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ON PRIME A-IDEALS IN MV -MODULES

F. Forouzesh1, E. Eslami2, A. Borumand Saeid3

In this paper, we study A-ideals in MV -modules. We introduce the no-

tion of ·-prime ideals in PMV -algebras and study the relations between ·-prime

ideals and MV F -algebras. Also we define prime A-ideals in MV -modules and

annihilator of A-ideals in MV -modules. We investigate some relations between

prime A-ideals and annihilators of A-ideals in MV -modules.
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1. Introduction and Preliminaries

In 2003, Di Nola, et.al. introduced the notion of MV -modules over a PMV -

algebra and A-ideals in MV -modules [5]. These are structures that naturally corre-

spond to lu-modules over lu-rings [5]. Recall that an lu-ring is a pair (R,u), where

(R, ⊕, ·, 0, ≤) is an l-ring and u is a strong unit of R (i.e, u is a strong unit of

the underlying l-group) such that u · u ≤ u and l-ring is a structure (R, +, ·, 0, ≤)

that (R, +, 0, ≤) is an l-group such that for any x, y ∈ R, x ≥ 0 and y ≥ 0, we

have x · y ≥ 0. They proved that the category of lu-modules over a given lu-ring

(R, v) is equivalent to the category of MV -modules over Γ(R, v). They also proved

there is a natural equivalence between MV -modules and truncated modules [5]. A.

Dvurecenskij and A. Di Nola in [6] introduced the notion of PMV -algebras, that is

MV -algebras whose product operation (·) is defined on the wholeMV -algebra. This

operation is associative and left/right distributive with respect to partially defined

addition. They showed that the category of product MV -algebras is categorically

equivalent to the category of associative unital l-rings. In addition, they introduced

and studied MV F -algebras [6]. They also introduced ·-ideals in PMV -algebras.

Then they showed that: Any MV F -algebra is a subdirect product of subdirectly

irreducible MV F -algebras [6, Corollary 5.6]. Thus they concluded that a product

MV -algebra is an MV F -ring if and only if it is a subdirect product of linearly or-

dered product MV -algebras [6, Theorem 5.8].
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In the present paper, we define ·-prime ideals in PMV -algebras. Using this no-

tion of ideals we construct the quotient PMV -algebras and investigate the relations

between ·-prime ideals and MV F -algebras. Moreover, we study A-ideals in MV -

modules, and introduce the notion of prime A-ideals and annihilators of these ideals

in MV -modules.

We investigate the relations between prime A-ideals and annihilators of A-ideals in

MV -modules. Finally we prove that if h : M → N is an A-module homomorphism

then all prime A-ideals of N and prime A-ideals of M that contain kerh are in one

to one correspondence.

Definition 1.1. [3] An MV -algebra is a structure (M , ⊕, *, 0) where ⊕ is a binary

operation, *, is a unary operation, and 0 is a constant such that the following

conditions are satisfied for any a, b ∈M :

(MV 1) (M , ⊕, 0) is an abelian monoid,

(MV 2) (a∗)∗ = a,

(MV 3) 0∗ ⊕ a = 0∗,

(MV 4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

If we define the constant 1 = 0∗ and the auxiliary operations ⊙,∨ and ∧ by:

a⊙ b = (a∗ ⊕ b∗)∗, a ∨ b = a⊕ (b⊙ a∗),

a ∧ b = a⊙ (b⊕ a∗) a⊖ b = a⊙ b∗,

then (M,⊙, 1) is an abelian monoid and the structure (M , ∨, ∧, 0, 1) is a bounded

distributive lattice. In an MV -algebra M , the Chang distance function is

d :M ×M −→M, d(a, b) := (a⊙ b∗)⊕ (b⊙ a∗).

We recall that an lu-group is an algebra (G, +, -, 0, ∨, ∧, u), where the

following properties hold:

(a) (G, +, -, 0) is a group,

(b) (G, ∨, ∧) is a lattice,

(c) For any x, y, a, b ∈ G, x ≤ y implies a+ x+ b ≤ a+ y + b,

(d) u > 0 is strong unit for G (that is, for all x ∈ G there is some natural number

n ≥ 1 such that −nu ≤ x ≤ nu) [1].

We will denote by MV the category whose objects areMV -algebras and whose

morphisms areMV -algebra homomorphisms and UG the category of lu-groups. The

elements of this category are pairs (G, u) where G is an Abelian l-group and u is a

strong unit of G. The morphisms will be l-group homomorphisms which preserve

the strong unit. The functor that establishes the categorical equivalence between

MV and UG is

Γ : UG −→ MV.

such that Γ(G, u) := [0, u]G for any lu-group (G, u), Γ(h) := h |[0,u] for any lu-

groups homomorphism [9].

The above result allows us to consider an MV -algebra, when necessary, as an inter-

val in the positive cone of an l-group.
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Thus, many definitions and properties can be transferred from l-groups to MV -

algebras. For example, the group addition becomes a partial operation when it is

restricted to an interval so we may define a partial addition on an MV -algebra M

as follows:

for any x, y ∈M , x+ y is defined iff x ≤ y∗

and, in this case, x+ y := x⊕ y, where + is the partial addition on M [7].

Also, cancellation rule holds in it, That is, if z + x ≤ z + y then x ≤ y [5].

Lemma 1.1. [3] Let M be an MV -algebra. If x, y, z, t ∈ M and d is a Chang

distance function, then

(1) x ≤ y iff y∗ ≤ x∗,

(2) If x ≤ y, then x⊕ z ≤ y ⊕ z and x⊙ z ≤ y ⊙ z,

(3) (x ∨ y)∗ = x∗ ∧ y∗, (x ∧ y)∗ = x∗ ∨ y∗,
(4) d(x, y) = 0 iff x = y,

(5) d(x, 0) = x, d(x, 1) = x∗,

(6) d(x, z) ≤ d(x, y)⊕ d(y, z),

(7) d(x∗, y∗) = d(x, y),

(8) If x ≤ y and z ≤ t, then x⊕ z ≤ y ⊕ t.

Lemma 1.2. [3] Let M be an MV -algebra. For x, y ∈M , the following conditions

are equivalent:

(1) x∗ ⊕ y = 1,

(2) x⊙ y∗ = 0,

(3) There is an element z ∈M such that x⊕ z = y,

(4) y = x⊕ (y ⊖ x).

For any two elements x, y ∈M, x ≤ y iff x and y satisfy the equivalent conditions

(1)-(4) in the above lemma.

Definition 1.2. [3] An ideal of an MV -algebra M is a nonempty subset I of M

satisfying the following conditions:

(I1) If x ∈ I , y ∈M and y ≤ x then y ∈ I,

(I2) If x, y ∈ I, then x⊕ y ∈ I.

We denote by Id(M) the set of ideals of an MV -algebra M .

Definition 1.3. [3] A proper ideal P is a prime ideal of an MV -algebra M , if

x ∧ y ∈ P, then x ∈ P or y ∈ P , for all x, y ∈M .

