fill factor self-adjustment allows for the PWM control of 
the small motors, or phase drive for special machines. For the control of larger 
motors, a current amplifying buffer/optical insulation and smokeless H-bridges 
will be used. A further stage is the integration of the power stage and command 
electronics, sensors and motors on a one-or two-axis mobile mount. 

 

Fig.5 Experimental set-up, the data collection part comprised of an EXTECH 
multiscope, courtesy of the Laboratory of Electrical Engineering in Medicine, 

and a PC. 
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6. Conclusions 

Using minor adaptation one can successfully convert the reflex neural 
network, pioneered by M.Tilden, to the use on a solar tracker. The main 
advantages of this solution are the reduced costs, and system flexibility and 
modularity (the networks can be built as modules, easily interchangeable). These 
networks can be used in low-cost tracking applications of any nature, and do not 
need a controller, as long as adequate sensors are provided [3,6]. The power 
supply is not a critical network parameter. The system can also be built for rapid 
reaction, but this is not suitable for a slow moving tracking target, such as the Sun, 
because the low thresholds induce unwanted oscillation that leads to high-energy 
consumption.  

Another different approach to implementing hysteresis is by using a TTL 
compatible differential sensor that has an adjustable sensitivity. This system will 
be presented in a future paper. The described neural network controller is capable 
of implementing a reflex fuzzy control paradigm, responding directly to 
environmental changes by generating pulses of variable frequency and fill factor.  

Fig. 6 shows the output waveform of the neural controller, in accordance 
to eqs. (1)-(7). 
 

Fig.6. The output waveform of the neural controller.
 

The waveforms agree well to the theoretic predictions [4, 5,7,8]; the 
stability of the waveforms were observed, along with the frequency stability 
previously explored. In fig. 6, the „stability test” started, and the power-up 
frequency of 3.33 Hz can be observed. During the no-sensors test the circuit was 
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operated at low and normal power, at 2.3 and 4.5 V, drawing below 10, and 20 
mA in the second case. 
 The authors built and tested a neural controller similar to that described in 
this work, and adapted it to solar energy conversion applications such as 
optimizing the power output of solar panels by ensuring proper orientation with 
respect to the Sun [9]. 
 The theory of operation of such devices was studied and further 
observations were made, that ensured superior performance: the NOT gates are, as 
we have determined, less stable as the NAND gates in negator configuration, and 
we preferred the latter because of their faster response time and because of their 
characteristic, which is closer to optimal transfer. Also, a fully reversible motor 
drive operating on phase drive wave was developed and tested by the authors 
using the theory in the present work. 
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