Definition 1.4. [6] A product MV -algebra (or PMV -algebra, for short) is a struc-

ture (A, ⊕, *,·, 0), where (A, ⊕, *, 0) is an MV -algebra and · is a binary associative

operation on A such that the following property is satisfied:

if x+ y is defined, then x · z + y · z and z · x+ z · y are defined and

(x+ y) · z = x · z + y · z, z · (x+ y) = z · x+ z · y
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If A is PMV -algebra, then a unity for the product is an element e ∈ A such that

e · x = x · e = x for any x ∈ A. A PMV -algebra that has unity for the product will

be called unital.

A ·-ideal of PMV -algebra A is an ideal I of MV -algebra A such that if a ∈ I and

b ∈ A entail a · b ∈ I and b · a ∈ I.

Lemma 1.3. [6] If A is a unital PMV -algebra, then:

(a) The unity for the product is e = 1,

(b) x · y ≤ x ∧ y for any x, y ∈ A.

Definition 1.5. [5] Let (A, ⊕, *, ·, 0) be a PMV -algebra and (M , ⊕, *, 0) an

MV -algebra. We say that M is a (left) MV -module over A (or, simply, A-module)

if there is an external operation:

φ : A×M −→M, φ(α, x) = αx,

such that the following properties hold for any x, y ∈M and α, β ∈ A:

(1) If x+ y is defined in M , then αx+ αy is defined and

α(x+ y) = αx+ αy,

(2) If α+ β is defined in A then αx+ βx is defined in M and

(α+ β)x = αx+ βx,

(3) (α · β)x = α(βx).

We say that M is a unital MV -module if A is a unital PMV -algebra and M is an

MV -module over A such that 1Ax = x for any x ∈M .

Example 1.1. [5] Let M2(R) be the ring of square matrices of order 2 with real

elements and 0 be the matrix with all element 0. If we define the order relation on

components A = (aij)i,j=1,2 ≥ 0 iff aij ≥ 0 for any i, j, such that v =

(
1/2 1/2

1/2 1/2

)
,

then A = Γ(M2(R), v) is a PMV -algebra. Let R2 = R×R be the direct product with

the order relation defined on components. IfM = Γ(R2, u) is anMV -algebra, where

u = (1, 1), then M is an A-module, where the external operation is the usual matrix

multiplication (A, (x, y)) 7→ A

(
x

y

)
. The above construction can be generalized

for any order n ≥ 2.

(1) If (x, y)+(z, t) is defined inM , so (x, y) ≤ (z, t)∗ = (1, 1)−(z, t) or (x, y)+(z, t) ≤
(1, 1), suppose that A = (aij)i,j=1,2 such that aij ≤ 1/2 for i, j = 1, 2. Hence

A

(
x

y

)
+A

(
z

t

)
≤ A

(
1

1

)
≤ (1, 1). Then A

(
x

y

)
+A

(
z

t

)
is defined inM .

(2) If A+B is defined in A, so A ≤ B∗ = v −B or A+B ≤ v. Let X = (x, y) ∈M

such that (x, y) ≤ (1, 1) or x, y ≤ 1. Hence A

(
x

y

)
+B

(
x

y

)
≤ v

(
x

y

)
≤ (1, 1).
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Then A

(
x

y

)
+B

(
x

y

)
is defined in M .

(3) (A.B)

(
x

y

)
= A(B

(
x

y

)
).

Definition 1.6. [5] LetM and N be twoMV -modules over a PMV -algebra A. An

A-module homomorphism is an MV -algebra homomorphism h : M → N such that

h(αx) = αh(x), for any α ∈ A and x ∈M .

Definition 1.7. [5] Let M be an A-module. Then ideal I ⊆M is called an A-ideal

if it satisfies the following condition:

if x ∈ I and α ∈ A, then αx ∈ I.

Lemma 1.4. [5] If M is an A-module, then the following properties hold for any

x, y ∈M and α,β ∈ A:

(a) 0x = 0,

(b) α0 = 0,

(c) (nα)x = α(nx) for any n ∈ N,
(d) αx∗ ≤ (αx)∗,

(e) α∗x ≤ (αx)∗,

(f) (αx)∗ = α∗x+ (1x)∗, if + is defined,

(g) x ≤ y implies αx ≤ αy,

(h) α ≤ β implies αx ≤ βx,

(i) (αx)⊙ (αy)∗ ≤ α(x⊙ y∗),

(j) α(x⊕ y) ≤ αx⊕ αy,

(k) d(αx, αy) ≤ αd(x, y).

Proposition 1.1. [5] If A is a unital PMV -algebra and M is a unital A-module,

then any ideal of M is an A-ideal. Thus, the ideals and the A-ideals of M coincide.

Remark 1.1. [5] Let M be an A-module and I ⊆ M an A-ideal of M . We recall

that the relation ∼I defined by:

x ∼I y if and only if d(x, y) ∈ I,

for any x, y ∈ M , is a congruence with respect to the MV -algebra operations. We

notice that x ∼I y implies αx ∼I αy, for any α ∈ A. Thus, the quotientMV -algebra

M/I has a canonical structure of A-module

α[x]I := [αx]I or α(x/I) := (αx)/I,

where [x]I is the congruence class of x. x/I = y/I if and only if d(x, y) ∈ I and if

x, y ∈M , then x/I ≤ y/I if and only if x⊙ y∗ ∈ I.

Definition 1.8. [4] A residuated lattice is an algebra (A, ∧, ∨, ⊙, →, 0, 1) of type

(2, 2, 2, 2, 0, 0) equipped with an order ≤ satisfying the following:

(LR1) (A, ∧, ∨, 0, 1) is a bounded lattice,
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(LR2) (A, ⊙, 1) is a commutative monoid,

(LR3) ⊙ and → are form an adjoint pair, i.e., c ≤ a→ b if and only if a⊙ c ≤ b, for

all a, b, c ∈ A.

Remark 1.2. [2] Any Boolean algebra can be regarded as a residuated lattice where

the operations ⊙ and ∧ coincide and x→ y = x∗ ∨ y.

2. Some results on A-ideals in MV -modules

In the sequel A is a PMV -algebra and M is an A-module.

Remark 2.1. In general, the union of any family of A-ideals of M is not an A-ideal

of M .

Example 2.1. Let M be Γ(R2, u) such that u = (1, 1), A = Γ(M2(R), v) and

v =

(
1/2 1/2

1/2 1/2

)
. By Example 1.1, M is an A-module but M = Γ(R2, u) =

[(0, 0), (1, 1)] andA = Γ(M2(R), v) = [0,

(
1/2 1/2

1/2 1/2

)
]. Then IdA(M) = {(0, 0),M}.

We denote by IdA(M) the set of A-ideals of an MV -module over a PMV -

algebra A.

We recall that for a nonempty subset N ⊆ M , the smallest A-ideal of M which

contains N , i.e.,
∩
{I ∈ IdA(M) : N ⊆ I}, is said to be the A-ideal of M generated

by N and will be denoted by (N ].

Proposition 2.1. Let M be an A-module.

(i) If N ⊆M is a nonempty set, then we have (N ] = {x ∈M : x ≤ x1 ⊕ . . .⊕ xn ⊕
α1y1 ⊕ . . .⊕ αmym for some x1, . . . , xn, y1, . . . ym ∈ N,α1, . . . αm ∈ A}, where by

(N ], we mean the ideal generated by N .

In particular, for a ∈M,

(a] = {x ∈M : x ≤ na⊕m(αa) for some integer n,m ≥ 0},

(ii) If I1, I2 ∈ IdA(M), then

I1 ∨ I2 = (I1 ∪ I2] = {a ∈M : a ≤ x1 ⊕ x2 for some x1 ∈ I1 and x2 ∈ I2},

(iii) If x, y ∈ A, then (x ∧ y] ⊆ (x] ∩ (y].

Proof. (i) We denote I = {x ∈M : x ≤ x1⊕. . .⊕xn⊕α1y1⊕. . .⊕αmym for some x1, . . . , xn, y1, . . . ym ∈
N,α1, . . . αm ∈ A} and prove that I is the smallest A-ideal containing N . It is clear

that N ⊆ I, if x ∈ N, then x ∈M , x ≤ x⊕0 for some x ∈ N, 0 ∈ A, hence, x ∈ I.

Let a ≤ b and b ∈ I. So there exist n ≥ 1 and x1, . . . xn ∈ N such that a ≤ b ≤
x1⊕ . . .⊕xn⊕α1y1⊕ . . .⊕αmym. It follows that a ∈ I. Now, let a, b ∈ I. Then a ≤
x1⊕. . .⊕xn⊕α1y1⊕. . .⊕αmym for some x1, . . . , xn, y1, . . . ym ∈ N,α1, . . . αm ∈ A,

and b ≤ t1 ⊕ . . . ⊕ tk ⊕ β1z1 ⊕ . . . ⊕ βszs for some t1, . . . , tk, z1, . . . zs ∈ N and

β1, . . . βs ∈ A, by Lemma 1.1 (8), we have a ⊕ b ≤ x1 ⊕ . . . ⊕ xn ⊕ t1 ⊕ . . . ⊕ tk ⊕
α1y1 ⊕ . . . ⊕ αmym ⊕ β1z1 ⊕ . . . ⊕ βszs, so a ⊕ b ∈ I. Let α ∈ A, x ∈ I. Then x ≤
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x1⊕. . .⊕xn⊕α1y1⊕. . .⊕αmym for some x1, . . . , xn, y1, . . . ym ∈ N, α1, . . . αm ∈ A,

by Lemma 1.4 (h), (j), we have αx ≤ αx1⊕ . . .⊕αxn⊕ (α ·α1)y1⊕ . . .⊕ (α ·αm)ym
for some x1, . . . , xn, y1, . . . ym ∈ N, γ1, . . . γm ∈ A such that γi = α · αi, i = 1, . . .m.

Hence, αx ∈ I. Thus, I is an A-ideal containing N . Let K be another A-ideal of

M that contains N and a ∈ I. Hence, a ≤ x1 ⊕ . . . ⊕ xn ⊕ α1y1 ⊕ . . . ⊕ αmym for

some x1, . . . , xn, y1, . . . ym ∈ N, α1, . . . αm ∈ A. Since K is an A-ideal, it follows that

x1 ⊕ . . .⊕ xn ∈ K and αiyi ∈ K for i = 1 . . .m. Hence, x1 ⊕ . . .⊕ xn ⊕ α1y1 ⊕ . . .⊕
αmym ∈ K, so a ∈ K, we deduce that I ⊆ K. Therefore (N ] = I.

Clearly, for a ∈M

(a] = {x ∈M : x ≤ na⊕m(αa) for some integers n,m ≥ 0}.

(ii) Follows by (i).

(iii) Obviously, x ∈ (x] and y ∈ (y]. Since x ∧ y ≤ x, y, we get that x ∧ y ∈ (x] and

x ∧ y ∈ (y]. It follows that x ∧ y ∈ (x] ∩ (y].

Now, let t ∈ (x ∧ y]. Then, t ≤ n(x ∧ y)⊕m(α(x ∧ y)) for some integers n,m ≥ 0,

we deduce that t ∈ (x] ∩ (y], so (x ∧ y] ⊆ (x] ∩ (y].

�

If in the above theorem, we consider M unitary A-module, then we have:

Corollary 2.1. Let M be a unitary A-module. If N ⊆ M is a nonempty set, then

we have: (i) (N ] = {x ∈ M : x ≤ α1x1 ⊕ . . . ⊕ αnxn for some x1, . . . , xn ∈
Nand α1, . . . αn ∈ A}, In particular, for a ∈M ,

(a] = {x ∈M : x ≤ n(αa) for some integer n ≥ 0},

(ii) If I1, I2 ∈ IdA(M), then I1∨I2 = (I1∪I2] = {a ∈M : a ≤ x1⊕x2 for some x1 ∈
I1, x2 ∈ I2},
(iii) If x, y ∈ A, then (x ∧ y] = (x] ∩ (y].

For I ∈ IdA(M) and a ∈ A− I, we denote by I(a) = (a] ∨ I = (I ∪ {a}].

Remark 2.2. Let M be an A-module. Then

I(a) = {x ∈M : x ≤ y⊕ma⊕ n(αa), for some y ∈ I, integers n,m ≥ 0, α ∈
A}.

Proof. Let T = {x ∈M : x ≤ y⊕ma⊕n(αa), for some y ∈ I, integers n,m ≥
0, α ∈ A}.We suppose that, x ∈ I(a) = (a]∨I = {x ∈M : x ≤ x1⊕y for some x1 ∈
(a] and y ∈ I}. Since x1 ∈ (a], then x1 ≤ ma⊕ n(αa), for some integer m,n ≥ 0

and α ∈ A, we have x ≤ x1 ⊕ y ≤ ma⊕ n(αa)⊕ y, it follows that x ∈ T .

Conversely, if x ∈ T , then we get that x ≤ y ⊕ ma ⊕ n(αa), for some y ∈ I and

integer n ≥ 0, x1 = ma ⊕ n(αa) ∈ (a], so x ≤ y ⊕ x1 such that x1 ∈ (a] and y ∈ I.

It follows that x ∈ (a] ∨ I = I(a). �

Remark 2.3. Let M be a unitary A-module. We have: I(a) = {x ∈ M : x ≤
y ⊕ n(αa), for some y ∈ I and integer n ≥ 0}.
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Corollary 2.2. Let I ∈ IdAM and a, b ∈ A− I. Then I(a ∧ b) ⊆ I(a) ∩ I(b).

Proof. We have a∧b ≤ y⊕m(a∧b)⊕n(α(a∧b)) for some y ∈ I and integersm,n ≥ 0.

Then a ∧ b ∈ I(a ∧ b). Since a ∧ b ≤ a, b and a ∈ (a], b ∈ (b], so a ∧ b ∈ (a] ⊆ I(a)

and a ∧ b ∈ (b] ⊆ I(b), also I ⊆ I(a), I ⊆ I(b), we deduce that a ∧ b ∈ I(a) ∩ I(b),
if x ∈ I(a ∧ b), then x ≤ y ⊕m(a ∧ b)⊕ n(α(a ∧ b)). It follows that x ∈ I(a) ∩ I(b),
Thus I(a ∧ b) ⊆ I(a) ∩ I(b). �

Corollary 2.3. Let M be a unitary A-module, I ∈ IdAM and a, b ∈ A − I. Then

I(a ∧ b) = I(a) ∩ I(b).

Proof. SinceM is a unitary A-module, by Proposition 1.1, it is clear that I ∈ Id(M),

so I(a ∧ b) = I(a) ∩ I(b) [11]. �

We recall that if h :M1 →M2 is an A-module homomorphism, then ker(h) =

{x ∈M1 : h(x) = 0} is an A-ideal of M1 [5].

Lemma 2.1. Let M,N be MV -modules over a PMV -algebra A and f :M −→ N

be an A-module homomorphism. Then the following properties hold:

(i) For each ideal J ∈ IdA(N), the set f−1(J) = {x ∈ M : f(x) ∈ J} is an ideal of

A. Thus, in particular, ker(f) ∈ IdA(M),

(ii) f(x) ≤ f(y) if and only if x⊖ y ∈ ker(f),

(iii) f is injective if and only if ker(f) = {0},
(iv) ker(f) ̸=M if and only if N is nontrivial.

The well-known isomorphism theorems have corresponding versions for MV -

modules. We mention only the first and the second isomorphism theorem.

Theorem 2.1. (The first isomorphism theorem) If M and N are two MV -modules

and f : M −→ N is an A-module homomorphism, then M/ker(f) and Im(f) are

isomorphic MV -modules.

Theorem 2.2. (The second isomorphism theorem) If M is an MV -module and

I, J are two A-ideals such that I ⊆ J , then (M/I)/PI(J) and M/J are isomorphic

MV -module, such that PI :M →M/I is the quotient module of M .

Proposition 2.2. If ∼ is a congruence relation on M , then I∼ = {x ∈ M : x ∼
0} ∈ IdA(M) and x ∼ y if and only if d(x, y) ∼ 0 [11].

Proposition 2.3. Let I be an A-ideal of M and ∼ be a congruence relation on M .

The assignment I  ∼I is a bijection from the set IdA(M) of A-ideals of M onto

the set of congruences on M ; more precisely, the function α : IdA(M) → Con(M)

defined by α(I) =∼I is an isomorphism of partially ordered sets [11].

3. Prime A-ideals in an MV -module

In the sequel A is a PMV -algebra and M is an MV -module.
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Definition 3.1. Let N be an A-ideal of M .

(N :M) = {r ∈ A : rM ⊆ N}

such that rM = {rm : m ∈M}.

Definition 3.2. Let N be an A-ideal. We denote annihilator of N by AnnA(N),

which is defined as AnnA(N) = {r ∈ A : rN = 0}.

Using Lemma 3.11 from [5], we obtain more properties of MV -modules.

Lemma 3.1. The following properties hold for any x,m ∈M and α, β ∈ A:

(a) αm+ (βm)∗ ≥ (α+ β∗)m,

(b) (α⊙ β)m ≥ αm⊙ βm,

(c) (αx)∗ ⊙ (βx) ≤ (α∗ ⊙ β)x,

(d) d(αx, βx) ≤ d(α, β)x,

(e) (α⊕ β)x ≤ αx⊕ βx.

Proof. (a) by Lemma 1.4 (e), we have β∗m ≤ (βm)∗, hence

αm+ (βm)∗ ≥ αm+ β∗m = (α+ β∗)m.

(b) Since α⊙ β ≤ α, β, (α⊙ β)m ≤ αm, βm. It follows that (α⊙ β)m = (α⊙ β)m∧
αm = [(α⊙ β)m+ (αm)∗]⊙ (αm), using (a), we get (α⊙ β)m ≥ ((α⊙ β) +α∗)m⊙
(αm) = (α∗ ∨ β)m⊙ αm ≥ βm⊙ αm.

(c) Since α, β ≤ α ∨ β, by Lemma 1.4 (h), we get that αx ∨ βx ≤ (α ∨ β)x. Thus,
we have

((αx)⊙ (βx)∗) + βx = αx ∨ βx ≤ (α ∨ β)x = ((α⊙ β∗) + β)x = (α⊙ β∗)x+ βx.

Since cancellation rule holds in it [5], the desired inequality is straightforward.

(d) d(αx, βx) = [αx⊙ (βx)∗]⊕ [(αx)∗ ⊙ βx] by using (c), we get that

d(αx, βx) ≤ x(α⊙ β∗) + x(α∗ ⊙ β) = ((α⊙ β∗) + (α∗ ⊙ β))x = d(α, β)x.

(e) By using (c) and Lemma 1.4 (h), we get that

(α⊕ β)x⊙ (αx)∗ ≤ ((α⊕ β)⊙ α∗)x = (α∗ ∧ β)x ≤ βx.

It follows that (α⊕ β)x = (α⊕ β)x ∨ αx ≤ [(α⊕ β)x⊙ (αx)∗]⊕ αx ≤ βx⊕ αx. �

Proposition 3.1. Let N be an A-ideal of M . Then AnnA(N) is a ·-ideal of a

PMV -algebra A.

Proof. Suppose that a, b ∈ A such that a ≤ b, and b ∈ AnnA(N), then a ≤ b and

bx = 0 for every x ∈ N , it follows from Lemma 1.4 (h), ax ≤ bx and bx = 0, then

ax = 0, for every x ∈ N . Hence aN = 0. Therefore a ∈ AnnA(N).
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If a, b ∈ AnnA(N), then aN = 0 and bN = 0. By Lemma 3.1 (e), for every x ∈ N ,

we have

(a⊕ b)x ≤ ax⊕ bx = 0.

So (a⊕ b)N = 0, hence a⊕ b ∈ AnnA(N).

Let α ∈ A, r ∈ AnnA(N). We show that α · r ∈ AnnA(N). Since r ∈ AnnA(N), it

follows that rN = 0 or for every x ∈ N, rx = 0. Now, we have

(α · r)x = α(rx) = α0 = 0;

for every x ∈ N , then α · r ∈ AnnA(N). Therefore AnnA(N) is a ·-ideal of A. �

Remark 3.1. If N is an A-ideal of aMV -moduleM , then (N :M) = AnnA(M/N).

Hence (N :M) is a ·-ideal of A.

Definition 3.3. Let N be an A-ideal of M and T (N) = {n ∈ N : ∃0 ̸= a ∈ A; an =

0}. Then T (N) is called torsion A-ideal of N .

Definition 3.4. Let P be a ·-ideal of A. P is called a ·-prime if (i) P ̸= A, (ii) for

every a, b ∈ A, if a · b ∈ P , then a ∈ P or b ∈ P .

Remark 3.2. Let N be an A-ideal of M and {0} be a ·-prime ideal of A. Then

T (N) is an A-ideal of M .

Proof. (i) Let n,m ∈ T (N). Then there exist 0 ̸= a, b ∈ A such that an = 0, bm =

0. We consider c := a · b ̸= 0, by Lemma 1.4 (j), we have (a · b)(m ⊕ n) ≤
(a ·b)m⊕(a ·b)n = a(bm)⊕b(an) = 0. Then (a ·b)(m⊕n) = 0. Hence m⊕n ∈ T (N).

(ii) For every m,n ∈M such that m ≤ n, and n ∈ T (N), we show that m ∈ T (N).

Since n ∈ T (N), there exists 0 ̸= a ∈ A; an = 0. Since m ≤ n, by Lemma 1.4 (g),

we get that am ≤ an and an = 0, it follows that am = 0, so m ∈ T (N).

(iii) Let m ∈ T (N) and a ∈ A. Then there exists 0 ̸= b ∈ A; bm = 0, a(bm) =

a0 = 0, by Lemma 1.4 (b), a(bm) = 0 or b(am) = (b · a)m = (a · b)m = a(bm) = 0.

Therefore am ∈ T (N).

�

Example 3.1. Let Ω = {1, 2} and M = A = P(Ω) = {{1}, {2}, {1, 2}, ∅}. Then A

is a PMV -algebra with ⊕ = ∪, and ⊙ = · = ∩. Hence M is an MV -module over A

with the external operation defined by AX := A ∩X for every A ∈ A and X ∈ M

[5]. Clearly, I = {∅} is an A-ideal. We have

T (M) = {B ∈ M : ∃∅ ̸= A ∈ A, A∩B = ∅} = {∅, {1}, {2}}, T (∅) = {B = ∅ : ∃ϕ ̸=
A ∈ A;A ∩B = ∅} = {∅},
AnnA{∅} = {A ∈ A : A∅ = ∅} = A, AnnA(M) = {A ∈ A : AM = ∅} = {∅},
(∅ : M) = {A ∈ A : AM ⊆ ∅} = {∅}, (M : M) = {A ∈ A : AM ⊆ M} = A.

Also I1 = {∅, {1}} is an A-ideal of M, so AnnA(I1) = {B ∈ A : BI1 = ∅} = {∅, {2}},
T (I1) = {C ∈ I1 : ∃∅ ̸= A ∈ A;CA = ∅} = {{1}, ∅} and

(I1 : M) = {B ∈ A : BM ⊆ I1} = {∅, {1}}.
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Example 3.2. In Example 2.1, A = Γ(M2(R), v) is a PMV -algebra such that

v =

(
1/2 1/2

1/2 1/2

)
. P = {0} is not a ·-prime ideal of A, if C =

(
0 1/2

0 1/2

)
and

D =

(
1/2 1/2

0 0

)
, then

C.D =

(
0 1/2

0 1/2

)
·
(

1/2 1/2

0 0

)
= 0.

But C ̸= 0 and D ̸= 0.

It is well known that if A is a unital PMV -algebra, then x · y ≤ x∧ y, for any
x, y ∈ A. From this, we can prove the following lemma:

Lemma 3.2. if A is a unital PMV -algebra and P is a ·-prime ideal of A, then P is

a prime ideal of A.

Proof. Let P be a ·-prime ideal of A. Suppose that x ∧ y ∈ P , for any x, y ∈ A. It

follows from Lemma 1.3 (b), x · y ≤ x ∧ y ∈ P and P is a ·-ideal, so x · y ∈ P . Since

P is a ·-prime ideal, hence x ∈ P or y ∈ P . Thus P is a prime ideal of A. �

We recall that a product MV -algebra A is said to be an MV F -algebra if for

all a, b, c ∈ A,

a ∧ b = 0 implies (a · c) ∧ b = 0 = (c · a) ∧ b.

Also, any linearly ordered PMV -algebra is an MV F -algebra [6].

Theorem 3.1. Let A be a unital PMV -algebra and P be a ·-prime ideal of A.

Then A/P is a chain PMV -algebra.

Proof. By Lemma 3.2, we deduce that P is a prime ideal of A. Then x⊙ y∗ ∈ P or

y⊙x∗ ∈ P , for any x, y ∈ A. It follows from Remark 1.1, x/P ≤ y/P or y/P ≤ x/P .

Hence A/P is a chain PMV -algebra. �

By the above theorem, we imply that if P is a ·-prime ideal of unital A, Then

A/P is a MV F -algebra.

The following example, we show that the converse of above theorem is not true.

Example 3.3. Let l3 = {0, 1, 2} be a linearly ordered set (chain). l3 is an MV -

algebra with operations ∧ = min, x⊕y = min{2, x+y} and x⊙y = max{0, x+y−2},
for every x, y ∈ A which is not a Boolean algebra. Also, A is a PMV -algebra by

operation · such that x ·y = 0, for every x, y ∈ A. Clearly, · is associative and if x+y

is defined i.e, x ≤ y∗ = 2− y or x+ y ≤ 2, then x · z + y · z ≤ 2, z · x+ z · y ≤ 2 and

(x+ y) · z = x · z+ y · z and z · (x+ y) = z · x+ z · y. Let P = {0}. Then A/{0} ≃ A

is an MV F -algebra but P = {0} is not ·-prime ideal of A. Since 2 · 1 ∈ P but 2 ̸= 0

and 1 ̸= 0.
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Definition 3.5. Let M be an A-module. Then an A-ideal P of an MV -module M

is a prime A-ideal, if (i) P ̸=M (ii) for every α ∈ A, x ∈M if αx ∈ P , then x ∈ P

or α ∈ (P :M).

Example 3.4. Let A = {0, a, b, 1}, where 0 < a, b < 1. Define ⊙, ⊕ and ∗ as

follows:

⊙ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

⊕ 0 a b 1

0 0 a b 1

a a a 1 1

b b 1 b 1

1 1 1 1 1

∗ 0 a b 1

1 b a 0

Then (A,⊕,⊙, ∗, 0, 1) is an MV -algebra. If we define αx := α · x = 0 for any

α ∈ A and x ∈ A, them A becomes an A-module. It is clear that P1 = {0, a} and

P2 = {0, b} are prime A-ideals of A. Let αx = 0 ∈ P1. If x ∈ P , then the proof is

clear. If x /∈ P , then α ∈ (P : M). Since αM = {0} ⊆ P1. Hence P1 is a prime

A-ideal of A. Similarly P2 is a prime A-ideal of A.

Example 3.5. Let A = {0, 1, 2} be a linearly ordered set (chain). A is an MV -

algebra with operations ∧ = min, x⊕y = min{2, x+y} and x⊙y = max{0, x+y−2},
for every x, y ∈ A [11]. Also, A is PMV -algebra with the following operations:

⊕ 0 1 2

0 0 1 2

1 1 2 2

2 2 2 2

· 0 1 2

0 0 0 0

1 0 0 0

2 0 0 1

∗ 0 1 2

2 1 0

Clearly, A ia a PMV -algebra and A becomes an A-module over A with the external

operation defined by αx = α · x, for any α ∈ A and x ∈ A. Then P = {0} is not

a prime A-ideal. Since 2 · 1 ∈ P and 1 /∈ P , also for α = 2 and x = 1, we have

2M * P , because 2 · 2 = 1 /∈ P . Hence P is not a prime A-ideal of M .

Example 3.6. Let M be Γ(R2, u) such that u = (1, 1), A = Γ(M2(R), v) and

v =

(
1/2 1/2

1/2 1/2

)
. By Example 1.1, M is an A-module such that M = Γ(R2, u) =

[(0, 0), (1, 1)] andA = Γ(M2(R), v) = [0,

(
1/2 1/2

1/2 1/2

)
]. Then IdA(M) = {(0, 0),M},

butM has not primeA-ideal. If P = (0, 0) is a primeA-ideal, thenB =

(
1/2 0

1/2 0

)
∈

A, (0, 1/2) ∈M , we have

(
1/2 0

1/2 0

)(
0

1/2

)
=

(
0

0

)
∈ P, but

(
1/2 0

1/2 0

)
M *

P and (0, 1/2) /∈ P. Let m = (1/2, 1/2) ∈ M . Then

(
1/2 0

1/2 0

)(
1/2

1/2

)
=
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1/4

1/4

)
/∈ P and (0, 1/2) /∈ P . Therefore, (0, 0) is not a prime A-ideal of a MV -

module M .

We denoted that ZA(M) = {r ∈ A : ∃m ∈M − {0}; rm = 0}.

Proposition 3.2. Let M be an A-module. Then P = {0} is a prime A-ideal of M

if and only if AnnA(M) = ZA(M).

Proof. Let P = {0} be a prime A-ideal. suppose that a ∈ AnnA(M), then am = 0

for every m ∈ M . It follows that a ∈ ZA(M). Now, let a ∈ ZA(M). Then for

some 0 ̸= m ∈ M, am = 0 ∈ P , by hypothesis, we deduce that m ∈ P = {0} or

a ∈ (P : M). Since m ̸= 0, hence a ∈ (P : M), it follows that aM = 0. Thus,

a ∈ AnnA(M).

Conversely, let AnnA(M) = ZA(M). We show that P = {0} is a prime A-ideal. For

every a ∈ A, m ∈M, suppose that am = 0, m ̸= 0, then a ∈ ZA(M) = AnnA(M).

It follows that aM = 0 or a ∈ ({0} :M).

�

Remark 3.3. Let A be a unital PMV -algebra. Then every ·-ideal of A is a ·-prime

if and only if it is a prime A-ideal of an A-module A.

Proposition 3.3. Let h :M →M ′ be an onto A-module homomorphism. If P is a

prime A-ideal of M ′, then h−1(P ) is a prime A-ideal of M .

Theorem 3.2. Let h : M → M ′ be an onto A-module homomorphism. Then

prime A-ideals of M ′ and prime A-ideals of M that contain kerh are in one to one

correspondence.

Proof. Let ψ: T → S, where T = {Q : Q is prime A-ideal of M ′} and S = {P :

P is a prime A-ideal of M such that kerh ⊆ P}. We define ψ(Q) := h−1(Q). By

Proposition 3.3, ψ is well defined. Also ψ is injective. LetQ ∈ kerψ. Then ψ(Q) = 0,

hence h−1(Q) = 0, it follows that Q = h(h−1(Q)) = h(0) = 0. Therefore Q = 0, so

ψ is injective.

Now, we show that ψ is a surjective. Let P ∈ S or on the other hand, P

be A-ideal of M that contains kerh. We claim that there exists a prime A-ideal

Q = h(P ) of M ′ such that ψ(Q) = ψ(h(P )) = P .

Firstly, Q = h(P ) is an ideal of M ′.

(i) Suppose that a, b ∈ h(P ), then a = h(x) and b = h(y) for some x, y ∈ M .

a⊕ b = h(x)⊕ h(y) = h(x⊕ y) ∈ h(P )

(ii) Suppose that a ∈M ′, b ∈ h(P ) such that, a ≤ b and b ∈ h(P ), then b = h(x),

for some x ∈ P , and a ∈M ′, h is surjective, there exists y ∈M such that h(y) = a;

but h(y) ≤ h(x), hence by Lemma 1.2, h(y) ⊙ (h(x))∗ = 0 or y ⊙ x∗ ∈ kerh ⊆ P ,

then (y ⊙ x∗) ⊕ x ∈ P or x ∨ y ∈ P and y ≤ x ∨ y, hence, y ∈ P . Therefore,

a = h(y) ∈ h(P ).
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(iii) Let x ∈ h(P ) and a ∈ A.

Since x ∈ h(P ), then x = h(b) for some b ∈ P and a ∈ A, hence ab ∈ P and

ax = ah(b) = h(ab) ∈ h(P ).

It follows that h(P ) is A-ideal of M ′.

Second, we show that Q = h(P ) is a prime A-ideal of M ′.

(i) h(P ) is a proper A-ideal of M ′. If h(P ) =M ′ = h(M).

Hence for x ∈M , we have h(x) ∈ h(M) = h(P ), hence h(x) = h(y) for some y ∈ P .

Therefore, h(x) ≤ h(y) and h(y) ≤ h(x). By Lemma 1.2, h(x)⊙ (h(y))∗ = 0, hence

x⊙ y∗ ∈ kerh ⊆ P and y ∈ P , then (x⊙ y∗)⊕ y ∈ P or x ∨ y ∈ P . Since x ≤ x ∨ y
and x ∨ y ∈ P , then x ∈ P . Thus, M ⊆ P . It follows that M = P which is a

contradiction.

(ii) Let a ∈ A, x ∈ M ′ such that ax ∈ h(P ), we show that x ∈ h(P ) or a ∈ (h(P ) :

M ′). Since x ∈ M ′, there exists y ∈ M such that h(y) = x. Also, since ax ∈ h(P ),

ax = h(t) for some t ∈ P , we have ax = ah(y) = h(ay) = h(t), so h(ay) ≤ h(t),

by Lemma 1.2, (ay) ⊙ t∗ ∈ kerh ⊆ P and t ∈ P , therefore ((ay) ⊙ t∗) ⊕ t ∈ P ,

then t ∨ (ay) ∈ P and ay ≤ t ∨ (ay) and P is A-ideal, hence ay ∈ P for some

a ∈ A, y ∈ M ; but P is a prime A-ideal of M , then y ∈ P or a ∈ (P : M). If

y ∈ P , then h(y) ∈ h(P ), if we have a ∈ (P : M), then aM ⊆ P . It follows that

h(aM) ⊆ h(P ). This implies ah(M) ⊆ h(P ), hence aM ′ ⊆ h(P ) or a ∈ (h(P ) :M ′).

Therefore, h(y) ∈ h(P ) or a ∈ (h(P ) :M ′). Thus, h(P ) is a prime A-ideal of M ′.

Now, we show that ψ(Q) = ψ(h(P )) = h−1(h(P )). Let x ∈ h−1(h(P )). Then

h(x) ∈ h(P ), hence h(x) = h(y) for some y ∈ P , h(x) ≤ h(y), by Lemma 1.2,

x⊙y∗ ∈ kerh ⊆ P and y ∈ P , it follows that x∨y = (x⊙y∗)⊕y ∈ P and x ≤ x∨y,
so x ∈ P . Thus, h−1(h(P )) ⊆ P , so h−1(h(P )) = P or ψ(h(P )) = P , therefore ψ is

surjective.

�

Theorem 3.3. Let M be a unitary A-module and P an A-ideal of M . P is a prime

A-ideal of M if and only if P is a prime A/Ann(M)-ideal of M .

Proof. Let P be a prime A-ideal. We show that P is a prime A/Ann(M)-ideal of

M . Firstly, M is a A/Ann(M)-module with operation A/Ann(M)×M →M such

that (a/Ann(M), x) → ax or [a/Ann(M)]x = ax, for every a ∈ A, x ∈M.

(i) It well defined, since a/Ann(M) = b/Ann(M), for every a, b ∈ A, by Remark

1.1, we have d(a, b) ∈ Ann(M), hence d(a, b)M = 0. It follows that d(a, b)1M = 0.

Hence, d(a, b) = 0, by Lemma 1.1, a = b. For x, y ∈M,a, b ∈ A:

(1) If x + y is defined in M , then we show that [a/Ann(M)]x + [a/Ann(M)]y is

defined in M or ax+ ay is defined in M .

Since M is an A-module and x+ y is defined in M , so ax+ ay is defined in M .

(2) If a/Ann(M),b/Ann(M) ∈ A/Ann(M) such that a/Ann(M)+ b/Ann(M) is de-

fined in A/Ann(M).

We prove that [a/Ann(M)]x+[b/Ann(M)]x is definedM . If a/Ann(M)+b/Ann(M)
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is defined, then a/Ann(M) ≤ (b/Ann(M))∗ = b∗/Ann(M), by Remark 1.1, a ⊙
(b∗)∗ ∈ Ann(M), so a⊙ b ∈ Ann(M) or (a⊙ b)M = 0 or (a⊙ b)1M = 0 or a⊙ b = 0.

Therefore, a ≤ b∗. i.e., a + b is defined in A, since M is an A-module, for every

x ∈M ax+ bx is defined in M . Thus, [a/Ann(M)]x+ [b/Ann(M)]x is defined M .

(3) (a/Ann(M)·b/Ann(M))x = [(a·b)/Ann(M)]x = (a·b)x = a(bx) = (a/Ann(M))(bx) =

(a/Ann(M))[(b/Ann(M))x].

Now, let P be a prime A-ideal of M . Then, for every a/Ann(M) ∈ A/Ann(M) and

x ∈ M such that [a/Ann(M)]x ∈ P , then ax ∈ P , since P is a prime A-ideal of

M , then a ∈ (P : M) or x ∈ P . Consider a ∈ (P : M), then aM ⊆ P and for

every x ∈ M, ax ∈ P if and only if (a/Ann(M))x ∈ P , for any x ∈ M , if and

only if (a/Ann(M))M ⊆ P if and only if a/Ann(M) ∈ (P : M). Hence, x ∈ P or

a/Ann(M) ∈ (P :M). We deduce that P is a prime A/Ann(M)-ideal.

Conversely, let P be prime A/Ann(M)-ideal and for every a ∈ A, x ∈ M such that

ax ∈ P . We show that x ∈ P or a ∈ (P :M).

Let ax ∈ P . Then (a/Ann(M))x ∈ P , by hypothesis, x ∈ P or a/Ann(M) ∈ (P :

M), so x ∈ P or (a/Ann(M))M ⊆ P , hence x ∈ P or aM ⊆ P . Therefore, x ∈ P

or a ∈ (P :M). �

Proposition 3.4. Let N be an A-ideal of a MV -module M such that (N :M) is a

maximal ·-ideal of A. Then N is a prime A-ideal of M .

Proof. Let am ∈ N and a /∈ (N : M), for every a ∈ A,m ∈ M . Since (N : M) is a

maximal, then (N : M) ∨ (a] = A, hence there exist t ∈ (N : M) and s ∈ (a], such

that 1 = t⊕ s. Hence by Lemma 3.1 (e), we have m = m(t⊕ s) ≤ mt⊕ms. Since

t ∈ (N :M), so tM ⊆ N , hence for every m ∈M, tm ∈ N . Also since s ∈ (a], hence

for some integer n ≥ 0, s ≤ na, then, by Lemma 1.4 (c) sm ≤ (na)m = n(am) and

by hypothesis, n(am) ∈ N , it follows that sm ∈ N , so m ≤ tm⊕ sm ∈ N . Thus, N

is a prime A-ideal of M . �

Theorem 3.4. Let M be a unitary A-module. Then A-ideal N of a MV -module

M is a prime if and only if P = (N : M) is a ·-prime ideal of A, and A/P -module

M/N is a torsion free.

Proof. Let N be a prime A-ideal of M . We claim that (N :M) is a ·-prime ideal of

A. Firstly (N : M) is a proper ideal. If (N : M) = A, then 1 ∈ (N : M), it follows

that 1M ⊆ N , so M = N . Which is a contradiction. Now, let a, b ∈ A such that

a · b ∈ (N : M) and a /∈ (N : M). Then (a · b)M ⊆ N and aM * N , it follows that

for every m ∈M, (a · b)m ∈ N and there exists x ∈M such that ax /∈ N , also we

have b(ax) = (a · b)x ∈ N . Hence by hypothesis, b ∈ (N : M), thus (N : M) is a

·-prime ideal of A.

Now, we show that M/N is A/P -module, by operation: (a/P,m/N) → (am)/N.

We prove that it is well defined, for every a1, a2 ∈ A and m1,m2 ∈M . Suppose that

a1/P = a2/P , m1/N = m2/N , then by Remark 1.1, we have

d(a1, a2) ∈ P and d(m1,m2) ∈ N, (1)
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this results d(a1, a2) ∈ P = (N : M), it follows that d(a1, a2)M ⊆ N , hence

d(a1, a2)1 ∈ N , then

d(a1, a2) ∈ N, (2)

by Lemma 1.4 (k) and Lemma 3.1 (d), we have:

d(a1m1, a2m2) ≤ d(a1m1, a1m2)⊕ d(a1m2, a2m2)

≤ a1d(m1,m2)⊕ d(a1, a2)m2

and by (1), (2) we deduce that d(a1m1, a2m2) ∈ N .

(i) If a1/P + a2/P is defined in A/P ,

we show that (a1m)/N+(a2m)/N is defined inM/N , for every a1, a2 ∈ A,m ∈M. If

a1/P+a2/P is defined in A/P , then a1/P ≤ (a2/P )
∗, it follows that by Remark 1.1,

a1 ⊙ a2 ∈ P = (N :M), then (a1 ⊙ a2)M ⊆ N , so (a1 ⊙ a2)m ∈ N , for any m ∈M

but by Lemma 3.1 (b), we have a1m ⊙ a2m ≤ (a1 ⊙ a2)m. Thus, a1m ⊙ a2m ∈ N .

So by Remark 1.1, we have (a1m)/N ≤ [(a2m)/N ]∗, therefore, (a1m)/N +(a2m)/N

is defined in M/N, for any m ∈M and a1, a2 ∈ A.

(ii) If m1/N +m2/N is defined in M/N , then we show that (am1)/N +(am2)/N is

defined in M/N .

Let m1/N + m2/N be defined in M/N . Then m1/N ≤ (m2/N)∗, it follows from

Remark 1.1, m1 ⊙m2 ∈ N , we have by Lemma 3.1 (b), am1 ⊙ am2 ≤ a(m1 ⊙m2),

then am1 ⊙ am2 ∈ N , so by Remark 1.1, we have (am1)/N ≤ [(am2)/N ]∗. Thus,

(am1)/N + (am2)/N is defined in M/N .

(iii) For any a1, a2 ∈ A and m ∈ M , we have: (a1/P · a2/P )(m/N) = [(a1 ·
a2)/P ](m/N) = [(a1 · a2)m]/N = [a1(a2m)]/N = (a1/P )[(a2/P )(m/N)]. Thus,

M/N is an A/P -module.

Now, we prove thatM/N is torsion free A/P -module. For every a ∈ A, m ∈
M , such that (a/P )(m/N) = 0/N , a/P ̸= 0/P . Then (am)/N = 0/N , by Remark

1.1, it follows that d(am, 0) ∈ N , so by Lemma 1.1, we have am ∈ N . Now,

let m/N ̸= 0/N or m = d(m, 0) /∈ N . Since P is a prime A-ideal of M , hence

a ∈ (N : M) = P , so a = d(a, 0) ∈ P , it follows that a/P = 0/P , which is a

contradiction. Thus, M/N is a torsion free.

Conversely, we prove that N is a prime A-ideal. Let am ∈ N and a /∈ (N :M) = P

for every m ∈ M, a ∈ A. Then (a/P )(m/N) = (am)/N = 0/N, a/P ̸= 0/P , by

hypothesis, since M/N is torsion free A/P -module, it follows that m/N = 0/N ,

then m ∈ N . Also, suppose that N = M , thus P = (N : M) = A, which is a

contradiction. Thus N is a prime A-ideal of M . �

Proposition 3.5. Let N be a proper A-ideal of a unitaryMV -moduleM such that

(N :M) = P . Then the following are equivalent:

(a) N is a prime A-ideal of M ,

(b) M/N is a torsion free A/P -module,

(c) For every r ∈ A− P, N = {m ∈M : rm ∈ N},
(d) For every ·-ideal J of A such that J * P , N = {m ∈M : Jm ⊆ N},
(e) For every m ∈M −N , P = (N : (m]),
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(f) For every A-ideal L of M such that L * N , P = (N : L),

(g) For every m ∈M −N , AnnA(m/N) = P ,

(h) ZA(M/N) = P .

Proof. (a) ⇒ (b) is straightforward by Theorem 3.4.

(b) ⇒ (c) Let T = {m ∈ M : rm ∈ N} for every r ∈ A − P . Suppose that

m ∈ T , then rm ∈ N , it follows that by Lemma 1.1, rm = d(rm, 0) ∈ N , so by

Remark 1.1, we have (r/P )(m/N) = (rm)/N = 0/N , hence by hypothesis, since

M/N is torsion free, so m/N = 0/N , it follows that m ∈ N . Thus, N = {m ∈ M :

rm ∈ N}.
(c) ⇒ (d) Let J be a ·-ideal of A such that J * P . Then there exists r ∈ J−P .

We show that {m ∈ M : Jm ⊆ N} ⊆ N . Let m ∈ M such that Jm ⊆ N . Hence

rm ∈ N and r /∈ P . By (c), we deduce that m ∈ N . Thus N = {m ∈M : Jm ⊆ N}.
(d) ⇒ (e) Let m ∈ M −N and r ∈ (N : (m]). Suppose that r /∈ P , consider

J = (r], then Jm ⊆ N and J * P by hypothesis, we have m ∈ N , which is a

contradiction. So r ∈ P , hence (N : (m]) ⊆ P . Now, let r ∈ P = (N : M). Then

rM ⊆ N , so rm ∈ N for every m ∈ M , we prove that r ∈ (N : (m]) or r(m] ⊆ N .

Suppose that t ∈ (m], hence t ≤ nm for some integer n ≥ 0, so by Lemma 1.4

(c), rt ≤ r(nm) = n(rm) and rm ∈ N , it follows that rt ∈ N or r(m] ⊆ N or

r ∈ (N : (m]).

(e) ⇒ (f) Let N ̸= L ⊆ M . Then there exists m ∈ L − N , then by (e), we

have (N : (m]) = P . Now since m ∈ L and (N :M) = P , hence (N : L) = P .

(f) ⇒ (g) Let m ∈ M −N . Suppose that r ∈ AnnA(m/N), then r(m/N) =

0/N , it follows that by Remark 1.1, rm ∈ N , consider that L = (m], by hypothesis,

we deduce that (N : (m]) = P . Let r ∈ (N : (m]) = P . We show that r(m] ⊆ N ,

suppose that t ∈ (m], so t ≤ nm for some integer n ≥ 0, hence rt ≤ r(nm), by

Lemma 1.4 (c), rt ≤ n(rm) and we have rm ∈ N , so rt ∈ N and since (N : (m]) = P ,

hence r ∈ P . Therefore, Ann(m/N) ⊆ P .

Conversely, let r ∈ P . Consider L = (m], we deduce by (f), P = (N : (m]).

It follows that r ∈ (N : (m]), then r(m] ⊆ N . Hence rm ∈ N then by Lemma1.1

and Remark 1.1, we have d(rm, 0) ∈ N or (rm)/N = 0/N or r(m/N) = 0/N , hence

r ∈ AnnA(m/N). Therefore, P ⊆ AnnA(m/N). Thus, AnnA(m/N) = P.

(g) ⇒ (h) Let

ZA(M/N) = {r ∈ A : r(m/N) = 0/N for some m/N ∈M/N and m/N ̸= 0/N}

= {r ∈ A : d(rm, 0) ∈ N for some m ∈M −N}

= {r ∈ A : rm ∈ N for some m ∈M −N}.

Now, let r ∈ ZA(M/N). Then r ∈ AnnA(m/N) but we deduce by (g), AnnA(m/N) =

P , hence r ∈ P .

Conversely, let m ∈M−N and r ∈ P . This implies by (g), AnnA(m/N) = P ,

so r ∈ AnnA(m/N). It follows that by Remark 1.1, we have (rm)/N = 0/N or

d(rm, 0) ∈ N or rm ∈ N , thus, r ∈ ZA(M/N). Therefore, P ⊆ ZA(M/N).
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(h) ⇒ (a) Let ZA(M/N) = P . Suppose that r ∈ A, m ∈ M such that

rm ∈ N and m /∈ N , by definition of ZA(M/N) and hypothesis, we deduce that

r ∈ P = (N :M). Thus, N is a prime A-ideal of M . �

4. Conclusion and future research

MV -modules over a PMV -algebra A and A-ideals in MV -modules are in-

troduced by Di Nola, et.al. They proved equivalence between the category of lu-

modules over (R, v) and the category of MV -modules over Γ(R, v), where (R, v) is

an lu-ring [5]. Also A. Dvurecenskij and A. Di Nola in [6] introduced the notions

of PMV -algebras, MV F -algebras and ·-ideals in PMV -algebras. We introduced

·-prime ideals in PMV -algebras and investigated the relation between ·-prime ideals

and MV F -algebras. We studied A-ideals in MV -modules and introduced the no-

tion of prime A-ideals in an MV -module and annihilator of an A-ideal in an MV -

module. We give some conditions on an A-ideal to become prime and proved that if

h :M → N is an A-module homomorphism then all prime A-ideals of N and prime

A-ideals of M that contains kerh are in one to one correspondence.

In our future study of MV -modules, we are planning:

(1) to get more results on A-ideals.

(2) to define another types of A-ideals in M .

(3) to get more results on prime A-ideal.
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